Sensor and Simulation Notes

Note. 79

Three- and Four-branch RLC Network Energy Sources for the Buried Transmission Line EMP Simulator

Prepared by
Joe P. Martinez
Kenneth D. Granzow

February 1969

The Dikewood Corporation 1009 Bradbury Drive, S: E. University Research Park Albuquerque, New Mexico 87106

CLEARED FOR PUBLIC RELEASE
$P L-94-10 y 5,30$ Woo 94

ABSTRACT

A method of designing RLC networks to drive a buried transmissionline EMP simulator is presented and illustrated with designs that impress a step function of voltage on the simulator. The closing of a single switch actuates the driving network. The technique can be used to find circuit elements of the network that will synthesize a wide variety of pulse shapes at the terminals of the simulator.
Section Page
I INTRODUCTION 1
II ANALYSIS 2
III RESULTS. 12
IV NUMERICAL RESULTS 13
V GRAPHS OF VOLTAGES AND CURRENTS AT THE SIMULATOR. 19

I. INTRODUCTION

In a previous note ${ }^{1}$ the buried transmission line EMP simulation technique was discussed, and in other notes ${ }^{2}, 3,4$ capacitive and inductive sources were proposed. The driving network presented in this note consists of several RLC series circuits in parallel. The capacitors in each branch are initially charged to some voltage (V_{0}) : the circuit is actuated by closing a single switch in series with the network and the simulator. The shape of the resultant pulse depends, of course, on the values of the parameters in the RLC branches.

The values of these circuit elements are found in two steps. First, the driving-network, short-circuit current is found that will give the desired pulse shape at the terminals of the simulator. Second, a least-squares fitting technique is used to find the circuit parameters of the RLC branches to fit the short-circuit current.

[^0]
A. General Method

Figure 1 contains a block diagram of the simulator and driving network. Fere Z_{S} is the impedance of the network and Z_{L} the impedance of the transmission line simulator in the ground. The voltage V_{o} is the initial voltage across the capacitors, and s is the Laplace transform variable (all quantities are Laplace transformed). The current I(s) and the voltage across the simulator $V_{s}(s)$ are given by

$$
\begin{equation*}
I(s)=\frac{V_{0}}{s} \frac{1}{\left(Z_{s}+Z_{L}\right)}, \tag{1}
\end{equation*}
$$

Figure 1

$$
\begin{equation*}
V_{s}(s)=\frac{V_{0}}{s} \frac{Z_{L}}{\left(Z_{s}+-Z_{L}\right)} \tag{2}
\end{equation*}
$$

Suppose that one wants the driving network to approximate a desired pulse V_{s} across the terminals of the simulator. The first step is to find the short-circuit current for a hypothetical driving network that has open-circuit voltage V_{0} / s, and that produces the desired pulse exactly.

The short-circuit current of the driving network is given by

$$
\begin{equation*}
I_{s . c .}(s)=\frac{V_{0}}{s Z_{s}} \tag{3}
\end{equation*}
$$

Solving Eq. (3) for Z_{s} one obtains

$$
\begin{equation*}
Z_{s}=\frac{V_{0}}{s I_{s . c}(\mathrm{~s})} \tag{4}
\end{equation*}
$$

Substituting the right-hand side of Eq. (4) into Eq. (2) for Z_{s} and solving for $I_{\text {s.c. }}(s)$, the result is

$$
\begin{equation*}
I_{s . c .}(s)=\frac{V_{0} / s}{Z_{L}\left(\frac{V_{0} / s}{V_{s}(s)}-1\right)} \tag{5}
\end{equation*}
$$

To complete the design of the driving network one needs the shortcircuit current as a function of time, i.e., the inverse transform of Eq. (5). For many functions V_{s} this can be found analytically; if simulation of a pulse is desired where analytic inversion of Eq. (5) is impossible, then a numerical
inversion can probabiy be done. For the special case solved in detail in this note (V_{S} equals a step function of time) the inversion is done analytically.
B. Approximation of Step Function Across the Simulator

From Eqs. (2) and (4) in Sensor and Simulation Note XXII,

$$
\begin{equation*}
Z_{L}=f_{g} \sqrt{s \mu / \sigma} ; \tag{6}
\end{equation*}
$$

f_{g} is the dimensionless geometric factor described in Notes XXI ${ }^{5}$ and LII ${ }^{6}, \sigma$ is conductivity and μ is permeability. Substituting the right-hand side of Eq.
(6) into Eq. (5) for Z_{L}, and letting $V_{s}(s)=V_{m} / s, V_{m}$ a constant,

$$
\begin{equation*}
I_{s . c .}(s)=\frac{V_{o}}{f_{g} \sqrt{\mu / \sigma} s^{3 / 2}\left(\frac{V_{o}}{V_{m}}-1\right)} \tag{7}
\end{equation*}
$$

Taking the inverse Laplace transform, ${ }^{7}$

$$
\begin{equation*}
\overline{\mathrm{I}}_{\mathrm{s.c}}(\mathrm{c})=\frac{2 \mathrm{~V}_{\mathrm{o}} t^{1 / 2}}{\mathrm{f}_{\mathrm{g}} \sqrt{\mu / \sigma}\left(\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{m}}}-1\right)} \sqrt{\pi} \tag{8}
\end{equation*}
$$

[^1]A new constant $f_{v}=V_{o} / V_{m}-1$ is defined and Eq. (8) becomes,

$$
\begin{equation*}
\bar{I}_{s, c .}(t)=\frac{2 V_{0} t^{1 / 2}}{f_{g}^{\frac{f}{i} v} \sqrt{\pi \mu / \sigma}} \tag{9}
\end{equation*}
$$

This is an expression for the short-circuit current through a hypothetical driving network, to yield a step function of time at the simulator. The constant f_{v} must be greater than zero; that is, the initial charging voltage must be greater than the step function voltage that is to appear across the terminals of the simulator.

Now it is desired to find RLC component values in Z_{s} that will approximate the desired short-circuit current expressed in Eq. (9). Figure 2 shows a diagram for an n-branch network. The individual branches serve as pulse shaping devices. An expression for the short-circuit current is,

$$
\begin{equation*}
I_{s . c .}(s)=\frac{V_{o} / s}{Z_{1}}+\frac{V_{o} / s}{Z_{2}}+\ldots+\frac{V_{o} / s}{Z_{n}} \tag{10}
\end{equation*}
$$

Figure 2

The transformed impedance of the ith branch is,

$$
\begin{equation*}
Z_{i}=s L_{i}+R_{i}+\frac{1}{s C_{i}} . \tag{11}
\end{equation*}
$$

Eq. (10) becomes

$$
\begin{equation*}
I_{s . c .}(s)=\sum_{i=1}^{n} \frac{V_{0}}{s^{2} L_{i}+s R_{i}+\frac{1}{C_{i}}} \tag{12}
\end{equation*}
$$

Another way of expressing Eq. (12) is,

$$
\begin{equation*}
I_{s . c .}(s)=\sum_{i=1}^{n} \frac{V_{0}}{L_{i}\left(s-r_{1 i}\right)\left(s-r_{2 i}\right)}, \tag{13}
\end{equation*}
$$

where,

$$
\begin{equation*}
r_{I i}=\frac{-R_{i}}{2 L_{i}}+\sqrt{\frac{R_{i}^{2}}{4 L_{i}^{2}}-\frac{1}{L_{i} C_{i}}} \tag{14}
\end{equation*}
$$

and,

$$
\begin{equation*}
r_{2 i}=\frac{-R_{i}}{2 L_{i}}-\sqrt{\frac{R_{i}^{2}}{4 L_{i}^{2}}-\frac{I}{L_{i} C_{i}}} \tag{15}
\end{equation*}
$$

Taking the inverse Laplace transform of Eq. (13), we get

$$
\begin{equation*}
\bar{I}_{s . c .}(t)=\sum_{i=1}^{n} \frac{V_{o}}{L_{i}} \frac{e^{r_{1 i}}{ }^{t}-e^{r_{2 i} t}}{r_{1 i}-r_{2 i}} . \tag{16}
\end{equation*}
$$

Now we have an expression for the short-circuit current which is a function of the parameters as well as time. If we can fit Eq. (16) to Eq. (9) by solving for the parameter values, we can calculate the RLC components which should give us the desired current and voltage wave shapes. In other words, set

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{V_{o}}{L_{i}} \frac{e^{r_{1 i}^{t}}-e^{r_{2 i} t}}{r_{1 i}-r_{2 i}} \cong \frac{2 V_{o} t^{1 / 2}}{\sqrt{\pi} f_{v} f_{g} \sqrt{\mu / \sigma}} \tag{17}
\end{equation*}
$$

or,

$$
\begin{equation*}
g\left(t, \alpha_{k}\right) \cong f(t) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}=L_{i}, r_{1 i}, r_{2 i^{\prime}} i=1, n \tag{19}
\end{equation*}
$$

The V_{o} appears on both sides of Eq. (17) and can be eliminated from the calculation. A least squares fitting scheme may be used to find the α_{k}. A computer program was written to solve for these parameters and to calculate the component values from the parameters.

The L_{i} are found directly from the fitting scheme. The R_{i} and C_{i} can be calculated by solving Eqs. (14) and (15) simultaneously:

$$
\begin{equation*}
r_{1 i}+r_{2 i}=\frac{-R_{i}}{L_{i}} \tag{20}
\end{equation*}
$$

so,

$$
\begin{equation*}
R_{i}=-L_{i}\left(r_{1 i}+r_{2 i}\right), \tag{21}
\end{equation*}
$$

also,

$$
\begin{align*}
& r_{1 i}-r_{2 i}=2 \sqrt{\frac{R_{i}^{2}}{4 L_{i}^{2}}-\frac{1}{L_{i} C_{i}}}, \tag{22}\\
& \left(r_{1 i}-r_{2 i}\right)^{2}=\frac{R_{i}^{2}}{L_{i}^{2}}-\frac{4}{L_{i} C_{i}}, \tag{23}
\end{align*}
$$

solving for C_{i}, one gets,

$$
\begin{equation*}
C_{i}=\frac{4}{L_{i}\left[\left(r_{1 i}+r_{2 i}\right)^{2}-\left(r_{I i}-r_{2 i}\right)^{2}\right]} \tag{24}
\end{equation*}
$$

In writing a computer program to solve for the α_{k}, three branches were used. The $\left|r_{2 i}\right|$ were made larger than $\left|r_{1 i}\right|$, and the radicals in Eq. (14) and (15) were real; hence, the overdamped case was tried initially. In running the program, r_{13} had a tendency to approach r_{23} causing overflow problems in the computer. Since this limit ($\mathrm{r}_{13} \rightarrow \mathrm{r}_{23}$) represents the critically damped case, branch three was forced to be critically damped.

The short-circuit current of the third branch became

$$
\begin{equation*}
I_{s . c .}(s)=\frac{V_{o}}{L_{3}} \frac{1}{\left(s-r_{13}\right)^{2}} \tag{25}
\end{equation*}
$$

taking the inverse Laplace transform,

$$
\begin{equation*}
\bar{I}_{s . c .}(t)=\frac{V_{0}}{I_{3}} t e^{r_{13} t} \tag{26}
\end{equation*}
$$

Hence, in computing the α_{k} Eq. (16) became

$$
\begin{equation*}
g\left(t, \alpha_{k}\right)=\sum_{i=1}^{2} \frac{V_{0}}{L_{i}} \frac{e^{r_{1 i} i^{t}}-e^{r_{2 i} t}}{r_{1 i}-r_{2 i}}+\frac{V_{o}}{L_{3}} t e^{r_{13}^{t}} \tag{27}
\end{equation*}
$$

Another case considered was the four-branch network with all the branches critically damped. The transformed short-circuit current is given by

$$
\begin{equation*}
I_{s, c .}(s)=\sum_{i=1}^{4} \frac{V_{o}}{L_{i}} \frac{1}{\left(s-r_{1 i}\right)^{2}} \tag{28}
\end{equation*}
$$

taking the inverse Laplace transform one has,

$$
\begin{equation*}
\bar{I}_{s . c .}(t)=\sum_{i=1}^{4} \frac{V_{0}}{L_{i}} t e^{r_{1 i^{t}}^{t}} \tag{29}
\end{equation*}
$$

Once values for the RLC components are determined for either the three- or four-branch networks, the current and voltage waveforms impressed on the simulator by the design may be obtained by transforming Eqs. (1) and (2) to the time domain. Hence,

$$
\begin{equation*}
\bar{I}(t)=\approx-I\{I(j \omega)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} I(j \omega) d \omega, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{V}_{s}(t)=\mathcal{F}^{-1}\left\{V_{s}(s)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} V(j \omega) d \omega \tag{31}
\end{equation*}
$$

A computer program was written to evaluate Eqs. (30) and (31). The subroutines of Program FORPLEX ${ }^{8}$ were used in the inverse fourier transform calculation.

The efficiency of such a driving network is important since the cost is approximately proportional to the initial stored energy and the amount of energy delivered to the simulator is at least a rough measure of the effectiveness of the network. The initial stored energy is given by

$$
\begin{equation*}
E_{i n}=\frac{V_{o}^{2}}{2}\left(C_{1}+C_{2}+\ldots+C_{n}\right) \tag{32}
\end{equation*}
$$

The energy fed into the simulator is

$$
\begin{equation*}
E_{\operatorname{sim}}=\int_{0}^{t} P\left(t^{\prime}\right) d t^{\prime} \tag{33}
\end{equation*}
$$

[^2]where
\[

$$
\begin{equation*}
P\left(t^{\prime}\right)=\bar{V}_{S}\left(t^{\prime}\right) \bar{I}\left(t^{\prime}\right) \tag{34}
\end{equation*}
$$

\]

Percent efficiency would then be,

$$
\begin{equation*}
E_{f f}=\frac{E_{\operatorname{sim}}}{E_{i n}} \times 100 \tag{35}
\end{equation*}
$$

The program which evaluates Eqs. (30) and (31) also does efficiency calculations to two time points. The first is to the ending time of a particular fit and the second is to the point before V_{s} turns negative as the circuit decays, $\left(\mathrm{V}_{\mathrm{s}} \longrightarrow 0\right.$)

III. RESULTS

Least squares fits were done to three different ending times; namely, $500 \mu \mathrm{sec} ., 100 \mu \mathrm{sec}$, and $50 \mu \mathrm{sec}$. The calculations were made for two different V_{o} / V_{m} ratios, and were carried out to two different degrees of accuracy.

The longer time fits produced capacitors of larger values. In some cases, these values were unwieldy. The different V_{o} / V_{m} ratios affect the smoothness of the resultant step voltage. A smaller ratio produces a faster rise time, a slower decay, and an overall smoother curve than the larger ratio. The current is also of greater magnitude and tends to decay slower. A major drawback is that the values of the capacitors are much larger.

Fits to different degrees of accuracy were done because, in running the least squares fitting program it appeared that a more accurate fit produced capacitors of larger values.

In the efficiency analysis, it was found that the more efficient simulator is the one whose components were determined from the less accurate fit, and the smaller V_{o} / V_{m} ratio. The four-branch network was slightly more efficient than the three-branch network.

A summary of the values calculated can be found in tables in Section IV. Current and Voltage graphs are in Section V. In doing the computer calculations a V_{m} step voltage of one volt was used. In practice, this would be multiplied many times. The simulator configuration assumed was that where $b / a=1.0$. This is the ratio of the distance between the plates to the width of the plates in the parallel plate transmission line simulator. The value of the dimensionless geometric factor, f, was taken from the tables in Note LII. A ground conductivity of .01 mhos/meter and a permeability of $4 \pi \times 10^{-7}$ henrys/meter were used in the calculations.

The tables in the following pages summarize the calculations performed. RLC component values are listed as well as the various energies and efficiencies involved.

VALUES OF R, L, AND C FOR 3 BRANCH NETWORKS

THE FOLLOWING ARE FOR FITS DONE TO AN ACCURACY OF ≤ 1.0 PERCENT ERROR

THE FOLLOWI I! VALIES WERE CALCULATED FROM FITS DONE TO 500 MICROSECONDS
BRANCH R(OHMS) L(HENRYS) C(FARADS)
V -NAUGHT $=2.00$

1	2.73675 E 00	$1.30307 \mathrm{E}-05$	$1.12937 \mathrm{E}-05$
2	$1.50882 \mathrm{E}-01$	$5.64573 \mathrm{~F}-05$	$1.93366 \mathrm{~F}-02$
3	$1.17539 \mathrm{E}-00$	$4.05147 \mathrm{E}-05$	$1.17303 \mathrm{E}-04$
1.20			
1	$5.47347 \mathrm{~F}-01$	$2.60614 \mathrm{~F}-06$	$5.64684 \mathrm{E}-05$
2	$3.017 \mathrm{E}-02$	$1.12915 \mathrm{E}-05$	$9.66831 \mathrm{E}-02$
3	$2.35078 \mathrm{E}-01$	$8.10293 \mathrm{E}-06$	$5.86514 \mathrm{E}-04$

THF FOLLOWING VALUES WERE CALCULATED FROM FITS DONF TO 100 MICROSECONRS
BRANCH R(OHMS) L(HENRYS) C(FARADS)

V-MAUGHT $=$	2.00			
1	6.11955 E 00	$5.82751 \mathrm{E}-06$	$1.01014 \mathrm{~F}-06$	
2	$3.37382 \mathrm{E}-01$	$2.52485 \mathrm{E}-05$	$1.72952 \mathrm{E}-03$	
3	2.62825 E 00	$1.81187 \mathrm{E}-05$	$1.04919 \mathrm{E}-05$	
V -NAUGHT $=$	1.20			
1	1.22391 E 00	$1.16550 \mathrm{E}-06$	$5.05069 \mathrm{E}-06$	
2	$6.74763 \mathrm{E}-02$	$5.04970 \mathrm{E}-06$	$8.54760 \mathrm{E}-03$	
	3	$5.25650 \mathrm{E}-01$	$3.62374 \mathrm{E}-06$	$5.24594 \mathrm{E}-05$

THF FOLLOWING VALUES WERE CALCULATED FROM FITS DONE TO 50 MICROSECONDS
BRANCH R(OHMS) L(HENRYS) C(FARADS)

V-NAUGHT $=$	2.00			
	1	8.65436 E 00	$4.12067 \mathrm{E}-06$	$3.57138 \mathrm{E}-07$
2	$4.77130 \mathrm{E}-01$	$1.78534 \mathrm{E}-05$	$6.11478 \mathrm{E}-04$	
3	3.71691 E 00	$1.28119 \mathrm{E}-05$	$3.70944 \mathrm{E}-06$	
V-NAUEHT $=$				
	1.20		1.73087 F 00	$8.24134 \mathrm{E}-07$
	2	$9.54258 \mathrm{E}-02$	$3.57067 \mathrm{E}-06$	$3.78569 \mathrm{E}-06$
	3	$7.43382 \mathrm{E}-01$	$2.56237 \mathrm{E}-06$	$1.85739 \mathrm{E}-03$

VALUFS OF R, L, AND C FOR 3 BRANCH NETWORKS

THE FOLLOWING ARE FOR FITS DONE TO AN ACCURACY OF ≤ 4.0 PERCENT ERROR
the following values here calculated from fits done to 500 microseconos

BRANCH	R(OHMS)	L (HENRYS)	$C(F \wedge R \wedge D S)$
$V-N A U G H T=2.00$			
1	3.83806 E 00	1.49399E-05	1.62497F-05
2	$1.62227 \mathrm{E}-01$	$4.87958 \mathrm{E}-05$	0.61265E-03
3	1.55045 E 00	3.63059E-05	$6.04118 \mathrm{E}-05$
$V-$ NAUGHT $=1.20$			
1	7.67612F-01	2.98797E-06	8.12484E-05
2	3. $24453 \mathrm{E}-02$	9.75915E-06	$4.80632 \mathrm{E}-02$
3	3.10090E-01	7.26118E-06	$3.02059 \mathrm{E}-04$

THE FOLLOWING VALUES IUERE CALCULATED FROM FITS DONE TO 100 MICROSECONDS

BRANCH	R(OHMS)	L (HENRYS)	C(FARADS)
V-NAUGHT $=2.00$			
1	$8.58217 E 00$	6.68131E-06	$1.45342 \mathrm{E}-06$
2	3.62750E-01	2.18221E-05	8.59781E-04
3	3.46691 E 00	1.62365E-05	5.40339E-06
V-NAUGHT $=1.20$			
1	1.71643 E 00	1.33626E-06	7.26708E-06
2	7.25499E-02	4.36443E-06	4.29891E-03
3	6.93382E-01	3.24730E-06	$2.70170 \mathrm{E}-05$

the following values were calculated from fits done to 50 microseconds BRANCH

R(OHMS)
L (HFNRYS)
$C(F A R \wedge D S)$
$\begin{aligned} & V-\text { NAUGHT }= 2.00 \\ & 1 \\ & 2 \\ & \\ & \\ & V-\text { NAUGHT }= 1.20 \\ & 1 \\ & 2 \\ & 3\end{aligned}$
$1.21370 \mathrm{E} \quad 01$
$5.13006 \mathrm{E}-01$
$4.90295 \mathrm{E} \quad 00$
$2.42740 \mathrm{E} \quad 00$
$1.02601 \mathrm{E}-01$
$9.80591 \mathrm{E}-01$
4.72440E-00
5.13800E-07

1. $54306 \mathrm{E}-05$
3.03979E-04
$1.14809 \mathrm{E}-05 \quad 1.91039 \mathrm{E}-06$
$9.44880 E-07$
$3.08612 E-06$
$2.23619 E-06$
2. 56930E-06
1.51989E-03
9.55194E-06

VALIJES OF R, L, AND C FOR 4 BRANCH NETWORKS

THF FOLLOWINO ARE FOR FITS DONE TO AN ACCURACY OF ≤ 1.0 PERCENT FRROR
the followifg values were calculated from fits done to 500 microsfoonds
BRANCH R(OHMS) L(HENRYS) C(FARADS)

$V-$ NAUGHT $=2.00$			
1	4.64199E 00	2.00449E-05	3.72097E-06
2	1.30999E-01	$6.33481 \mathrm{~F}-05$	1.47658E-02
3	1.08112 E 00	4.80906E-05	1.64579E-04
4	3.29179 E 00	3.81249E-05	$1.40730 \mathrm{E}-05$
V-NAUSHT $=1.20$			
1	9.28398E-01	4.00898E-06	1.85048E-05
2	2.61998E-02	1.26696F-05	7.38290E-02
3	2.16224F-01	9.61813E-06	8.22895E-04
4	6.58358E-01	7.62499E-06	7.03679E-05

THE FOLIOWING VALUTS WERE CALCULATED FROM FITS DOHE TO 100 MICROSECOHDS
BRANCH
R(OHMS)
L(HENRYS)
C(FARADS)

V-HANGHT $=2.00$			
1	1:230285 01	9.59260E-06	2.53505E-07
2	$2.93450 \mathrm{~F}-01$	2.82485E-05	1.31216F-03
3	2.10037 E 00	$2.10637 \mathrm{E}-05$	$1.46230 \mathrm{E}-05$
4	6.82762 E 00	$1.44793 \mathrm{E}-05$	1.24242E-06
V-NAUGHT $=1.20$			
1	2.46057 E 00	1.91852E-06	1.26752E-06
2	5.86901E-02	5.64970F-06	6.56078E-03
3	4.80075E-01	$4.21274 \mathrm{E}-06$	7.31150E-05
4	1.36552 E 00	2.89585E-06	$6.21210 \mathrm{E}-0 \mathrm{O}$

the following values. Wfre calculated from fits done to 50 microsfconds
BRANCH
R (OLIMS)
L (HENRYS)
c (FARADS)

V-NAUGHT $=$	2.00			
	1	1.60203 E 01	$6.66154 \mathrm{E}-06$	$1.03823 \mathrm{E}-07$
2	$4.14533 \mathrm{E}-01$	$2.00067 \mathrm{~F}-05$	$4.65711 \mathrm{E}-04$	
	3	3.40423 E 00	$1.50355 \mathrm{E}-05$	$5.18960 \mathrm{E}-06$
V-NAUGHT $=$	1.20	1.00430 E 01	$1.11106 \mathrm{~F}-05$	$4.40631 \mathrm{~F}-07$
	1	3.20406 E 00	$1.33231 \mathrm{E}-06$	$5.19114 \mathrm{E}-07$
	2	$8.29067 \mathrm{E}-02$	$4.00134 \mathrm{E}-06$	$2.32855 \mathrm{E}-03$
	3	$6.80846 \mathrm{E}-01$	$3.00709 \mathrm{E}-06$	$2.59483 \mathrm{E}-05$
	4	2.00859 E 00	$2.22213 \mathrm{E}-06$	$2.20316 \mathrm{E}-06$

VALUES OF R, L, AND C FOR I BRANCH NETWORKS

THE FOLLOWING ARE FOR FITS DONE TO AN ACCURACY OF ≤ 4.0 PERCENT ERROR
the following values here calculated from fits done to 500 microseconds BRANCH R(OHMS) L(HENRYS) C(FARADS)

$V-$ MAUGHT $=2.00$			
1	7.12203E 00	2.26268E-05	1.78433E-06
2	1.56529F-01	$4.96605 \mathrm{E}-05$	8.10735E-03
3	1.19987E 00	2.65083E-05	7.36503E-05
4	7.12203E 00	2.26268E-05	1.78433F-06
V-HAUSHT $=1.20$			
1	1.42441E 00	4.52535E-06	8.92165E-06
2	3.13059F-02	9.93211E-06	$4.05368 \mathrm{E}-02$
3	2.39974E-01	5.30166E-06	3.68252F-04
4	1.42441E 00	4.52535E-06	8.32165E-06

THE FOLLOWING VAlUFS WERE CALCULATED FROM FITS DONE TO 100 MICROSECONDS BRANCH R(OHMS) L(HENRYS) C(FARADS)

V-NAUGHT $=$	2.00			
1	1.59253 E 01	$1.01190 \mathrm{E}-05$	$1.59595 \mathrm{E}-07$	
2	$3.50011 \mathrm{E}-01$	$2.22089 \mathrm{E}-05$	$7.25144 \mathrm{E}-04$	
3	2.68299 E 00	$1.18549 \mathrm{E}-05$	$6.58748 \mathrm{E}-06$	
V-NAUGHT $=$	1.20	$1.59253 \mathrm{E} \mathrm{O1}$	$1.01190 \mathrm{E}-05$	$1.59595 \mathrm{E}-07$
	1	3.18507 E 00	$2.02380 \mathrm{E}-06$	$7.97977 \mathrm{E}-07$
	2	$7.00021 \mathrm{E}-02$	$4.44177 \mathrm{E}-06$	$3.62572 \mathrm{E}-03$
	3	$5.36597 \mathrm{E}-01$	$2.37097 \mathrm{E}-06$	$3.29374 \mathrm{E}-05$
	4	3.18507 E 00	$2.02380 \mathrm{E}-06$	$7.97977 \mathrm{E}-07$

THE FOLLOWING VALUFS: WERE CALCULATED FROM FITS DONE TO 50 MICROSECONDS BRANCH R(OHMS) L(HENRYS) C(FARADS)

V-NAUGHT $=2.00$			
1	2.25218E 01	7.15521E-06	5.64255E-08
2	4.94990E-01	1.57040E-05	$2.56377 \mathrm{E}-04^{\text {d }}$
3	3.79432 E 00	8.38265E-06	$2.32903 \mathrm{E}-06$
4	2.25218E 01	7.15521E-00	5.64255E-08
1	4.50437E 00	1.43104E-00	$2.82127 \mathrm{E}-07$
2	9.89979E-02	3.14081E-06	1.28189E-03
3	7.58863E-01	$1.67653 \mathrm{E}-06$	$1.16451 \mathrm{E}-05$
4	4.50437E 00	$1.43104 \mathrm{E}-06$	2.82127E-07

3 BRANCH NETWORKS

THE FOLLOWING ARE FOR FITS DONE TO AN ACCURACY OF ≤ 1.0 PERCENT ERROR

FIT	V -	N	ENERGY-OUT	ENERGY-OUT		
	NAUGHT		TO END OF FIT			
USEC.	(VOLTS)	OUL		(JOULES)		(PERCENT)
0	2.0	89304	I. $58614 \mathrm{E}-03$	$1.17654 \mathrm{E}-02$	$4.07431 E 00$	3.022178
500	1.27	$7.00748 \mathrm{E}-02$	$1.58704 \mathrm{E}-03$	$4.19293 \mathrm{E}-02$	2.26477 E 00	5.38351 F
100	2.03	3.48204E-03	$1.41876 \mathrm{E}-04$	$1.05151 \mathrm{E}-03$	4.07451 E 00	3.01980 E
100	1.26	6.26768E-03	1.41957E-04	3.80167E-03	2.26490 E 00	$6.06551 E$
50	2.01	1.23109E-03	5.01642E-05	3.71147E-04	4.07478 F 00	3.01479 E
		-	$5.01920 \mathrm{E}-05$	1.32512E-03	2.26502 E 0	5.9798950

TIIE FOLLOWING ARE FOR FITS DONE TO NN ACCURACY OF ≤ 4.0 PERCENT ERROR
FIT V- ENERGY-IN NAUGHT
(USEC) (VOLTS) (JOULES)
TO END OF Fi (vOULES)

ENERGY-OUT	EFFICIENCY
$V \rightarrow 0$	TO FND OFFIT
$(J O U L F S)$	(PERCFNT)

EFFICIEHCY $\stackrel{V}{\mathrm{~V}} \mathrm{P}(\vec{E}(\mathrm{O} T)$

500
500
100
100
$50 \quad 2.0 \quad 6.12306 \mathrm{E}-04$
$501.2 \quad 1.10305 \mathrm{~F}-03$

1. $58184 \mathrm{E}-03$
6.64146E-03
8.16278E 00 3.42721E 01
2. $58545 \mathrm{E}-03$
1.41493E-04
$1.41818 \mathrm{E}-04$
2.25594E-02
4.54525 E 00
6.46743 F 01
5.94219E-04 8.16330E CO 3.42830E 01
$2.01649 \mathrm{E}-03 \quad 4.54558 \mathrm{E} 00 \quad 6.46333 \mathrm{E} 01$
$5.00291 \mathrm{E}-05 \quad 2.09304 \mathrm{E}-04 \quad 8.16394 \mathrm{E} 00 \quad 3.41547 \mathrm{E} 01$
5.01423E-05
7.12076E-04
4.54579 E 00
$6.46037 E 01$

4 BRANCH NETWORKS

THE FOLLOWING ARE FOR FITS DONE TO AN ACCURACY OF ≤ 1.0 PERCFNT ERROR

FIT V- ENERGY-IN NAUGHT
(USEC) (VOLTS) (JOULES).

500	2.0	$2.98903 \mathrm{E}-02$	$1.58703 \mathrm{E}-03$
500	1.2	$5.381314 \mathrm{E}-02$	$1.58733 \mathrm{E}-03$
100	2.0	$2.65656 \mathrm{E}-03$	$1.41956 \mathrm{E}-04$
100	1.2	$4.73179 \mathrm{E}-03$	$1.41984 \mathrm{E}-04$
50	2.0	$9.42890 \mathrm{E}-04$	$5.01930 \mathrm{E}-05$
50	1.2	$1.69720 \mathrm{E}-03$	$5.02015 \mathrm{E}-05$

ENERGY-OUT EFFICIENCY
 $v \rightarrow 0$ TO END OF FIT (JOULES) (PERCENT)
 EFFICIENCY

FNERGY-OUT	ENERGY-OUT	EFFICIENCY	EFFICIENCY
OND OF FIT	$V \rightarrow 0$	TO END OFFIT	$V \rightarrow 0$
(JOULES)	(JOULES)	(PERCENT)	(PERCENT)

$.08061 \mathrm{E}-02 \quad 5.30845 \mathrm{E} 00 \quad 3.61451 \mathrm{~F} 01$
$3.57942 \mathrm{E}-02 \quad 2.94969 \mathrm{E} \quad 00 \quad 6.65154 \mathrm{E} 01$
9.60320E-04 $\quad 5.34360 \mathrm{E} 00 \quad 3.61430 \mathrm{E} 01$
$3.18678 \mathrm{E}-03 \quad 2.96926 \mathrm{E} \quad 00 \quad 6.60441 \mathrm{E} 01$
$\begin{array}{lllll}3.40002 \mathrm{E}-04 & 5.32331 \mathrm{E} & 00 & 3.60596 \mathrm{E} & 01 \\ 1.12813 \mathrm{E}-03 & 2.95790 \mathrm{E} & 00 & 6.64702 \mathrm{E} & 01\end{array}$

THE FOLLOWIN ARE FOR FITS DONE TO AN ACCURACY OF ≤ 4.0 PERCENT ERROR
FIT V- ENERGY-IN NAUGIT
(USEC) (VOLTS) (UNULES)

500	2.0	$1.63591 \mathrm{E}-02$
500	1.2	$2.94645 \mathrm{~F}-02$
100	2.0	$1.46410 \mathrm{E}-03$
100	1.2	$2.63538 \mathrm{~F}-03$
50	2.0	$5.17638 \mathrm{E}-04$
50	1.2	$9.31752 \mathrm{E}-04$

TO FND OF FIT
(JOULFS)
ENERGY-OUT
EFFICIENCY
$V \rightarrow 0$ TO END OF FIT
(PERCENT)

EFFICIFICY
$V \rightarrow 0$
(FERCENT)
$1.57973 \mathrm{~F}-03$
$1.58474 \mathrm{E}-03$
$1.19297 \mathrm{~F}-04$
$1.41753 \mathrm{E}-04$
$4.996065-05$
$5.01192 \mathrm{E}-05$
5.01192E-05 6.22923E-04
$18-$
6.00159F-03

1. $97238 \mathrm{E}-02$
$5.3701414 \mathrm{E}-04$
1.78493E-03
1.88929E-04
$9.65067 E 00$
2. G6GMIE 01
5.3781 .8 F 00
3. G.5080F 00 5.37884 F 00 2.65165E 00 5.37903 F 006.08551501
6.69409501
4. 6.6808 F 01
0.77295 F 01
3.049835. 01
6.08551501

V. GRAPHS OF VOLTAGES AND CURRENTS

AT THE SIMIULATOR-

The following graphs were copied directly from CALCOMP plots.

INVERSE FOURIER TRANSFIRM CURVES
THESE ARE VOLTAGE AND CURRENT CURVES FOR A 3-BRANCH NETWORK. THE LEAST SQUARES FIT TG PRODUCE PARAMETERS FGR THE NETWORK WAS DONE TO 500 MICROSECONDS AND WITH AN ACCURACY OF $\leq 1.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT V'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES
THESE ARE VOLTAGE AND CURRENT CURVES FOR A 3-BRANCH NETWORK. THE LEAST SQUARES FIT TO PRODUCE PARAMETERS FOR THE NETWORK WAS DONE TO 100 MICROSECONDS AND WITH AN ACCURACY OF $\leq 1.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT VO'S WERE USED.
-21-

INVERSE FOURIER TRANSFORM CURVES

THESE ARE VOLTAGE AND CURRENT CURVES FOR A 3-BRANCH NETWORK. THE LEAST SOUARES FIT TO PRODUCE PARAMETERS FGR THE NETWORK WAS DONE TO 50 MICROSECONDS AND WITH AN ACCURACY OF $\leq 1.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH; DIFFERENT V'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES

THESE ARE VOLTAGE AND CURRENT CURVES FOR A 3-BRANCH NETWORK. THE LEAST SQUARES FIT TO PRODUCE PARAMETERS FOR THE NETWORK WAS DONE TO 500 MICROSECONDS AND WITH AN ACCURACY OF $\leq 4.0 \%$ ERROR. 2 NETWURKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT VO'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES

these are voltage and current curves for a 3-branch network. THE LEAST SQUARES FIT TO PRODUCE PARAMETERS FOR THE NETWORK WAS DONE TO 100 MICROSECONDS AND WITH AN ACCURACY OF $\leq 4.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT Vo'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES

THESE ARE VOLTAGE AND CURRENT CURVES FOR A 3-BRANCH NETWGRK. the least souares fit to produce parameters for the network was DONE TO 50 MICROSECONDS AND WITH AN ACCURACY OF $\leq 4.0 \%$ ERRGR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT Vo'S WERE USED.

INVERSE FOURIER TRANSFORM CUURVES
THESE ARE VOLTAGE AND CURRENT CURVES FOR A 4-bRANCH NETWORK. THE LEAST SQUARES FIT TO PRODUCE PARAMETERS FOR THE NETWORK WAS DONE TO 500 MICROSECONDS AND WITH AN ACCURACY OF $\leq 1.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT VO'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES
THESE ARE VOLTAGE AND CURRENT CURVES FGR A 4-BRANCH NETWORK. THE LEAST SQUARES FIT TO PRODUCE PARAMETERS FOR THE NETWORK WAS DONE TO 100 MICROSECONDS AND WITH AN ACCURACY OF $\leq 1.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT VO'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES

THESE ARE VOLTAGE AND CURRENT CURVES FOR A 4-BRANCH NETWORK. the least sourres fit to produce parameters for the network was DONE TO 50 MICROSECONDS AND WITH AN ACCURACY OF $\leq 1.0 \%$ ERROR.

INVERSE FOURIER TRANSFORM CURVES
these are valtage and current curves for a 4-branch network. the least souares fit to produce parameters for the network was DONE TO 500 MICROSECONDS AND WITH AN ACCURACY OF $\leq 4.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT VO'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES

THESE ARE VGLTAGE AND CURRENT CURVES FOR A 4 -BRANCH NETWGRK. the least squares fit to produce parameters for the network was DONE TO 100 MICROSECONDS AND WITH AN ACCURACY OF $\leq 4.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT Vo'S WERE USED.

INVERSE FOURIER TRANSFORM CURVES
THESE ARE VGLTAGE AND CURRENT CURVES FOR A 4-BRANCH NETWORK. THE LEAST SQUARES FIT TO PRODUCE PARAMETERS FOR THE NETWORK WAS DONE TO 50 MICROSECONDS AND WITH AN ACCURACY OF $\leq 4.0 \%$ ERROR. 2 NETWORKS ARE REPRESENTED ON THIS GRAPH: DIFFERENT VO'S WERE USED.
 I

[^0]: ${ }^{1}$ Lt. Carl E. Baum, Sensor and Simulation Note XXII, A Transmission Line EMP Simulation Technique for Buried Structures, June 1966.

 2
 Capt. Carl E. Baum, Sensor and Simulation Note XLIV, The Capacitor Driven, Open Circuited, Buried Transmission Line Simulator, June 1967.
 ${ }^{3}$ Capt. Carl E. Baum, Sensor and Simulation Note XLIX, The Buried Trans mission Line Simulator Driven by Multiple Capacitive Sources, August 1967.
 ${ }^{4}$ R. W. Latham and K. S. H. Lee, Sensor and Simulation Note L, The Buried Transmission Line Simulator with an Inductive Energy Source, April 1968.

[^1]: ${ }^{5}$ Lt. Carl E. Baum, Sensor and Simulation Note XXI, Impedances and Field Distributions for Parallel Plate Transmission Line Simulators, June 1966.
 ${ }^{6}$ Terry L. Brown and Kenneth D. Granzow, Sensor and Simulation Note LII, A Parameter Study of Two Parallel Plate Transmission Line Simulators of EMP Sensor and Simulation Note XXI, April 1968.
 ${ }^{7}$ Standard Mathematical Tables, Fifteenth Edition. The Chemical Rubber Company, 18901 Cranwood Parkway, Cleveland, Ohio 44128, June 1967.

[^2]: ${ }^{8}$ Frank J. Sulkowski, EMP Mathematics Note II, FORPLEX, A Program to Calculate Inverse Fourier Transforms, November 1966.

