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The Circular Parallel-Plate Dipole

Capt Carl E. Baum
Air Force Weapons Laboratory

Abstract

One of the common sensors “for measuring an electric field is
a dipole with two parallel conducting plates. In this note we
consider the case of two equal coaxial conducting plates. The
upper frequency response is considered for a s~e=i~l direction of
wave incidence; for well designed output circuitry the upper fre-
quency response is not limited by the plate size but by the
smaller dimensions associated with the output circuitry. The
sensor capacitance is calculated by a numerical solution of an
integral equation. Finally we consider the distortion of the
electric field produced by a spherical dielectric shell t:hich
might be used to enclose the sensor.
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I. Introduction

A parallel-plate dipole is a common sensor for measuring a
component of an electric field because of its accurately calcula-
ble equivalent height. Such a sensor consists of two thin par-
allel plates with some device (typically with high impedance)
which converts the voltage between the two plates into an analog
electrical signal for recording and/or further processing.

In this note we consider some of the characteristics of a
symmetrical parallel-plate dipole consisting of two coaxial cir-
cular disks of radius a and spacing .2bas illustrated in figure 1.
The axis of the plates is taken as the z axis and the plates are
located on z = +b. Because of symmetry in z the present calcula-
tions also apply to the case with a perfectly conducting sheet on
the plane z = O, provided appropriate factors of two are intro-
duced. For most of the discussion the plates are assumed to have
zero thickness.

First we consider the equivalent height of the sensor and
some of the associated high-frequency performance characteristics
of the sensor. This is followed by calculation of the sensor ca-
pacitance. For these considerations the medium in the vicinity
of the sensor is assumed isotropic and hc)mogeneous. Then we con-
sider the distortion of an incident field produced by a thin
spherical dielectric shell surrounding the sensor. Such a shell
might be used for mechanical protection of the sensor and/or for
containing a material (such as a special gas) with higher dielec-
tric strength than the surrounding medium.

11. Equivalent Height and Related Considerations

‘One of the attractive features of the parallel-plate dipole
is its calculable equivalent height. If we ignore the thickness
of the plates and the connections to remove the si nal then, re-
ferring to figure 1, the equivalent height is just?

(1)

where ~z denotes a unit vector in the z direction (and similarly
for other coordinates). Note that we take the upper plate at
z = b for our positive voltage conventio~. The open circuit volt-
age for a given incident electric field E1nc is just

v=
Oc

-s . ‘ii
Lnc eq

(2)

1. All units are rationalized MKSA.
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This formula generally applies only for frequencies low enough
that the corresponding wavelengths are much larger than the sensor
dimensions.

For this ,particular type of sensor, however, the equivalent
height can be used to somewhat higher frequencies provided the di-
rection of wave incidence is appropriately restricted. Referring
to figure 1 suppose we have an incident electromagnetic wave of
the form

where M is the radian frequency with ejwt suppressed, and where

(4)

This is a plane wave with only a z component of the electric field,
propagating parallel to the x, y plane in a direction given by

@ = +0. The medium has permittivity c and permeability U; the
conductivity is taken to be zero for our present discussion but
the results can be directly extended to include an isotropic and
homogeneous conductivity.

Note that an incident wave of the form in equation 3 is not
perturbed by perfectly conducting sheets of zero thickness which
are perpendicular to the electric field. Thus if we ignore the
output connections on the sensor the parallel plate dipole in
figure 1 will not distort this incident wave. Suppose for the
moment that one were able to set+up some apparatus which could
respond to the line integral of Einc between the two plates with-
out loading the field. For symmetry take the line integral on the
z axis giving

V = -2bEoOc
(5)

●

In such a case the equivalent height would apply to arbitrarily
high frequencies with wavelengths much smaller than the sensor
dimensions. Note that the radius of the plates (a) does not even
enter into the problem.
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Suppose now that one has some realistic but still high-

impedance load connecting the two plates in the vicinity of the
z axis. By high impedance we require that the load impedance be
large compared to the impedance of the two plates for all u
greater than some MO of interest. Suppose, for example, that this
load is some resistive rod or tube with total resistance R and
with RC = l/u. where C is the sensor capacitance (quasi static).
If a >> b and R is sufficiently large such that there is negli-
gible load on the sensor for frequencies of interest, then the
radius a of the sensor has little or no effect on the sensor re-
sponse at these high frequencies. Of course, there will be some
perturbation in the output signal taken at some small gap in the
resistor due to the resistor dimensions and other resistor prop-
erties, but these are effects associated with the volume in the
immediate vicinity of the resistor. If we assign some upper fre-
quency response U1 to the resistive output then as one makes a
larger and larger the upper frequency response remains at u1. On
the other hand since C is roughly proportional to a2 then w. con-
tinually decreases as a increases. Thus for the assumed type of
incident wave with sufficiently large R and with a >> b the upper
frequency response is not limited by a but by the resistor char-
acteristics.

As an illustration of this limitation of the high frequency
response associated with an output resistor let a + m and con-
sider the idealized problem illustrated in figure 2. Let the
resistor be a cylindrical resistive sheet of radius Y. and sur-
face resistance Rs. The resistance RI of this tube is then

2b b
‘1 = 27’r% ‘s = ~ ‘s

(6)

Since the geometry is assumed independent of $ we can set
00 = O for convenience so that the incident wave (equations 3 and
4) is propagating in the +x direction. In cylindrical coordinates
(Y, +, z) the incident electric field can be expanded as2

-’kYcos ($)
Ez = Eoe ]

inc

[

m

= E. Jo(kY) + 2 ~ (-j)nJn~’Y)cos(n$)
n=l 1 (7)

2. See AMS 55, Handbook of Mathematical Functions, National
Bureau of Standards, 1964, for the expansions of cos[kYcos($)l
and sin[kYcos (0)].
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In cylindrical coordinates with only a z component of the elec-
tric field the field components can be expanded in the forms

w

Ez = E. z anC~l)(kY)
cos (n@)

‘1 (8)
sin(n+)

C(L) (kY)
n II

-sin(n@)

kY
cos (n+)

(9)

(lo)

where C(L) (kY) denotes one of the cylindrical Bessel functions
and a p?ime denotes the derivative with respect to the argument.
The braces indicate a linear combination of the trigonometric
functions inside the braces in a consistent manner for all three
field components. The wave impedance is

The @ component of the incident magnetic field is then

E.

[

w

‘+0 ‘-j ~
J~(kY) + 2 ~ (-j)nJ~(kY)cos (n@)

mc n=l 1

(11)

(12)

Using a subscript 1 we have two components of the fields for
Y < Y. as

1-
W 1

E = E.

1

aoJo(kY) + 2 ~ (-j)nanJn(kY)cos(n$)
‘1 n=1 I

(13)

E.

[

m

H+l = -j ~
1

aoJ~(kY) + 2 ~ (-j)nanJ~(kY)cos (n@) “ (14)

n=1

Similarly, using a subscript 2 for the reflected wave for Y > Y.
we have
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E = E.
‘2

b H(2) (kY) + 2 ~ (-j)bnH~2) (kY)cos(n@)00
n=1 1

E.

‘o. [
~H(2)’ m

=-j~OO (kY) + 2
x (-j)nbnH~2) ‘(kY)cos(n@)

1
.4 L n=1 J

Now incorporate boundary conditions at Y = Yo. Making Ez
continuous there gives

(15)

(16)

anJn(kyo) ‘2)(k~]= Jn(kyo) + bnHn
o

which can be solved for bn to give

Jn (kya)
bn .= (an - 1)

# y )
~ (k.

(18)

The surface current density at Y = Y. has only a z component
given by

E
‘1

E

[

a

Js=~
1

= # aoJo(k~o) + 2X (-j)nJn(kyo)cos(nO) (19)
z s Y=YO s n=l

Another boundary condition relates the discontinuity of the mag-
netic field as

‘4 I
-H

@
= Js (20)

Y=Y+ y=y-

which gives

E.

[

E
-j ~ ‘2)’ (kyo)J:(kYo) + bnHn 1-anJ~(kYo) = ~ anJn(kYo) (21)

s

Substituting for bn in equation 21 from equation 18 gives
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1

[

Jn(kYo)
(an-l) -J:(kYo) + H(2) ‘~ky ~

1

.j~ anJn(kYo) (22)
H:2) (kYo) n o

s

Using a Wronskian relation for the Bessel functions gives

(an - 1)

L

-“2
+mk

o

1

H:2) (kYo)
.j.& anJn(kYo)

s

which can be solved for an to give

[

~kY

1

-1

a = 1 + ~~ Jn(kYo)H:2)(kYo)n
s

(24)

From equation 18 we have

nky

[

~kY

1
-1

bn=-: —~[Jn(kYo)12 1 + #-~J (kY )H(2) (kYo)n on (25)
s s

Now the current in this idealized resistor is just

J
27T E

I = Js!?od$= 2TT% # aoJo(kYo)
o s

We define a reference or normalizing current as

2bEo E
Io~—= 2Tr% :

‘1 s

(26)

(27)

In normalized form we can then write

I

[

nkYo
— = aoJo(kYo) = Jo(kYo) 1 + & ~10 1J (kYo)H:2)(kYo) ‘1(28)

s o

a This is plotted in figure 3 for various values of Z/Rs. Note
that for Z/Rs < 1 the upper frequency response is for kYo of the
order of one. This says that for sufficiently large RI the fre-
quency response of the output current (I) is limited by Yo, the
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radius of the idealized resistor. Note that the magnitude of
1/10 has zeros given by the zeros of Jo(kYo); the first zero is
at kYo N 2.405. Also note that the wave reflected from the ide-
alized resistor is small for Z/Rs << 1 as is evidenced by small
bn in equation 25.

One of the problems in designing a parallel-plate dipole
concerns the details of the output circuitry. If we consider a
resistive output with large resistance then the frequency re-
sponse of the sensor is basically limited by the local character-
istics of the output circuitry. This, of course, applies to the
case where the direction of wave incidence is parallel to the
plates. In our idealized example considered above, the current
in the output resistor (with large resistance) is limited in fre-
quency response only by the diameter of the resistor. If one
could sample or divert this current for recording purposes then
the sensor should have rather high frequency response. For ex-
ample one might put a load with small resistance R2 in series
with RI (such that R2 << RI) at one of the plates or at the
‘z= O plane of syrmnetry. This would basically be a voltage di-
vider network. R2 might be the input impedance of a transmission
line such as a coaxial or twinaxial cable.

While the response of the idealized resistor indicates a
good high frequency response for the sensor there are problems
yet to consider. For example, the output transmission line needs
to be connected to the resistor in some manner, thereby altering
the geometry. Perhaps other quantities besides I (as in equation
26), such as displacement current, will couple to the output
transmission line. Other boundary value problems might be able
to shed some light on this subject. Perhaps some such problems
can be considered in future notes.

The parallel-plate dipole is then particularly suited for
measuring electric fields when the direction of propagation of
the incident wave is parallel to the plates. In equation 3 we
have also taken the incident electric field to have a z component.
However other polarizations can also be included provided appro-
priate symmetry is maintained in the sensor. Consider a circular
parallel-plate dipole and choose the direction of propagation of
the incident electric field as the +x direction; the incident
electric field might also have a y component. Provided the sen-
sor with its output conductors and circuit elements is symmetric
with respect to the z = O plane (as illustrated), then the y com-
ponent of the incident electric field produces no output signal.
The incident wave can be considered as the linear superposition
of two waves, one with a z component and one with a y component
of the electric field, both propagating in the +x direction.
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111. Capacitance

It is rather straightforward to calculate the equivalent
height of a parallel-plate dipole, provided the plate thickness
is small compared to the plate spacing. However the capacitance
of the sensor is more difficult to obtain. The simple formula
which approximates the capacitance C as E?Ta2/(2b)is not very ac-
curate unless a/b is extremely large. The fringe fields (the
fields not between the two plates when charge is transferred be-
tween the plates) make a significant contribution to the capaci-
tance.

First define a normalized capacitance

(29)

where C is the sensor capacitance. Define a normalized variable

(30)

The capacitance can be obtained from a function f(~) which satis-
fies an integral equation obtained by Love,3 specifically

m

(31)

If the upper plate at z = b has potential V. and charge Q, and if
the lower plate at z = -b has potential -V. and charge -Q the ca-
pacitance is just

(32)

From Love the charge on the upper plate (in ~SA units) is lust

(33)

3. E. R. Love, The Electrostatic Field of Two Equal Circular
Coaxial Conducting Disks, Quart. J. Mech. and Applied Math., 2,
1949, pp. 428-451.

●

12



.

.-

giving a capacitance

/

1
c = 2&a f(~)dc

-1

which in normalized form is

The potential @ at any point (Y, $, Z) is given by

-[()Y’ +z

For details of the

2
-1/2

(
z+b—+j~
a )] ~f(~)dq

(34)

(35)

(36)

derivations the reader is referred to Lovefs
paper. Basically @ as in equation 36 is shown to satisfy the -
Laplace equation away from both plates; Q becomes ~Vo on the two
plates provided f(c) satisfies equation 31. The charge density
on one of the plates can be found by multiplying s times the
discontinuity in -3@/~z at the plate.

In appendix A we consider the numerical solution of equation
31. In figure 4 the normalized capacitance is plotted as a func-
tion of A. This is also tabulated in table 1 at the end of the
note. For comparison to the short table in Cooke4 we have

(37)

As an aid in calculating y consider asymptotic forms for
small and large A. For small A so that a >> b (a case of interest

4. J. C. Cooke, The Coaxial Circular Disk Problem, Z. angew.
Math. Mech. Bd. 38 Nr. 9/10, 1958, pp. 349-356.
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for a sensor) the asymptotic form for y was found by Hutson5 who
showed that as A + O

Y
16Tr=
()

f+ln~ - 1 +0(1) (38)

For convenience we then define

Y. ~ ()
16nf+ in ~ - 1 (39)

so that y - YO+ O as A + 0. Writing out equation 39 for the
capacitance we have as i + O

(40)

The first ‘term in the braces corresponds to the simple area over
spacing formula often used; the remaining terms give the error
when such a simple formula is used.

The asymptotic form in equations 38 through 40 corresponds
to Kirchoff’s result for small X. Let the plate thickness be as-
sumed for the moment to be non zero and call it w (the same for
both plates). Let 2b be the spacing between adjacent faces of
the two plates. Also let the edges be square. Then we quote
Kirchoff’s result for the capacitance C’ for small A as6

Then we can attribute an increase in capacitance AC due to the
finite plate thickness with square edges as

AC = C’ - c = calln~+~]+~ln~ ‘%]} (42)

The corresponding increase in y is

5. V. Hutson, The Circular Plate Condenser at Small Separations,
Proc. Carob.Phil. SOC., 59, 1963, pp. 211-224.

6. American Institute of Physics Handbook, 2nd cd., McGraw-Hill,
1963, section 5, p. 14.

15



forn=2, 3, ...

#

4

(43)

This can be used as an approximation to the increase in sensor
capacitance due to finite plate thickness with square edges.
However, to the author’s knowledge this result has not been rig-
orously established in the sense that y. has been established by
Hutson as the asymptotic form for small A with w = O.

Next consider the case of large 1 for which a ~< b. Let the
disks have zero thickness. As A + ~ the problem becomes one of
considering the capacitance of two isolated disks of radius a.
The capacitance tends to 1/2 the capacitance of a single isolated
disk. Then using the result from Smythe7 the capacitance for
~ + cohas the form

c+; (8&a) = 4&a (44)

y+4 (45)

Now , as shown by Love (reference 3), the solution of equa-
tion 31 can be written as the Neumann series

(46)

where K1 is the kernal of the integral equation defined by

and where the remaining Kn are the iterated kernals defined by

(48)

7. W. R. Smythe, Static and Dynamic Electricity, 2nd ed. ,
McGraw-Hill, 1950, p. 114.
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Define a truncated Neumann series as

f [f

1
fM(c) = 1 + Kn(C, &’)dC’I forM=O, 1, 2, ... (49)

n=l ‘1

(For M = O we have fo(~) ~ 1.) Love shows that

f(G) = fM(c) + R#) (50)

[

2
( )]

M
where the remainder RM(~) is of.the order of ; arctan ~ so

that (with A > O) as N + @ the remainder goes to zero.

Now consider the asymptotic form of y for large A. For
convenience define

(51)

so that we are concerned with asymptotic forms as v + O. Con-
sider the first few terms of the Neumann series. We have as
l.l+o

1
1

flm =1++
v d?’

-1 ~

J
v-v< -1

=1+; [1 + (X2] da
-v-v<

=1+; [arctan (v - V<) + arctan (v + v<)]

=l+#+o(v3) (52)

where we have used the substitution a ~ VL’ - VL. Now as v + O

K2(L, ;’) = 0(v2)

17



Kn(c, ?.’)= O(~n)

.

.

(53)

From this we have

f2(L) = fl(c) + O(V2)

From Love’s result

f(<) - f2(L) = R2(C) = 0(v2) .

Thus we have for v + O

f(~) =1+:+0(.2)

and then for y as v + O we have

Based on this result define

(54)

(55)

(56)

(57)

(58)

so that y - ym = 0 (A-2) as ~ + ~.

Having the capacitance and equivalent height we can calcu-
late the equivalent volume as8 I9

v+
eq

“Iieq = 4b2ayeq (59)

8. Capt Carl E. Baum, Sensor and Simulation Note 38, Parameters
for Some Electrically-Small Electromagnetic Sensors, March 1967.

9. Capt Carl E.’Baum, Sensor and Simulation Note 74, Parameters
for Electrically-Small Loops and Dipoles Expressed in Terms of
Current and Charge Distributions, January 1969.
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Define a geometric volume as the volume of the smallest sphere
which encloses the sensor. This sphere has a radius

The reference geometric volume is then

(60)

(61)

and the figure of merit based on this spherical volume is then

ns ~ !#si=&
g [1+;;.’]’/’,

This figure of merit is plotted in figure
table 1.

Referring to figure 5 the maximum VG

(62)

5 and also tabulated in

is about 1.9; the cor-
responding 1 is about 2.3. However for ~he present type of par-
allel plate dipole one would typically design it with a small A
and use a resistive divider on the output. Due to the presence
of this additional resistor in series with the sensor output the
figure of merit concept does not have the same direct application
as discussed in reference 8.

Iv. Low-Frequency Electric Field Distortion Due to a
S~herical Dielectric Shell

For mechanical protection of the sensor one might wish to
enclose the sensor in a dielectric shell. Also one might wish to
enclose some material (in the immediate vicinity of the sensor)
which has a higher dielectric strength than the surrounding me-
dium; this hiqher-dielectric-strenqth material is assumed to have
the same perm~ttivity and permeability as the surrounding medium.
However, the dielectric shell may have a permittivity which dif-
fers from the permittivity of the surrounding medium. This shell
may then distort the incident electric field, thereby affecting
the sensor response. Of course, if the shell is sufficiently
thin we would normally expect the distortion to be small.

In this section we assume that there is a spherical dielec-
tric shell of permittivity E2, inner radius rl, and outer radius

19
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r2 as illustrated in figure 6. For convenience define

d=r-r
21

(63)

A

where El is the permittivity of the media both inside and outside
the shell. All media have the same permeability P and all have
zero conductivity. Furthermore we only consider frequencies with
wavelengths much larger than 2r2 so that we can use a quasi static
calculation of the electric field distortion.

Assume a uniform incident static electric field of the form

6. = Eo:z1nc = Eo:r COS(6) - Eo~8 sin(e)

and a corresponding incident potential of the form

@ = -Eoz =inc -Eor COS(6) = -EorP1(cos (e))

(64)

(65)

where PI is one of the Legendre functions of the first kind. As-
suming for the present discussion that no sensor is present we
have a spherically symmetric boundary value problem. Expanding
the solution of the Laplace equation in spherical (r, 6, $) co-
ordinates as appropriate to each region of space we have for
r<rl—

h = -E. cos(e)alr

forrl:r:r2

[

b2
‘2 = -E. COS(6) a2r + ~

r

(66)

(67)

and for r2 ~ r

21
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b3 [1b3
‘3 = ‘inc - E. COS (e) —= -E. cos (e) r + ~

r2
(68)

r

Consider next the boundary conditions at the two interfaces.
At each interface @ and -s(3@\ar) (the normal component of the
displacement vector) must be continuous. Then by setting r = rl
we obtain

b2
al=a2 +-T

‘1

(69)

which gives

(1 - cr)a2
b2+(l+2cr)—=o
-3

(70)

‘1

By setting r = r2 we obtain

a2
b2

+~=1
2

b3
‘7

‘2

(71)

which gives

b2(2+ sr)a2+ 2(1- &r) 7=3

‘2

(72)

Combining equations 70 and 72 we have

23
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[

~ (1 + 2&r) (2 +

‘1

[

> (~ + 2sr) (2 +

‘1

Then from the first of

&r) - +

‘2

(1 21 _3(1+2Q-cr)a2=L
I L.

Er )

1

-+(1 -~r)2b2 =-3(1-+
‘2

equations

9&_
L

a. =

69 we have

J. J

()‘1(l+2&r)(2+Er) -27 z (1- E1)2

The potential inside the spherical shell is then

‘1 = -E. cos(6)alr = -Eoalz

The corresponding electric field is given by

(73)

(74)

(75)

(76)

The electric field inside the shell is then a uniform field in
the same direction as the uniform incident field as in equation
64. Note that conducting sheets of zero thickness can be placed
perpendicular to the z axis without distorting the field. The

present results can then be used to correct the open circuit
voltage (and thereby the equivalent height) due to the presence
of the spherical dielectric shell.

Consider the field reduction factor al. For small D we have

(-‘1
3

‘1— =(1-D)3=l-3D
\L2/

Then for D << 1 we can expand

9Er

al = 9E 2
r + 6D(1 - &r)

(77)

al as

24
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.

. .

= [l+ AI-l

=1-A

where we define

Aa~(l 2
- Cr)

r

A is a measure of the electric field distortion
presence of the dielectric shell. As one would
tortion is small for small D and for small Sr -

v. Summary

(78)

(79)

introduced by the
expect this dis-
1.

A parallel-plate dipole has certain desirable features, such
as an accurately calculable equivalent height. Furthermore if
the direction of wave incidence is parallel to the plates the up-
per frequency response can be very high, limited by the details
of the output circuitry rather than the size of the plates. For
very thin coaxial circular plates the capacitance can also be
calculated by a numerical solution of a particular integral
equation.

For various reasons the dipole may be enclosed in a dielec-
tric shell. A thin spherical shell with a not-too-large dielec-
tric constant distorts the incident electric field very little.
One would also expect small electric field distortion from other
similar types of thin shells for enclosing the sensor.

We would like to thank A2C Richard T. Clark and Mr. Larry D.
Giorgi for the numerical calculations and graphs.

25



,

.

Appendix A: Numerical Calculation of Normalized Capacitance

In order to calculate the normalized capacitance y we nu-
merically solve equation 31, the integral equation which we re-
peat here as

J
1

f(c) =1++
A

-1A2+ (C/- ~’)z

The normalized capacitance from equation 35 is

(A2)

The method of numerical solution is that discussed by Fox and
Goodwin.la

We begin by taking advantage of the special form of f(~),
namely that it is even in C (shown in reference 3). In equation
Al we can then replace ~’ by -c’ , add this new form of equation
Al to the original form? and then divide by 2 to give

The integrand is now even in G’ which allows us to write

1
f(c) =1+;

u

A
+

a 1f(~’)dc’ (A4)
o A2+(C-C ’)2 k2+(c+c’)2

The normalized capacitance can also be expressed as

J
1

y=4 f(~)di
o

(A5)

la. L. Fox and E. T. Goodwin, The Numerical Solution of Non-
Singular Linear Integral Equations, Phil. Trans. Roy. Sot. of
London, 245A, 1953, pp. 501-534.
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For our numerical solution the integrals are approximated as
sums over a-finite set of points. The Gregory integration formula
is given by~a

[

Pl+P~ + ‘-1
h-

~1
pk - > (VPN-LP1)

k=2

~(V2pN+A2p1 ) (
- ~ V3pN-A3pl )

(
& V4PN+A4P1

) (
863h V5pN-A5p1

-m ) . . . (A6)

This formula is used for the present numerical results with dif-
ferences only up to the third order retained. For this formula
the interval Co to c is divided by N evenly spaced points, pl ,to
pN (including ~he end points). The interval size is

(A7)
-1

differencesThe

The

forward defined inductively by

4, ...

are

- P~

(A8)

An-1pk for 2, 3,n

backward differences are similarly defined as

fern =2,3, 4, ...

vlpk : Vpk ❑ pk - pk-1

(A9)
n-1 - Vn-lVnpk ~ V pk pk-1

solution of equation A4 first defineFor the numerical
.,

Introduction to Numerical Analysis, McGraw-2a. F. B. Hildebrand,
Hill, 1956, p. 155.

.
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k-1
N-1

k 2, N (A1O)● ✎☛✌

so
(i

that the interval o to 1 is d
Then

ivided
define

into N evenly spaced points
.ncluding the endpoi,nts).

f,
3

‘(Cj)

for 1, 2, .*., N (All)

h

[

A

7 A2+(cj-ck)
2 for j,k 1,2I.--rNglk + (A12)

[

gjk for

for k

=l,N

2,3, .... N-1glk

(A13)

for 1, 2, ● ✎✎✎ N

where for these and succeeding equations we have

(A14)

Equation A4 can now be written for the ‘j as

[

N

z
k=l

gjkfk
1

f.
,3

+ + (A15)

Using the g$k this equation has wri
A4 as a trapezoidal sum plus a ccorr
Gregory integration formula this is

tten th
ection
just

.e
t

integral in equa
erm Aj. From the

tion

[v (9 jNfN)-A(gj 1 [V2(gj ~fN) +A2 (9 jlfl)A.=-
1

[V3(91 NfN )-A3(gj1fl)]
(A16). . .

whe different third order keptto the have beenre es up .

.
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e
Define ~ and ~ as N component vectors with components fj and

Aj respectiv~ly. We can ~se the g’k and g~k to form N x N matrices
(gjk) and (gjk). Define 1 as the ?’component vector with all N
components equal to 1. The N x N identity matrix is (~jk) where
~jk is the Kronecker delta function defined by

[

1 for j = k
6, E
Jk

Oforj#k

Equation A15 can be rewritten using vectors and matrices as

~ ‘~ + (g~k) ● ~+~(gjkfk)

or
.

I(6 jk) - (g~k)]
● ~ = ~ + ~(glkfk)

(A17)

(A18)

(A19)

Note that ~ is a correction vector expressing the Gregory corre$-

●
tion terms which correct the trapezoidal integration formula. A
can be considered a linear vector finite difference operator, op-
erating in this case on the matriX (g”kfk). For purposes of the
present calculations we only use the differences in equation A16
up to third order. Thus only k = 1, 2, 3, 4 andk =N - 3, N - 2,
N- 1, N are used from (gjkfk~ in forming the forward and backward
differences. Having defined A as a vector difference operator we
can use it to operate on various N x N matrices.

For the solution of our numerical problem, following refer-
ence la we do an iterative solution. Having specified an N we can
calculate a matrix inverse which we define by

where

A=(8
jk) - (g~k)

(A20)

(A21)

Then define a sequence of vectors ?(l), ~(2~, ... . The first is
found by neglecting the correction term in equation A19 giving

29
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Then use ~(~) to form the correction term and calculate an 1(2) as

3m =~ (1)
“ ‘(9j~f~ )

(A23)

or in general

~(n) =
(B*~g ~(n-l)
jk k ) fern =2, 3, 4, ... (A24)

Combining these together we have

[W +F(2) + .-<] ‘T ‘T(gjk(f/l)A- +f~2) +...)) (A25)

Thus, provided the sum of the ~(n) converges we have

(A26)

After calculating ~ we calculate y using the Gregory integrzi-
tion formula on equation A5, giving

Y
1[

=4h~+ ‘fk -!&( VfN-Afl) -~(V2fN+A2f1)~1k= 2

l-ghV3fN-A3fl) - ...-—
720 ( I (A27)

Again differences up to third order are used for the numerical
calculation.

The numerical results are tabulated in table 1, including
Y, Y/~, and n~ as functions of A over the range .0’1< ~ < 100.
For comparison the asymptotic forms y. and y~ are in~lud~d for
small A and large A respectit-ely. For our calculations we had
N= 200 and used the Gregory correction up to third order differ-
ences. For the matrix inversion a subroutine called MLR was used.
This was written by Richard W. Sassman of Northrop Corporate Lab-
oratories and we would like to thank him for supplying it to us.

After calculating the matrix B (for some fixed A) the vectors
?(n) were calculated for n equal to 1 through 5. The successive
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corrections were most significant for the smallest A, but for
A =0 01 (the smallest ~) and N = 200 the contribution to y of 3(5)
was less than about one part in 107. The maximum n was taken as 5
for all the calculations.

The calculation has least accuracy for the smallest A. This
can be attributed to the larger number of correction terms required
and the lower accuracy in inverting the matrix A. Note that for
large A the diagonal terms of A are about 1 and the off-diagonal
terms are of order A-l, so that A is not very much different from
the identity matrix (djk) and A can be accurately inverted.

Looking at table la compare y to yo, the asymptotic form for
small A. y comes closest to yo at ~ ‘ .012 where they differ by
about 5 parts in 105. At A = .01, the smallest i considered, y
differs from y. by about 5 parts in 104. Now as y + O the differ-
ence y - y. should go to zero (by equation 38) . Due to inaccura-
cies in the numerical calculations, however, the calculated y will
not converge to y. as A + O since one expects the errors in the
numerical calculations to become worse as A + O. Thus for A less
than about .012 the asymptotic form y. should be used. The rela-
tive error in the calculation of y is then of the order of 10-4,
or even less for larger A. For A < .01 then y. can be used with a
relative error less than about 10-4.

For large A the table extends up to A = 100 where Y differs
from y~ (the asymptotic form for large ~) by less than 1 part in
104. Thus for A > 100 one can use y~ with a relative error less
than 10-4.

For comparison some calculations were made for small A with
N = 150. At).=. 01 the calculated y differed from y. by about 2
parts in 103. The closest approach of y to y. was at A = .016
where they differed by about 1 part in 104. Using N = 200 then
gives some improvement in accuracy for small A.

Comparing our results with those of Cooke (reference 4) , he
cites Fox and Blake who found y/4 = 9.233 for ~ = 0.1. For this
calculation an N of about 50 was used to obtain this 4-figure ac-
curacy. With roundoff this agrees exactly with our result for
this particular A. Cooke also cites Nomura’s results which extend
down to A = 0.4. Cooke states that he found some errors in
Nomura’s results in some of the points that he checked. We also
find some errors in Nomura’s results. Our agreement with Fox and
Blake is most encouraging since the errors should increase as A
decreases.

Another interesting result for small A can be found by con-

@

sidering y - y. for .012 < ~ < .1. Calculating y - y. in this
range from table la one notices that it roughly goes like A2. One
might conjecture then that the asymptotic form Y. approximates Y
to the order of A2 for small A which would be a somewhat better

.
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result than that proved by Hutson (equation 38) . For large A we
have shown (equation 57) that y - ym is 0(A-2).

In summary, we think that over the range .01 < A < 100 our
results are accurate to about 1 part in 1.04or bet~er ~including
the use of y. for A < .012).

.
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A

.010

.011

.012
013

:014
015

:016
017

:018
019

:020
022

:024
026

:028
030

:032
.034
.036
038

:040
042

:044
.046
048

:050
.055
060

:065
070

:075
080

:085
.090
095

:100

Y

321.85691
293.06271
269.15399
248.93968
231.61317
216.59354
203.44765
191.84486
181.52817
172.29468
163.98208
149.61771
137.64047
127.50009
118.80344
111.26217
104.65993
98.83127
93.64746
89.00684
84.82810
81.04536
77.60473
74.46168
71.57909
68.92577
63.13177
58.29752
54.20208
50.68755
47.63809
44.96677
42.60707
40.50724
38.62640
36.93184

Y.

321.68149
293.02627
269.13933
248.92089
231.58530
216.55636
203.40186
191.79127
181.46748
172.22748
163.90884
149.53358
137.54660
127.39736
118.69251
111.14354
104.53402
98.69842
93.50794
88.86091
84.67594
80.88717
77.44066
74.29187
71.40366
68.74485
62.93756
58.09056
53.98284
50.45643
47.39545
44.71292
42.34230
40.23182
38.34056
36.63580

y/A

32185.69084
26642.06473
22429.49909
19149.20611
16543.79819
14439.56963
12715.47791
11284.99182
10084.89837
9068.14123
8199.10381
6800.80506
5735.01938
4903.84949
4242.98010
3708.73887
3270.62279
2906.80198
2601.31820
2342.28539
2120.70249
1929.65145
1763.74393
1618.73222
1491.23106
1378.51546
1147.85042
971.62535
833.87814
724.10790
635.17457
562.08461
501.25965
450.08047
406.59373
369.31836

n~

. 00768

.00847

.00925

.01004

.01084

.01163

.01243

.01323

.01404

.01485

.01566

.01728

.01892

.02057
02223

:02390
.02558
.02726
.02896
03067
:03238
.03411
.03584
03759

:03934
.04110
04554

:05004
.05458
.05918
.06384
06854

:07329
.07809
08294 ‘
:08784

Table la. Normalized Capacitance and Figure of Merit
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A

.10

.11

.12

.13

.14
15
:16
.17
.18
.19
20
:22
.24
.26
.28
.30
.32
.34
.36
38
:40
.42
.44
46
:48
.50
55

:60
.65
70
:75
.80
.85
90

;95
1:00

Y

36.93184
34.00031
31.55236
29.47687
27.69444
26.14674
24.79001
23.59076
22.52289
21.56580
20.70300
19.20916
17.96044
16.90072
15.98984
15.19829
14.50391
13.88972
13.34251
12.85180
12.40923
12.00799
1X.64252
11.30821
11.00122
10.73831
10.09939
9.58177
9.14241
8.76478
8.43672
8.14908
7.89483
7.66851
7.46578
7.28315

Y.

36.63580
33.68450
31.21750
29.12362
27.32336
25.75837
24.38484
23.16922
22.08539
21.11273
20.23471
18.71140
17.43439
16.34743
15.41025
14.59326
13.87422
13.23610
12.66561
12.15224
11.68758
11.26479
10.87828
10.52339
10.19627
9.89364
9.22714
8.66413
8.18132
7.76198
7.39379
7.06745
6.77582
6.51333
6.27555
6.05891

y/A

369.31836
309.09374
262.93630
226.74519
197.81740
174.31159
154.93758
138.76916
125.12717
113.50423
1,03.51498
87.31435
74.83517
65.00277
57.10656
50.66096
45.32472
40.85213
37.06253
33.82054
31.02307
28.59045
26.46027
24.58307
22.91920
21.43662
18.36252
15.96962
14.06525
12.52112
11.24896
10.18635
9.28804
8.52057
7.85871
7.28315

n~

.08784

.09777

.10789

.11818

.12864

.13927

.15006

.16101

.17212

.18337

.19477
21799
:24173
.26598
29069
:31583
.34137
.36729
.39353
.42009
.44692
.47399
.50127
.52874
.55636
.58410
.65379
.72364
.79321
.86212
.93002
.99658

1.06151
1.12455
1.18549 ‘
1.24413

Table lb. Normalized Capacitance and Figure of Merit
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a

A

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.5
6.0
6.5
7*O
7.5
8.0
8.5
9.0
9.5

10.0

v

7.28315
6.96742
6.70418
6.48150
6.29080
6.12578
5.98168
5.85483
5.74239
5.64209
5.55211
5.39751
5.26963
5.16226
5.07095
4.99243
4.92425
4.86455
4.81186
4.76505
4.72320
4.68558
4.65159
4.62074
4.59262
4.56689
4.51124
4.46539
4.42699
4.39438
4.36636
4.34202
4.32068
4.30184
4.28507
4.27006

Table lc. Normalized

6.54648
6.31498
6.12207
5.95883
5.81892
5.69765
5.59155
5.49793
5.41471
5.34025
5.27324
5.15749
5.06103
4.97942
4.90946
4.84883
4.79578
4.74897
4.70736
4.67013
4.63662
4.60631
4.57875
4.55358
4.53052
4.50930
4.46300
4.42441
4.39177
4.36378
4.33953
4.31831
4.29959
4.28294
4.26805
4.25465

y/?l

7.28315
6.33401
5.58681
4.98577
4.49343
4.08385
3.73855
3.44402
3.19021
2.96952
2.77606
2.45341
2.19568
1.98548
1.81105
1.66414
1.53883
1.43075
1.33663
1.25396
1.18080
1.11561
1.05718
1.00451
.95680
.91338
.82023
.74423
.68108
.62777
58218
:54275
.50832
.47798
45106
:42701

Capacitance and Figure of Merit

1.24413
1.35395
1.45315
1.54133
1.61843
1.68471
1.74064
1.78684
1.82403
1.85298
1.87450
1.89829
1.90121
1.88830
1.86372
1;83080
1.79216
1.74980
1.70522
1.65957
1.61366
1.56811
1.52335
1.47966
1.43726
1.39626
1.30027
1.21359
1.13572
1.06582
1.00302
.94648
.89543
.84920
.80721
.76893
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k

10.
11 ●

12.
13.
14.
15.
16.
17.
18.
19.
20.
22.
24.
26.
28.
30.
32.
34.
36.
38.
40.
42.
44.
46.
48.
50.
55.
60.
65.
70.
75.
80.
85.
90.
95.

100.

Y

4.27006
4.24430
4.23301
4.20512
4.18988
4.17675
4.16530
4.15525
4.14635
4.13841
4.13128
4.11903
4.10887
4.10030
4.09298
4.08666
4.08114
4.07628
4.07197
4.06812
4.06466
4.06154
4.05870
4.05612
4.05375
4.05157
4.04683
4.04289
4.03956
4.03671
4.03424
4.03208
4.03018
4.02849
4.02698
4.02563

4.25465
4.23150
4.21221
4.19588
4.18189
4.16977
4.15916
4.14979
4.14147
4.23403
4.12732
4.11575
4.10610
4.09794
4.09095
4.08488
4.07958
4.07490
4.07074
4.06701
4.06366
4.06063
4.05787
4.05536
4.05305
4.05093
4.04630
4.04244
4.03918
4.03638
4.03395
4.03183
4.02996
4.02829
4.02681
4.02546

y/?i

.42701

.38585

.35192

.32347

.29928

.27845

.26033
24443
:23035
.21781
.20656
.18723
.17120
.15770
.14618
.13622
.12754
.11989
.11311
.10706
.10162
.09670
.09224
08818
:08445
.08L03
.07358
06738
:06215
05767
:05379
.05040
.04741
.04476
.04239 ~
.04026

Table ld. Normalized Capacitance and Fig’.Ireof Merit
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n~

.76893

.70182

.64505
59648
:~5~52

.51793

.48577
45729
:43192
40917
:38866
.35319
.32360
29854

:27706
.25844
.24215
22779

:21503 @

20362
:19335
.18406
.17563
.16793
.16087
.15439
.14025
.12848
11852
:11000
.10262
09617
:09048
.08542
.08090
.07684


