Sensor and Simulation Notes
 Note 80

31 March 1969

The Circular Parallel-Plate Dipole
 Capt Carl E. Baum
 Air Force Weapons Laboratory

Abstract

One of the common sensors for measuring an electric field is a dipole with two parallel conducting plates. In this note we consider the case of two equal coaxial conducting plates. The upper frequency response is considered for a special direction of wave incidence; for well designed output circuitry the upper frequency response is not limited by the plate size but by tine smaller dimensions associated with the output circuitry. The sensor capacitance is calculated by a numerical solution of an integral equation. Finally we consider the distortion of the electric field produced by a spherical dielectric shell which might be used to enclose the sensor.

I. Introduction

A parallel-plate dipole is a common sensor for measuring a component of an electric field because of its accurately calculable equivalent height. Such a sensor consists of two thin parallel plates with some device (typically with high impedance) which converts the voltage between the two plates into an analog electrical signal for recording and/or further processing.

In this note we consider some of the characteristics of a symmetrical parallel-plate dipole consisting of two coaxial circular disks of radius a and spacing $2 b$ as illustrated in figure 1. The axis of the plates is taken as the z axis and the plates are located on $z= \pm b$. Because of symmetry in z the present calculations also apply to the case with a perfectly conducting sheet on the plane $z=0$, provided appropriate factors of two are introduced. For most of the discussion the plates are assumed to have zero thickness.

First we consider the equivalent height of the sensor and some of the associated high-frequency performance characteristics of the sensor. This is followed by calculation of the sensor capacitance. For these considerations the medium in the vicinity of the sensor is assumed isotropic and homogeneous. Then we consider the distortion of an incident field produced by a thin spherical dielectric shell surrounding the sensor. Such a shell might be used for mechanical protection of the sensor and/or for containing a material (such as a special gas) with higher dielectric strength than the surrounding medium.

II. Equivalent Height and Related Considerations

One of the attractive features of the parallel-plate dipole is its calculable equivalent height. If we ignore the thickness of the plates and the connections to remove the signal then, referring to figure 1 , the equivalent height is just ${ }^{1}$

$$
\begin{equation*}
\vec{h}_{\mathrm{eq}}=2 b \vec{e}_{z} \tag{I}
\end{equation*}
$$

where \vec{e}_{z} denotes a unit vector in the z direction (and similarly for other coordinates). Note that we take the upper plate at $z=b$ for our positive voltage convention. The open circuit voltage for a given incident electric field Einc is just

$$
\begin{equation*}
V_{o c}=-\overrightarrow{\mathrm{E}}_{\text {inc }} \cdot \overrightarrow{\mathrm{h}}_{\mathrm{eq}} \tag{2}
\end{equation*}
$$

1. All units are rationalized MKSA.

FIGURE I. TWO EQUAL COAXIAL CIRCULAR DISKS WITH COORDINATES

This formula generally applies only for frequencies low enough that the corresponding wavelengths are much larger than the sensor dimensions.

For this particular type of sensor, however, the equivalent height can be used to somewhat higher frequencies provided the direction of wave incidence is appropriately restricted. Referring to figure 1 suppose we have an incident electromagnetic wave of the form

$$
\begin{equation*}
\vec{E}_{i n c}=E_{0} \vec{e}_{z} e^{-j \vec{k} \cdot \vec{r}} \tag{3}
\end{equation*}
$$

where ω is the radian frequency with $e^{j \omega t}$ suppressed, and where

$$
\begin{align*}
& \vec{r} \equiv x \vec{e}_{x}+y \vec{e}_{y}+z \vec{e}_{z} \\
& k \equiv|\vec{k}|=\omega \sqrt{\mu \varepsilon} \\
& \vec{k} \equiv k\left[\cos \left(\phi_{o}\right) \vec{e}_{x}+\sin \left(\phi_{o}\right) \vec{e}_{y}\right] \tag{4}
\end{align*}
$$

This is a plane wave with only a z component of the electric field, propagating parallel to the x, y plane in a direction given by $\phi=\phi_{0}$. The medium has permittivity ε and permeability $\mu ;$ the conductivity is taken to be zero for our present discussion but the results can be directly extended to include an isotropic and homogeneous conductivity.

Note that an incident wave of the form in equation 3 is not perturbed by perfectly conducting sheets of zero thickness which are perpendicular to the electric field. I!hus if we ignore the output connections on the sensor the parallel plate dipole in figure 1 will not distort this incident wave. Suppose for the moment that one were able to set up some apparatus which could respond to the line integral of $\vec{E}_{\text {inc }}$ between the two plates without loading the field. For symmetry take the line integral on the z axis giving

$$
\begin{equation*}
V_{o c}=-2 b E_{o} \tag{5}
\end{equation*}
$$

In such a case the equivalent height would apply to arbitrarily high frequencies with wavelengths much smaller than the sensor dimensions. Note that the radius of the plates (a) does not even enter into the problem.

Suppose now that one has some realistic but still highimpedance load connecting the two plates in the vicinity of the z axis. By high impedance we require that the load impedance be large compared to the impedance of the two plates for all ω greater than some wo of interest. Suppose, for example, that this load is some resistive rod or tube with total resistance R and with $R C=1 / \omega_{0}$ where C is the sensor capacitance (quasi static). If $a \gg b$ and R is sufficiently large such that there is negligible load on the sensor for frequencies of interest, then the radius a of the sensor has little or no effect on the sensor response at these high frequencies. Of course, there will be some perturbation in the output signal taken at some small gap in the resistor due to the resistor dimensions and other resistor properties, but these are effects associated with the volume in the immediate vicinity of the resistor. If we assign some upper frequency response w_{1} to the resistive output then as one makes a larger and larger the upper frequency response remains at wi. On the other hand since C is roughly proportional to a^{2} then ω_{0} continually decreases as a increases. Thus for the assumed type of incident wave with sufficiently large R and with $a \gg b$ the upper frequency response is not limited by a but by the resistor characteristics.

As an illustration of this limitation of the high frequency response associated with an output resistor let $a \rightarrow \infty$ and consider the idealized problem illustrated in figure 2. Let the resistor be a cylindrical resistive sheet of radius Ψ_{0} and surface resistance R_{S}. The resistance R_{1} of this tube is then

$$
\begin{equation*}
R_{1}=\frac{2 \mathrm{~b}}{2 \pi \Psi_{0}} R_{S}=\frac{b}{\pi \Psi_{0}} R_{S} \tag{6}
\end{equation*}
$$

Since the geometry is assumed independent of ϕ we can set $\phi_{0}=0$ for convenience so that the incident wave (equations 3 and 4) is propagating in the $+x$ direction. In cylindrical coordinates (Ψ, ϕ, z) the incident electric field can be expanded as ${ }^{2}$

$$
\begin{align*}
E_{z_{i n c}} & =E_{0} e^{-j k \Psi \cos (\phi)} \\
& =E_{0}\left[J_{0}(k \Psi)+2 \sum_{n=1}^{\infty}(-j)^{n} J_{n}\left(R^{\Psi}\right) \cos (n \phi)\right] \tag{7}
\end{align*}
$$

2. See AMS 55, Handbook of Mathematical Functions, National Bureau of Standards, 1964, for the expansions of $\cos [k \Psi \cos (\phi)]$ and $\sin [k \Psi \cos (\phi)]$.

A. TOP VIEW

B. SIDE VIEW

FIGURE 2. IDEALIZED RESISTOR BETWEEN INFINITE PARALLEL PLATES

In cylindrical coordinates with only a z component of the electric field the field components can be expanded in the forms

$$
\begin{align*}
& E_{z}=E_{0} \sum_{n=0}^{\infty} \alpha_{n} C_{n}^{(\ell)}(k \Psi)\left\{\begin{array}{c}
\cos (n \phi) \\
\sin (n \phi)
\end{array}\right\} \tag{8}\\
& H_{r}=j \frac{E_{0}}{Z} \sum_{n=0}^{\infty} \alpha_{n} \frac{C_{n}^{(\ell)}(k \Psi)}{k \Psi}\left\{\begin{array}{c}
-\sin (n \phi) \\
\cos (n \phi)
\end{array}\right\} \tag{9}\\
& H_{\phi}=-j \frac{E_{0}}{Z} \sum_{n=0}^{\infty} \alpha_{n} C_{n}^{(\ell)^{\prime}(k \Psi)}\left\{\begin{array}{l}
\cos (n \phi) \\
\sin (n \phi)
\end{array}\right\} \tag{10}
\end{align*}
$$

where $C_{n}^{(l)}\left(K_{\Psi}\right)$ denotes one of the cylindrical Bessel functions and a prime denotes the derivative with respect to the argument. The braces indicate a linear combination of the trigonometric functions inside the braces in a consistent manner for all three field components. The wave impedance is

$$
\begin{equation*}
z \equiv \sqrt{\frac{\mu}{\varepsilon}} \tag{II}
\end{equation*}
$$

The ϕ component of the incident magnetic field is then

$$
\begin{equation*}
H_{\phi_{i n c}}=-j \frac{E_{0}}{Z}\left[J_{0}^{\prime}(k \Psi)+2 \sum_{n=1}^{\infty}(-j)^{n_{J}^{\prime}}(k \Psi) \cos (n \phi)\right] \tag{12}
\end{equation*}
$$

Using a subscript 1 we have two components of the fields for $\Psi<\Psi_{0}$ as

$$
\begin{align*}
& E_{z_{1}}=E_{0}\left[a_{0} J_{0}(k \Psi)+2 \sum_{n=1}^{\infty}(-j)^{n_{n}} a_{n} J_{n}(k \Psi) \cos (n \phi)\right] \tag{13}\\
& H_{\phi}=-j \frac{E_{0}}{2}\left[a_{0} J_{0}^{\prime}(k \Psi)+2 \sum_{n=1}^{\infty}(-j)^{n} a_{n} J_{n}^{\prime}(k \Psi) \cos (n \phi)\right] \tag{14}
\end{align*}
$$

Similarly, using a subscript 2 for the reflected wave for $\Psi>\Psi_{0}$ we have

$$
\begin{align*}
& E_{z_{2}}=E_{0}\left[b_{0} H_{o}^{(2)}(k \Psi)+2 \sum_{n=1}^{\infty}(-j) b_{n} H_{n}^{(2)}(k \Psi) \cos (n \phi)\right] \tag{15}\\
& H_{\phi_{2}}=-j \frac{E_{0}}{Z}\left[b_{0} H_{0}^{(2)^{\prime}}\left(k^{\Psi}\right)+2 \sum_{n=1}^{\infty}(-j)^{n_{0}} b_{n} H_{n}(2)^{\prime}(k \Psi) \cos (n \phi)\right] \tag{16}
\end{align*}
$$

Now incorporate boundary conditions at $\Psi=\Psi_{0}$. Making E_{Z} continuous there gives

$$
\begin{equation*}
a_{n} J_{n}\left(k \Psi_{0}\right)=J_{n}\left(k \Psi_{0}\right)+b_{n} H_{n}^{(2)}\left(k \Psi_{0}\right) \tag{17}
\end{equation*}
$$

which can be solved for b_{n} to give

$$
\begin{equation*}
b_{n}=\left(a_{n}-1\right) \frac{J_{n}\left(k \Psi_{0}\right)}{H_{n}^{(2)}\left(k \Psi_{0}\right)} \tag{18}
\end{equation*}
$$

The surface current density at $\Psi=\Psi_{0}$ has only a z component given by

$$
\begin{equation*}
J_{S}=\left.\frac{E_{z_{I}}}{R_{s}}\right|_{\Psi=\Psi_{0}}=\frac{E_{0}}{R_{S}}\left[a_{0} J_{0}\left(k \Psi_{0}\right)+2 \sum_{n=1}^{\infty}(-j)^{n_{J}} J_{n}\left(k \Psi_{0}\right) \cos (n \phi)\right] \tag{19}
\end{equation*}
$$

Another boundary condition relates the discontinuity of the magnetic field as

$$
\begin{equation*}
\left.H_{\phi}\right|_{\Psi=\Psi+}-\left.H_{\phi}\right|_{\Psi=\Psi-}=J_{S} \tag{20}
\end{equation*}
$$

which gives

$$
\begin{equation*}
-j \frac{E_{0}}{Z}\left[J_{n}^{\prime}\left(k \Psi_{0}\right)+b_{n} H_{n}^{(2)^{\prime}}\left(k \Psi_{0}\right)-a_{n} J_{n}^{\prime}\left(k \Psi_{0}\right)\right]=\frac{E_{0}}{R_{S}} a_{n} J_{n}\left(k \Psi_{0}\right) \tag{21}
\end{equation*}
$$

Substituting for b_{n} in equation 21 from equation 18 gives

$$
\begin{equation*}
\left(a_{n}-1\right)\left[-J_{n}^{\prime}\left(k \Psi_{0}\right)+\frac{J_{n}\left(k \Psi_{0}\right)}{H_{n}^{(2)}\left(k \Psi_{0}\right)} H_{n}^{(2)^{\prime}}\left(k \Psi_{0}\right)\right]=j \frac{Z}{R_{s}} a_{n} J_{n}\left(k \Psi_{0}\right) \tag{22}
\end{equation*}
$$

Using a Wronskian relation for the Bessel functions gives

$$
\begin{equation*}
\left(a_{n}-1\right)\left[\frac{-j 2}{\pi k^{\Psi}} \frac{1}{H_{n}^{(2)}\left(k \Psi_{0}\right)}\right]=j \frac{Z}{R_{s}} a_{n}^{J_{n}}\left(k \Psi_{0}\right) \tag{23}
\end{equation*}
$$

which can be solved for a_{n} to give

$$
\begin{equation*}
a_{n}=\left[1+\frac{Z}{R_{s}} \frac{\pi k \Psi_{0}}{2} J_{n}\left(k \Psi_{0}\right) H_{n}^{(2)}\left(k \Psi_{0}\right)\right]^{-1} \tag{24}
\end{equation*}
$$

From equation 18 we have

$$
\begin{equation*}
b_{n}=-\frac{Z}{R_{s}} \frac{\pi k \Psi_{0}}{2}\left[J_{n}\left(k \Psi_{0}\right)\right]^{2}\left[1+\frac{Z}{R_{s}} \frac{\pi k \Psi_{0}}{2} J_{n}\left(k \Psi_{0}\right) H_{n}^{(2)}\left(k \Psi_{0}\right)\right]^{-1} \tag{25}
\end{equation*}
$$

Now the current in this idealized resistor is just

$$
\begin{equation*}
I=\int_{0}^{2 \pi} J_{S} \Psi_{0} d \phi=2 \pi \Psi_{0} \frac{E_{0}}{R_{S}} a_{o} J_{0}\left(k \Psi_{0}\right) \tag{26}
\end{equation*}
$$

We define a reference or normalizing current as

$$
\begin{equation*}
I_{0} \equiv \frac{2 \mathrm{bE}_{0}}{\mathrm{R}_{I}}=2 \pi \Psi \circ \frac{\mathrm{E}_{0}}{\mathrm{R}_{\mathrm{S}}} \tag{27}
\end{equation*}
$$

In normalized form we can then write

$$
\begin{equation*}
\frac{I}{I_{0}}=a_{0} J_{0}\left(k \Psi_{0}\right)=J_{0}\left(k \Psi_{0}\right)\left[1+\frac{Z}{R_{S}} \frac{\pi k \Psi_{0}}{2} J_{0}\left(k \Psi_{0}\right) H_{0}^{(2)}\left(k \Psi_{0}\right)\right]^{-1} \tag{28}
\end{equation*}
$$

This is plotted in figure 3 for various values of Z / R_{s}. Note that for $Z / R_{S}<1$ the upper frequency response is for $k \Psi_{o}$ of the order of one. This says that for sufficiently large Rl the frequency response of the output current (I) is limited by Ψ_{0}, the

radius of the idealized resistor. Note that the magnitude of I / I_{0} has zeros given by the zeros of $J_{0}\left(k \Psi_{0}\right)$; the first zero is at $\mathrm{k}_{\mathrm{O}} \simeq 2.405$. Also note that the wave reflected from the idealized resistor is small for $Z / R_{S} \ll 1$ as is evidenced by small b_{n} in equation 25 .

One of the problems in designing a parallel-plate dipole concerns the details of the output circuitry. If we consider a resistive output with large resistance then the frequency response of the sensor is basically limited by the local characteristics of the output circuitry. This, of course, applies to the case where the direction of wave incidence is parallel to the plates. In our idealized example considered above, the current in the output resistor (with large resistance) is limited in frequency response only by the diameter of the resistor. If one could sample or divert this current for recording purposes then the sensor should have rather high frequency response. For example one might put a load with small resistance R_{2} in series with R_{1} (such that $R_{2} \ll R_{1}$) at one of the plates or at the $z=0$ plane of symmetry. This would basically be a voltage divider network. R_{2} might be the input impedance of a transmission line such as a coaxial or twinaxial cable.

While the response of the idealized resistor indicates a good high frequency response for the sensor there are problems yet to consider. For example, the output transmission line needs to be connected to the resistor in some manner, thereby altering the geometry. Perhaps other quantities besides I (as in equation 26), such as displacement current, will couple to the output transmission line. Other boundary value problems might be able to shed some light on this subject. Perhaps some such problems can be considered in future notes.

The parallel-plate dipole is then particularly suited for measuring electric fields when the direction of propagation of the incident wave is parallel to the plates. In equation 3 we have also taken the incident electric field to have a z component. However other polarizations can also be included provided appropriate symmetry is maintained in the sensor. Consider a circular parallel-plate dipole and choose the direction of propagation of the incident electric field as the $+x$ direction; the incident electric field might also have a y component. Provided the sensor with its output conductors and circuit elements is symmetric with respect to the $z=0$ plane (as illustrated), then the y component of the incident electric field produces no output signal. The incident wave can be considered as the linear superposition of two waves, one with a z component and one with a y component of the electric field, both propagating in the $+x$ direction.

III. Capacitance

It is rather straightforward to calculate the equivalent height of a parallel-plate dipole, provided the plate thickness is small compared to the plate spacing. However the capacitance of the sensor is more difficult to obtain. The simple formula which approximates the capacitance C as $\varepsilon \pi a 2 /(2 b)$ is not very accurate unless a / b is extremely large. The fringe fields (the fields not between the two plates when charge is transferred between the plates) make a significant contribution to the capacitance.

First define a normalized capacitance

$$
\begin{equation*}
\gamma \equiv \frac{C}{\varepsilon \mathrm{a}} \tag{29}
\end{equation*}
$$

where C is the sensor capacitance. Define a normalized variable

$$
\begin{equation*}
\lambda \equiv \frac{2 b}{a} \tag{30}
\end{equation*}
$$

The capacitance can be obtained from a function $f(\zeta)$ which satisfies an integral equation obtained by Love, ${ }^{3}$ specifically

$$
\begin{equation*}
f(\zeta)=1+\frac{1}{\pi} \int_{-1}^{1} \frac{\lambda}{\lambda^{2}+\left(\zeta-\zeta^{\prime}\right)^{2}} f\left(\zeta^{\prime}\right) d \zeta^{\prime} \tag{31}
\end{equation*}
$$

If the upper plate at $z=b$ has potential V_{O} and charge Q, and if the lower p late at $z=-b$ has potential $-V_{O}$ and charge $-Q$ the capacitance is just

$$
\begin{equation*}
c \equiv \frac{Q}{2 V_{0}} \tag{32}
\end{equation*}
$$

From Love the charge on the upper plate (in MKSA units) is just

$$
\begin{equation*}
Q=4 V_{0} \varepsilon a \int_{-1}^{1} f(\zeta) a \zeta \tag{33}
\end{equation*}
$$

3. E. R. Love, The Electrostatic Field of Two Equal Circular Coaxial Conducting Disks, Quart. J. Mech. and Applied Math., 2, 1949, pp. 428-451.
giving a capacitance

$$
\begin{equation*}
C=2 \varepsilon a \int_{-1}^{1} f(\zeta) d \zeta \tag{34}
\end{equation*}
$$

which in normalized form is

$$
\begin{equation*}
\gamma=2 \int_{-1}^{1} f(\zeta) d \zeta \tag{35}
\end{equation*}
$$

The potential Φ at any point (Ψ, ϕ, z) is given by

$$
\begin{align*}
\Phi= & \frac{V_{0}}{\pi} \int_{-1}^{1}\left[\left[\left(\frac{\psi}{a}\right)^{2}+\left(\frac{z-b}{a}+j \zeta\right)^{2}\right]^{-1 / 2}\right. \\
& \left.-\left[\left(\frac{\Psi}{a}\right)^{2}+\left(\frac{z+b}{a}+j \zeta\right)^{2}\right]^{-1 / 2}\right\} f(\zeta) d \zeta \tag{36}
\end{align*}
$$

For details of the derivations the reader is referred to Love's paper. Basically Φ as in equation 36 is shown to satisfy the Laplace equation away from both plates; Φ becomes $\pm V_{0}$ on the two plates provided $f(\zeta)$ satisfies equation 3l. The charge density on one of the plates can be found by multiplying ε times the discontinuity in $-\partial \Phi / \partial z$ at the plate.

In appendix A we consider the numerical solution of equation 31. In figure 4 the normalized capacitance is plotted as a function of λ. This is also tabulated in table 1 at the end of the note. For comparison to the short table in Cooke ${ }^{4}$ we have

$$
\begin{equation*}
A_{0} \equiv \frac{1}{2} \int_{-1}^{1} f(\zeta) d \zeta=\frac{\gamma}{4} \tag{37}
\end{equation*}
$$

As an aid in calculating γ consider asymptotic forms for small and large λ. For small λ so that $a \gg b$ (a case of interest
4. J. C. Cooke, The Coaxial Circular Disk Problem, Z. angew. Math. Mech. Bd. $38 \mathrm{Nr} .9 / 10$, 1958, pp. 349-356.

for a sensor) the asymptotic form for γ was found by Hutson ${ }^{5}$ who showed that as $\lambda \rightarrow 0$

$$
\begin{equation*}
\gamma=\frac{\pi}{\lambda}+\ln \left(\frac{16 \pi}{\lambda}\right)-1+o(1) \tag{38}
\end{equation*}
$$

For convenience we then define

$$
\begin{equation*}
\gamma_{0} \equiv \frac{\pi}{\lambda}+\ln \left(\frac{16 \pi}{\lambda}\right)-1 \tag{39}
\end{equation*}
$$

so that $\gamma-\gamma_{0} \rightarrow 0$ as $\lambda \rightarrow 0$. Writing out equation 39 for the capacitance we have as $\lambda \rightarrow 0$

$$
\begin{equation*}
C=\varepsilon a \gamma=\varepsilon\left\{\frac{\pi a^{2}}{2 b}+a\left[\ln \left(\frac{8 \pi a}{b}\right)-1\right]\right\}+o(1) \tag{40}
\end{equation*}
$$

The first term in the braces corresponds to the simple area over spacing formula often used; the remaining terms give the error when such a simple formula is used.

The asymptotic form in equations 38 through 40 corresponds to Kirchoff's result for small λ. Let the plate thickness be assumed for the moment to be non zero and call it w (the same for both plates). Let $2 b$ be the spacing between adjacent faces of the two plates. Also let the edges be square. Then we quote Kirchoffis result for the capacitance C' for small λ as ${ }^{6}$

$$
\begin{equation*}
C^{\prime} \simeq \varepsilon\left\{\frac{\pi a^{2}}{2 b}+a\left\{\ln \left[\frac{8 \pi a}{b}\left(1+\frac{w}{2 b}\right)\right]-1+\frac{2 \pi w}{b} \ln \left[1+\frac{2 b}{w}\right]\right\}\right\} \tag{4I}
\end{equation*}
$$

Then we can attribute an increase in capacitance ΔC due to the finite plate thickness with square edges as

$$
\begin{equation*}
\Delta C \equiv C^{\prime}-C \simeq \varepsilon a\left\{\ln \left[1+\frac{w}{2 b}\right]+\frac{2 \pi w}{b} \ln \left[1+\frac{2 b}{w}\right]\right\} \tag{42}
\end{equation*}
$$

The corresponding increase in γ is
5. V. Hutson, The Circular Plate Condenser at Small Separations, Proc. Camb. Phil. Soc., 59, 1963, pp. 211-224.
6. American Institute of Physics Handbook, 2nd ed., McGraw-Hill, 1963, section 5, p. 14.

$$
\begin{equation*}
\Delta \gamma \equiv \frac{\Delta C}{\varepsilon a} \simeq \ln \left[1+\frac{W}{2 b}\right]+\frac{2 \pi w}{b} \ln \left[1+\frac{2 b}{W}\right] \tag{43}
\end{equation*}
$$

This can be used as an approximation to the increase in sensor capacitance due to finite plate thickness with square edges. However, to the author's knowledge this result has not been rigorously established in the sense that ro has been established by Hutson as the asymptotic form for small λ with $w=0$.

Next consider the case of large λ for which $a \ll b$. Let the disks have zero thickness. As $\lambda \rightarrow \infty$ the problem becomes one of considering the capacitance of two isolated disks of radius a. The capacitance tends to $1 / 2$ the capacitance of a single isolated disk. Then using the result from Smythe ${ }^{7}$ the capacitance for $\lambda \rightarrow \infty$ has the form

$$
\begin{equation*}
C \rightarrow \frac{I}{2}(8 \varepsilon a)=4 \varepsilon a \tag{44}
\end{equation*}
$$

so that as $\lambda \rightarrow \infty$

$$
\begin{equation*}
\gamma \rightarrow 4 \tag{45}
\end{equation*}
$$

Now, as shown by Love (reference 3), the solution of equation 31 can be written as the Neumann series

$$
\begin{equation*}
f(\zeta)=I+\sum_{n=1}^{\infty}\left\{\int_{-I}^{1} K_{n}\left(\zeta, \zeta^{\prime}\right) d \zeta^{\prime}\right\} \tag{46}
\end{equation*}
$$

where K_{1} is the kernal of the integral equation defined by

$$
\begin{equation*}
\mathrm{K}_{1}\left(\zeta, \zeta^{\prime}\right) \equiv \frac{1}{\pi} \frac{\lambda}{\lambda^{2}+\left(\zeta-\zeta^{\prime}\right)^{2}} \tag{47}
\end{equation*}
$$

and where the remaining K_{n} are the iterated kernals defined by

$$
\begin{gather*}
K_{n}\left(\zeta, \zeta^{\prime}\right) \equiv \int_{-1}^{1} K_{n-1}\left(\zeta, \zeta^{\prime \prime}\right) K_{1}\left(\zeta^{\prime \prime}, \tau^{\prime}\right) d \zeta^{\prime \prime} \\
\text { for } n=2,3, \ldots \tag{48}
\end{gather*}
$$

7. W. R. Smythe, Static and Dynamic Electricity, 2nd ed., McGraw-Hill, 1950, p. 114.

Define a truncated Neumann series as

$$
\begin{equation*}
f_{M}(\zeta) \equiv 1+\sum_{n=1}^{M}\left\{\int_{-1}^{1} K_{n}\left(\zeta, \zeta^{\prime}\right) d \zeta^{\prime}\right\} \text { for } M=0,1,2, \ldots \tag{49}
\end{equation*}
$$

(For $M=0$ we have $\left.f_{0}(\zeta) \equiv 1.\right)$ Love shows that

$$
\begin{equation*}
f(\zeta)=E_{M}(\zeta)+R_{M}(\zeta) \tag{50}
\end{equation*}
$$

where the remainder $R_{M}(\zeta)$ is of the order of $\left[\frac{2}{\pi} \arctan \left(\frac{1}{\lambda}\right)\right]^{M}$ so that (with $\lambda>0$) as $N \rightarrow \infty$ the remainder goes to zero.

Now consider the asymptotic form of γ for large λ. For convenience define

$$
\begin{equation*}
\nu \equiv \frac{1}{\lambda} \tag{51}
\end{equation*}
$$

so that we are concerned with asymptotic forms as $v \rightarrow 0$. Consider the first few terms of the Neumann series. We have as $\nu \rightarrow 0$

$$
\begin{align*}
f_{1}(\zeta) & =1+\frac{1}{\pi} \int_{-1}^{1} \frac{v}{1+v^{2}\left(\zeta-\zeta^{\prime}\right)^{2}} d \zeta^{\prime} \\
& =1+\frac{1}{\pi} \int_{-\nu-\nu \zeta}^{\nu-\nu \zeta}\left[1+\alpha^{2}\right]^{-1} d \alpha \\
& =1+\frac{1}{\pi}[\arctan (\nu-\nu \zeta)+\arctan (\nu+\nu \zeta)] \\
& =1+\frac{2 v}{\pi}+O\left(\nu^{3}\right) \tag{52}
\end{align*}
$$

where we have used the substitution $\alpha \equiv \nu \zeta^{\prime}-\nu \zeta$. Now as $\nu \rightarrow 0$

$$
\begin{aligned}
& K_{1}\left(\zeta, \zeta^{\prime}\right)=o(\nu) \\
& K_{2}\left(\zeta, \zeta^{\prime}\right)=o\left(\nu^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
K_{n}\left(\zeta, \zeta^{\prime}\right)=O\left(v^{n}\right) \tag{53}
\end{equation*}
$$

From this we have

$$
\begin{equation*}
f_{2}(\zeta)=f_{1}(\zeta)+O\left(v^{2}\right) \tag{54}
\end{equation*}
$$

From Love's result

$$
\begin{equation*}
f(\zeta)-\mathrm{E}_{2}(\zeta)=\mathrm{R}_{2}(\zeta)=O\left(v^{2}\right) \tag{55}
\end{equation*}
$$

Thus we have for $v \rightarrow 0$

$$
\begin{equation*}
f(\zeta)=1+\frac{2 v}{\pi}+o\left(v^{2}\right) \tag{56}
\end{equation*}
$$

and then for γ as $v \rightarrow 0$ we have

$$
\begin{equation*}
\gamma=2 \int_{-I}^{I} £(\zeta) d \zeta=4\left[1+\frac{2 v}{\pi}\right]+O\left(v^{2}\right) \tag{57}
\end{equation*}
$$

Based on this result define

$$
\begin{equation*}
\gamma_{\infty} \equiv 4\left[1+\frac{2 v}{\pi}\right]=4\left[1+\frac{2}{\pi \lambda}\right] \tag{58}
\end{equation*}
$$

so that $\gamma-\gamma_{\infty}=O\left(\lambda^{-2}\right)$ as $\lambda \rightarrow \infty$.
Having the capacitance and equivalent height we can calculate the equivalent volume as 8,9

$$
\begin{equation*}
V_{e q}=\frac{C}{\varepsilon} \vec{h}_{e q} \cdot \vec{h}_{e q}=4 b^{2} a \gamma \tag{59}
\end{equation*}
$$

8. Capt Cari E. Baum, Sensor and Simulation Note 38, Parameters for Some Electrically-Small Electromagnetic Sensors, March 1967.
9. Capt Carl E. Baum, Sensor and Simulation Note 74, Parameters for Electrically-Small Loops and Dipoles Expressed in Terms of Current and Charge Distributions, January 1969.

Define a geometric volume as the volume of the smallest sphere which encloses the sensor. This sphere has a radius

$$
\begin{equation*}
r_{s}=\left[a^{2}+b^{2}\right]^{1 / 2}=a\left[1+\left(\frac{\lambda}{2}\right)^{2}\right]^{1 / 2} \tag{60}
\end{equation*}
$$

The reference geometric volume is then

$$
\begin{equation*}
v_{g}=\frac{4}{3} \pi r_{s}^{3} \tag{6I}
\end{equation*}
$$

and the figure of merit based on this spherical volume is then

$$
\begin{equation*}
n_{s} \equiv \frac{V_{e q}}{V_{g}}=\frac{3}{4 \pi} \frac{\lambda^{2} \gamma}{\left[1+\left(\frac{\lambda}{2}\right)^{2}\right]^{3 / 2}} \tag{62}
\end{equation*}
$$

This figure of merit is plotted in figure 5 and also tabulated in table 1 .

Referring to figure 5 the maximum η_{S} is about 1.9 ; the corresponding λ is about 2.3. However for the present type of parallel plate dipole one would typically design it with a small λ and use a resistive divider on the output. Due to the presence of this additional resistor in series with the sensor output the figure of merit concept does not have the same direct application as discussed in reference 8.

IV. Low-Frequency Electric Field Distortion Due to a Spherical Dielectric Shell

For mechanical protection of the sensor one might wish to enclose the sensor in a dielectric shell. Also one might wish to enclose some material (in the immediate vicinity of the sensor) which has a higher dielectric strength than the surrounding medium; this higher-dielectric-strength material is assumed to have the same permittivity and permeability as the surrounding medium. However, the dielectric shell may have a permittivity which differs from the permittivity of the surrounding medium. This shell may then distort the incident electric field, thereby affecting the sensor response. Of course, if the shell is sufficiently thin we would normally expect the distortion to be small.

In this section we assume that there is a spherical dielectric shell of permittivity ε_{2}, inner radius r_{1}, and outer radius

r_{2} as illustrated in figure 6. For convenience define

$$
\begin{align*}
& d \equiv r_{2}-r_{1} \\
& D \equiv \frac{d}{r_{2}} \tag{63}\\
& \varepsilon_{r} \equiv \frac{\varepsilon_{2}}{\varepsilon_{1}}
\end{align*}
$$

where ε_{1} is the permittivity of the media both inside and outside the shell. All media have the same permeability μ and all have zero conductivity. Furthermore we only consider frequencies with wavelengths much larger than $2 r_{2}$ so that we can use a quasi static calculation of the electric field distortion.

Assume a uniform incident static electric field of the form

$$
\begin{equation*}
\vec{E}_{i n c} \equiv E_{0} \vec{e}_{z}=E_{0} \vec{e}_{r} \cos (\theta)-E_{0} \vec{e}_{\theta} \sin (\theta) \tag{64}
\end{equation*}
$$

and a corresponding incident potential of the form

$$
\begin{equation*}
\Phi_{\text {inc }}=-E_{0} z=-E_{0} r \cos (\theta)=-E_{0} r P_{I}(\cos (\theta)) \tag{65}
\end{equation*}
$$

where P_{1} is one of the Legendre functions of the first kind. Assuming for the present discussion that no sensor is present we have a spherically symmetric boundary value problem. Expanding the solution of the Laplace equation in spherical (r, θ, ϕ) coordinates as appropriate to each region of space we have for $r \leq r_{1}$

$$
\begin{equation*}
\Phi_{1}=-E_{0} \cos (\theta) a_{1} r \tag{66}
\end{equation*}
$$

for $r_{1} \leq r \leq r_{2}$

$$
\begin{equation*}
\Phi_{2}=-E_{0} \cos (\theta)\left[a_{2} r+\frac{b_{2}}{r^{2}}\right] \tag{67}
\end{equation*}
$$

and for $r_{2} \leq r$

FIGURE 6. SPHERICAL DIELECTRIC SHELL

$$
\begin{equation*}
\Phi_{3}=\Phi_{i n c}-E_{o} \cos (\theta) \frac{b_{3}}{r^{2}}=-E_{o} \cos (\theta)\left[r+\frac{b_{3}}{r^{2}}\right] \tag{68}
\end{equation*}
$$

Consider next the boundary conditions at the two interfaces. At each interface Φ and $-\varepsilon(\partial \Phi / \partial r)$ (the normal component of the displacement vector) must be continuous. Then by setting $r=r_{1}$ we obtain

$$
\begin{align*}
& a_{1}=a_{2}+\frac{b_{2}}{r_{1}^{3}} \\
& a_{1}=\varepsilon_{r}\left[a_{2}-\frac{2 b_{2}}{r_{1}^{3}}\right] \tag{69}
\end{align*}
$$

which gives

$$
\begin{equation*}
\left(1-\varepsilon_{r}\right) a_{2}+\left(1+2 \varepsilon_{r}\right) \frac{b_{2}}{r_{1}^{3}}=0 \tag{70}
\end{equation*}
$$

By setting $r=r_{2}$ we obtain

$$
\begin{align*}
& a_{2}+\frac{b_{2}}{r_{2}^{3}}=1+\frac{b_{3}}{r_{2}^{3}} \\
& \varepsilon_{r}\left[a_{2}-2 \frac{b_{2}}{r_{2}^{3}}\right]=1-2 \frac{b_{3}}{r_{2}^{3}} \tag{71}
\end{align*}
$$

which gives

$$
\begin{equation*}
\left(2+\varepsilon_{r}\right) a_{2}+2\left(1-\varepsilon_{r}\right) \frac{b_{2}}{r_{2}^{3}}=3 \tag{72}
\end{equation*}
$$

Combining equations 70 and 72 we have

$$
\begin{align*}
& {\left[\frac{1}{r_{1}^{3}}\left(1+2 \varepsilon_{r}\right)\left(2+\varepsilon_{r}\right)-\frac{2}{r_{2}^{3}}\left(1-\varepsilon_{r}\right)^{2}\right] a_{2}=\frac{3}{r_{1}^{3}}\left(1+2 \varepsilon_{r}\right)} \tag{73}\\
& {\left[\frac{1}{r_{1}^{3}}\left(1+2 \varepsilon_{r}\right)\left(2+\varepsilon_{r}\right)-\frac{2}{r_{2}^{3}}\left(1-\varepsilon_{r}\right)^{2}\right] b_{2}=-3\left(1-\varepsilon_{r}\right)}
\end{align*}
$$

Then from the first of equations 69 we have

$$
\begin{equation*}
a_{I}=\frac{9 \varepsilon_{r}}{\left(1+2 \varepsilon_{r}\right)\left(2+\varepsilon_{r}\right)-2\left(\frac{r_{1}}{r_{2}}\right)^{3}\left(1-\varepsilon_{r}\right)^{2}} \tag{74}
\end{equation*}
$$

The potential inside the spherical shell is then

$$
\begin{equation*}
\Phi_{1}=-E_{0} \cos (\theta) a_{1} r=-E_{0} a_{1} z \tag{75}
\end{equation*}
$$

The corresponding electric field is given by

$$
\begin{equation*}
\vec{E}_{1}=-\nabla \Phi_{1}=E_{0} a_{1} \vec{e}_{z} \tag{76}
\end{equation*}
$$

The electric field inside the shell is then a uniform field in the same direction as the uniform incident field as in equation 64. Note that conducting sheets of zero thickness can be placed perpendicular to the z axis without distorting the field. The present results can then be used to correct the open circuit voltage (and thereby the equivalent height) due to the presence of the spherical dielectric shell.

Consider the field reduction factor a_{l}. For small D we have

$$
\begin{equation*}
\left(\frac{r_{1}}{r_{2}}\right)^{3}=(I-D)^{3} \simeq I-3 D \tag{77}
\end{equation*}
$$

Then for $D \ll 1$ we can expand a_{1} as

$$
a_{1} \simeq \frac{9 \varepsilon_{r}}{9 \varepsilon_{r}+6 D\left(1-\varepsilon_{r}\right)^{2}}
$$

$$
\begin{align*}
& =[1+\Lambda]^{-1} \\
& \simeq 1-\Lambda \tag{78}
\end{align*}
$$

where we define

$$
\begin{equation*}
\Lambda \equiv \frac{2 D}{3 \varepsilon_{r}}\left(1-\varepsilon_{r}\right)^{2} \tag{79}
\end{equation*}
$$

A is a measure of the electric field distortion introduced by the presence of the dielectric shell. As one would expect this distortion is small for small D and for $\operatorname{small} \varepsilon_{r}-1$.
V. Summary

A parallel-plate dipole has certain desirable features, such as an accurately calculable equivalent height. Furthermore if the direction of wave incidence is parallel to the plates the upper frequency response can be very high, limited by the details of the output circuitry rather than the size of the plates. For very thin coaxial circular plates the capacitance can also be calculated by a numerical solution of a particular integral equation.

For various reasons the dipole may be enclosed in a dielectric shell. A thin spherical shell with a not-too-large dielectric constant distorts the incident electric field very little. One would also expect small electric field distortion from other similar types of thin shells for enclosing the sensor.

We would like to thank A2C Richard T. Clark and Mr. Larry D. Giorgi for the numerical calculations and graphs.

Appendix A: Numerical Calculation of Normalized Capacitance

In order to calculate the normalized capacitance γ we numerically solve equation 31 , the integral equation which we repeat here as

$$
\begin{equation*}
f(\zeta)=1+\frac{1}{\pi} \int_{-1}^{1} \frac{\lambda}{\lambda^{2}+\left(\zeta-\zeta^{\prime}\right)^{2}} f\left(\zeta^{\prime}\right) d \zeta^{\prime} \tag{A1}
\end{equation*}
$$

The normalized capacitance from equation 35 is

$$
\begin{equation*}
\gamma=2 \int_{-1}^{1} f(\zeta) d \zeta \tag{A2}
\end{equation*}
$$

The method of numerical solution is that discussed by Fox and Goodwin. ${ }^{\text {a }}$

We begin by taking advantage of the special form of $f(\zeta)$, namely that it is even in ζ (shown in reference 3). In equation Al we can then replace ζ^{\prime} by $-\zeta^{\prime}$, add this new form of equation Al to the original form, and then divide by 2 to give

$$
\begin{equation*}
f(\zeta)=1+\frac{1}{2 \pi} \int_{-1}^{1}\left[\frac{\lambda}{\lambda^{2}+\left(\zeta-\zeta^{\prime}\right)^{2}}+\frac{\lambda}{\lambda^{2}+\left(\zeta+\zeta^{\prime}\right)^{2}}\right] \tilde{f}\left(\zeta^{\prime}\right) \mathrm{d} \zeta^{\prime} \tag{A3}
\end{equation*}
$$

The integrand is now even in ζ^{\prime} which allows us to write

$$
\begin{equation*}
f(\zeta)=1+\frac{1}{\pi} \int_{0}^{1}\left[\frac{\lambda}{\lambda^{2}+\left(\zeta-\zeta^{\prime}\right)^{2}}+\frac{\lambda}{\lambda^{2}+\left(\zeta+\zeta^{\prime}\right)^{2}}\right] f\left(\zeta^{\prime}\right) d \zeta^{\prime} \tag{A4}
\end{equation*}
$$

The normalized capacitance can also be expressed as

$$
\begin{equation*}
\gamma=4 \int_{0}^{l} f(\zeta) d \zeta \tag{A5}
\end{equation*}
$$

la. L. Fox and E. T. Goodwin, The Numerical Solution of NonSingular Linear Integral Equations, Phil. Trans. Roy. Soc. of London, 245A, 1953, pp. 501-534.

For our numerical solution the integrals are approximated as sums over a finite set of points. The Gregory integration formula is given by 2 a

$$
\begin{align*}
\int_{\zeta}^{\zeta} \zeta_{1} p(\zeta) d \zeta & =h\left[\frac{p_{1}+p_{N}}{2}+\sum_{k=2}^{N-1} p_{k}\right]-\frac{h}{12}\left(\nabla p_{N}-\Delta p_{1}\right) \\
& -\frac{h}{24}\left(\nabla^{2} p_{N}+\Delta^{2} p_{1}\right)-\frac{19 h}{720}\left(\nabla^{3} p_{N}-\Delta^{3} p_{1}\right) \\
& -\frac{3 h}{160}\left(\nabla^{4} p_{N}+\Delta^{4} p_{1}\right)-\frac{863 h}{60480}\left(\nabla^{5} p_{N}-\Delta^{5} p_{1}\right)-\ldots \tag{A6}
\end{align*}
$$

This formula is used for the present numerical results with differences only up to the third order retained. For this formula the interval ζ_{0} to ζ is divided by N evenly spaced points, pl to P_{N} (including the end points). The interval size is

$$
\begin{equation*}
h \equiv \frac{\zeta_{0}-\zeta_{I}}{N-1} \tag{A7}
\end{equation*}
$$

The forward differences are defined inductively by

$$
\begin{align*}
& \Delta^{1} p_{k} \equiv \Delta p_{k} \equiv p_{k+1}-p_{k} \\
& \Delta^{n} p_{k} \equiv \Delta^{n-1} p_{k+1}-\Delta^{n-1} p_{k} \quad \text { For } n=2,3,4, \ldots \tag{A8}
\end{align*}
$$

The backward differences are similarly defined as

$$
\begin{align*}
& \nabla^{1} p_{k} \equiv \nabla p_{k} \equiv p_{k}-p_{k-1} \\
& \nabla^{n} p_{k} \equiv \nabla^{n-1} p_{k}-\nabla^{n-1} p_{k-1} \quad \text { for } n=2,3,4, \ldots \tag{A9}
\end{align*}
$$

For the numerical solution of equation A4 first define

2a. F. B. Hildebrand, Introduction to Numerical Analysis, McGrawHill, 1956 , p. 155.

$$
\begin{equation*}
\zeta_{k} \equiv \frac{k-1}{N-1} \quad k=1,2, \ldots, N \tag{A10}
\end{equation*}
$$

so that the interval 0 to 1 is divided into N evenly spaced points (including the endpoints). Then define

$$
\begin{align*}
& g_{j k} \equiv \frac{h}{\pi}\left[\frac{\lambda}{\lambda^{2}+\left(\zeta_{j}-\zeta_{k}\right)^{2}}+\frac{\lambda}{\lambda^{2}+\left(\zeta_{j}+\zeta_{k}\right)^{2}}\right] \text { for } j, k=1,2, \ldots, N \tag{A12}\\
& g_{j k}^{\prime} \equiv\left\{\begin{array}{lr}
\frac{1}{2} g_{j k} & \text { for } k=1, N \\
g_{j k} & \text { for } k=2,3, \ldots, N-1
\end{array}\right. \tag{A13}\\
& \text { for } j=1,2, \ldots, N
\end{align*}
$$

where for these and succeeding equations we have

$$
\begin{equation*}
h \equiv \frac{1}{N-1} \tag{A14}
\end{equation*}
$$

Equation $A 4$ can now be written for the f_{j} as

$$
\begin{equation*}
f_{j}=1+\left[\sum_{k=1}^{N} g_{j k}^{\prime} f_{k}\right]+\Delta_{j} \tag{A15}
\end{equation*}
$$

Using the gik this equation has written the integral in equation A4 as a trapezoidal sum plus a correction term Δ_{j}. From the Gregory integration formula this is just

$$
\begin{align*}
\Delta_{j}= & -\frac{1}{12}\left[\nabla\left(g_{j N} f_{N}\right)-\Delta\left(g_{j 1} f_{1}\right)\right]-\frac{1}{24}\left[\nabla^{2}\left(g_{j N}{ }^{£}{ }_{N}\right)+\Delta^{2}\left(g_{j 1} f_{1}\right)\right] \\
& -\frac{19}{720}\left[\nabla^{3}\left(g_{j N} f_{N}\right)-\Delta^{3}\left(g_{j 1} f_{1}\right)\right]-\ldots \tag{A16}
\end{align*}
$$

where differences up to the third order have been kept.

Define \vec{f} and $\vec{\Delta}$ as N component vectors, with components f_{j} and Δ_{j} respectively. We can use the $g_{j k}$ and $g_{j k}^{\prime} k$ to form $N \times N$ matrices ($g_{j k}$) and ($g_{j k}^{\prime}$). Define \vec{I} as the N component vector with all N components equal to 1 . The $N \times N$ identity matrix is ($\delta j k$) where $\delta_{j k}$ is the Kronecker delta function defined by

$$
\delta_{j k} \equiv\left\{\begin{array}{l}
1 \text { for } j=k \tag{A17}\\
0 \text { for } j \neq k
\end{array}\right.
$$

Equation Al5 can be rewritten using vectors and matrices as

$$
\begin{equation*}
\vec{E}=\vec{I}+\left(g_{j k}^{\prime}\right) \cdot \vec{E}+\vec{\Delta}\left(g_{j k} f_{k}\right) \tag{A18}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\left(\delta_{j k}\right)-\left(g_{j k}^{\prime}\right)\right] \cdot \vec{E}=\vec{I}+\vec{\Delta}\left(g_{j k} f_{k}\right) \tag{A19}
\end{equation*}
$$

Note that $\vec{\Delta}$ is a correction vector expressing the Gregory correction terms which correct the trapezoidal integration formula. \triangle can be considered a linear vector finite difference operator, operating in this case on the matrix $\left(g_{j} f_{k}\right)$. For purposes of the present calculations we only use the differences in equation Al6 up to third order. Thus only $k=1,2,3,4$ and $k=N-3, N-2$, $N-1, N$ are used from ($g_{j k} f_{k}$) in forming the forward and backward differences. Having defined Δ as a vector difference operator we can use it to operate on various $N \times N$ matrices.

For the solution of our numerical problem, following reference la we do an iterative solution. Having specified an N we can calculate a matrix inverse which we define by

$$
\begin{equation*}
B \equiv A^{-1} \tag{A20}
\end{equation*}
$$

where

$$
\begin{equation*}
A \equiv\left(\delta_{j k}\right)-\left(g_{j k}^{\prime}\right) \tag{A21}
\end{equation*}
$$

Then define a sequence of vectors $\overrightarrow{\mathrm{E}}(1), \overrightarrow{\mathrm{f}}(2), \ldots$. The first is found by neglecting the correction term in equation Al9 giving

$$
\begin{equation*}
\frac{\text { 邑 }}{}(I)=B \cdot I \tag{A22}
\end{equation*}
$$

Then use $\vec{E}(I)$ to form the correction term and calculate an $\overrightarrow{\mathrm{f}}(2)$ as

$$
\begin{equation*}
\overrightarrow{\underline{E}}(2)=B \cdot \vec{\Delta}\left(g_{j k} f_{k}^{(1)}\right) \tag{A.23}
\end{equation*}
$$

or in general

$$
\begin{equation*}
\vec{f}(n)=B \cdot \vec{\Delta}\left(g_{j k} f_{k}^{(n-1)}\right) \quad \text { for } n=2,3,4, \ldots \tag{A24}
\end{equation*}
$$

Combining these together we have

$$
\begin{equation*}
A \cdot[\overrightarrow{\mathrm{I}}(1)+\overrightarrow{\mathrm{E}}(2)+\ldots]=\vec{I}+\vec{\Delta}\left(g_{j k}\left(f_{k}^{(I)}+f_{k}^{(2)}+\ldots\right)\right) \tag{A25}
\end{equation*}
$$

Thus, provided the sum of the $\overrightarrow{\mathbf{f}}(\mathrm{n})$ converges we have

$$
\begin{equation*}
\overrightarrow{\underline{E}}=\sum_{n=1}^{\infty} \vec{E}(n) \tag{A26}
\end{equation*}
$$

After calculating $\overrightarrow{\mathbf{f}}$ we calculate γ using the Gregory integration formula on equation $A 5$, giving

$$
\begin{align*}
\gamma=4\{h & {\left[\frac{f_{1}+f_{N}}{2}+\sum_{k=2}^{N} f_{k}\right]-\frac{h}{12}\left(\nabla f_{N}-\Delta f_{I}\right)-\frac{h}{24}\left(\nabla^{2} f_{N}+\Delta^{2} f_{1}\right) } \\
& \left.-\frac{19 h}{720}\left(\nabla^{3} f_{N}-\Delta^{3} f_{I}\right)-\ldots\right\} \tag{A27}
\end{align*}
$$

Again differences up to third order are used for the numerical calculation.

The numerical results are tabulated in table 1 , including $\gamma, \gamma / \lambda$, and η_{s} as functions of λ over the range. $01 \leq \lambda \leq 100$. For comparison the asymptotic forms γ_{0} and γ_{∞} are inciudē for small λ and large λ respectively. For our calculations we had $N=200$ and used the Gregory correction up to third order differences. For the matrix inversion a subroutine called MLR was used. This was written by Richard W. Sassman of Northrop Corporate Laboratories and we would like to thank him for supplying it to us.

After calculating the matrix B (for some fixed λ) the vectors $\vec{f}(\mathrm{n})$ were calculated for n equal to 1 through 5. The successive

Corrections were most significant for the smallest λ, but for $\lambda=.01$ (the smallest λ) and $N=200$ the contribution to γ of (5) was less than about one part in 10^{7}. The maximum n was taken as 5 for all the calculations.

The calculation has least accuracy for the smallest λ. This can be attributed to the larger number of correction terms required and the lower accuracy in inverting the matrix A. Note that for large λ the diagonal terms of A are about 1 and the off-diagonal terms are of order λ^{-1}, so that A is not very much different from the identity matrix ($\delta j k$) and A can be accurately inverted.

Looking at table la compare γ to γ_{0}, the asymptotic form for small λ. γ comes closest to γ_{0} at $\lambda \simeq .012$ where they differ by about 5 parts in 10^{5}. At $\lambda=.01$, the smallest λ considered, γ differs from γ_{0} by about 5 parts in 10^{4}. Now as $\gamma \rightarrow 0$ the difference $\gamma-\gamma_{0}$ should go to zero (by equation 38). Due to inaccuracies in the numerical calculations, however, the calculated γ will not converge to γ_{0} as $\lambda \rightarrow 0$ since one expects the errors in the numerical calculations to become worse as $\lambda \rightarrow 0$. Thus for λ less than about . 012 the asymptotic form γ_{0} should be used. The relative error in the calculation of γ is then of the order of 10-4, or even less for larger λ. For $\lambda<.01$ then γ_{0} can be used with a relative error less than about 10^{-4}.

For large λ the table extends up to $\lambda=100$ where γ differs from γ_{∞} (the asymptotic form for large λ) by less than 1 part in 104. Thus for $\bar{\lambda}>100$ one can use γ_{∞} with a relative error less than 10^{-4}.

For comparison some calculations were made for small λ with $N=150$. At $\lambda=.01$ the calculated γ differed from γ o by about 2 parts in 10^{3}. The closest approach of γ to γ_{0} was at $\lambda \simeq .016$ where they differed by about 1 part in 10^{4}. Using $N=200$ then gives some improvement in accuracy for small λ.

Comparing our results with those of cooke (reference 4), he cites Fox and Blake who found $\gamma / 4=9.233$ for $\lambda=0.1$. For this calculation an N of about 50 was used to obtain this 4 -figure accuracy. With roundoff this agrees exactly with our result for this particular λ. Cooke also cites Nomura's results which extend down to $\lambda=0.4$. Cooke states that he found some errors in Nomura's results in some of the points that he checked. We also find some errors in Nomura's results. Our agreement with Fox and Blake is most encouraging since the errors should increase as λ decreases.

Another interesting result for small λ can be found by considering γ - γ_{0} for . Ol2 $<\lambda<. l$. Calculating $\gamma-\gamma_{0}$ in this range from table la one notices that it roughly goes like λ^{2}. One might conjecture then that the asymptotic form γ_{0} approximates γ to the order of λ^{2} for small λ which would be a somewhat better
result than that proved by Hutson (equation 38). For large λ we have shown (equation 57) that $\gamma-\gamma_{\infty}$ is $O\left(\lambda^{-2}\right)$.

In summary, we think that over the range . $01 \leq \lambda \leq 100$ our results are accurate to about 1 part in 1.04 or betEer Tincluding the use of γ_{0} for $\lambda<.012$).

λ	γ	γ_{0}	y / λ	η_{s}
. 010	321.85691	321.68149	32185.69084	. 00768
. 011	293.06271	293.02627	26642.06473	. 00847
. 012	269.15399	269.13933	22429.49909	. 00925
. 013	248.93968	248.92089	19149.20611	. 01004
. 014	231.61317	231.58530	16543.79819	. 01084
. 015	216.59354	216.55636	14439.56963	. 01163
. 016	203.44765	203.40186	12715.47791	. 01243
. 017	191.84486	191.79127	11284.99182	. 01323
. 018	181.52817	181.46748	10084.89837	. 01404
. 019	172.29468	172.22748	9068.14123	. 01485
. 020	163.98208	163.90884	8199.10381	. 01566
. 022	149.61771	149.53358	6800.80506	. 01728
. 024	137.64047	137.54660	5735.01938	. 01892
. 026	127.50009	127.39736	4903.84949	. 02057
. 028	118.80344	118.69251	4242.98010	. 02223
. 030	111.26217	111.14354	3708.73887	. 02390
. 032	104.65993	104.53402	3270.62279	. 02558
. 034	98.83127	98.69842	2906.80198	. 02726
. 036	93.64746	93.50794	2601.31820	. 02896
. 038	89.00684	88.86091	2342.28539	. 03067
. 040	84.82810	84.67594	2120.70249	. 03238
. 042	81.04536	80.88717	1929.65145	. 03411
. 044	77.60473	77.44066	1763.74393	. 03584
. 046	74.46168	74.29187	1618.73222	. 03759
. 048	71.57909	71.40366	1491.23106	. 03934
. 050	68.92577	68.74485	1378.51546	. 04110
. 055	63.13177	62.93756	1147.85042	. 04554
. 060	58.29752	58.09056	971.62535	. 05004
. 065	54.20208	53.98284	833.87814	. 05458
. 070	50.68755	50.45643	724.10790	. 05918
. 075	47.63809	47.39545	635.17457	. 06384
. 080	44.96677	44.71292	562.08461	. 06854
. 085	42.60707	42.34230	501.25965	. 07329
. 090	40.50724	40.23182	450.08047	. 07809
. 095	38.62640	38.34056	406.59373	. 08294
. 100	36.93184	36.63580	369.31836	. 08784

Table la. Normalized Capacitance and Figure of Merit

λ	γ
. 10	36.93184
. 11	34.00031
. 12	31.55236
. 13	29.47687
. 14	27.69444
. 15	26.14674
. 16	24.79001
. 17	23.59076
. 18	22.52289
. 19	21.56580
. 20	20.70300
. 22	19.20916
. 24	17.96044
. 26	16.90072
. 28	15.98984
. 30	15.19829
. 32	14.50391
. 34	13.88972
. 36	13.34251
. 38	12.85180
. 40	12.40923
. 42	12.00799
. 44	11. 64252
. 46	11.30821
. 48	11.00122
. 50	10.71831
. 55	10.09939
. 60	9.58177
. 65	9.14241
. 70	8.76478
. 75	8.43672
. 80	8.14908
. 85	7.89483
. 90	7.66851
. 95	7.46578
1.00	7.28315

γ_{0}
36.63580
33.68450
31.21750
29.12362
27.32336
25.75837
24.38484
23.16922
22.08539
21.11273
20.23471
18.71140
17.43439
16.34743
15.41025
14.59326
13.87422
13.23610
12.66561
12.15224
11.68758
11.26479
10.87828
10.52339
10.19627
9.89364
9.22714
8.66413
8.18132
7.76198
7.39379
7.06745
6.77582
6.51333
6.27555
6.05891

γ / λ	${ }^{7}{ }_{5}$
369.31836	. 08784
309.09374	. 09777
262.93630	. 10789
226.74519	. 11818
197.81740	. 12864
174.31159	. 13927
154.93758	.15006
138.76916	.16101
125.12717	. 17212
113.50423	. 18337
1.03 .51498	.19477
87.31435	. 21799
74.83517	. 24173
65.00277	. 26598
57.10656	. 29069
50.66096	. 31583
45.32472	.34137
40.85213	. 36729
37.06253	. 39353
33.82054	. 42009
31.02307	. 44692
28.59045	. 47399
26.46027	. 50127
24.58307	. 52874
22.91920	. 55636
21.43662	. 58410
18.36252	. 65379
15.96962	. 72364
14.06525	. 79321
12.52112	. 86212
11.24896	. 93002
10.18635	. 99658
9.28804	1.06151
8.52057	1.12455
7.85871	1.18549
7.28315	1. 24413

Table lb. Normalized Capacitance and Figure of Merit

λ	γ	γ_{∞}	y / λ	7_{s}
1.0	7.28315	6.54648	7.28315	1.24413
1.1	6.96742	6.31498	6.33401	1.35395
1.2	6.70418	6.12207	5.58681	1.45315
1.3	6.48150	5.95883	4.98577	1.54133
1.4	6.29080	5.81892	4.49343	1.61843
1.5	6.12578	5.69765	4.08385	1.68471
1.6	5.98168	5.59155	3.73855	1.74064
1.7	5.85483	5.49793	3.44402	1.78684
1.8	5.74239	5.41471	3.19021	1.82403
1.9	5.64209	5.34025	2.96952	1.85298
2.0	5.55211	5.27324	2.77606	1.87450
2.2	5.39751	5.15749	2.45341	1.89829
2.4	5.26963	5.06103	2.19568	1.90121
2.6	5.16226	4.97942	1.98548	1.88830
2.8	5.07095	4.90946	1.81105	1.86372
3.0	4.99243	4.84883	1.66414	1:83080
3.2	4.92425	4.79578	1.53883	1.79216
3.4	4.86455	4.74897	1.43075	1.74980
3.6	4.81186	4.70736	1.33663	1.70522
3.8	4.76505	4.67013	1.25396	1. 65957
4.0	4.72320	4.63662	1.18080	1.61366
4.2	4.68558	4.60631	1.11561	1.56811
4.4	4.65159	4.57875	1.05718	1. 52335
4.6	4.62074	4.55358	1.00451	1.47966
4.8	4.59262	4.53052	. 95680	1.43726
5.0	4.56689	4.50930	. 91338	1.39626
5.5	4.51124	4.46300	. 82023	1.30027
6.0	4.46539	4.42441	. 74423	1. 21359
6.5	4.42699	4.39177	. 68108	1.13572
7.0	4.39438	4.36378	. 62777	1.06582
7.5	4.36636	4.33953	. 58218	1.00302
8.0	4.34202	4.31831	. 54275	. 94648
8.5	4.32068	4.29959	. 50832	. 89543
9.0	4.30184	4.28294	. 47798	. 84920
9.5	4.28507	4.26805	. 45106	. 80721
10.0	4.27006	4.25465	. 42701	. 76893

Table lc. Normalized Capacitance and Figure of Merit

λ	γ
10.	4.27006
11.	4.24430
12.	4.23301
13.	4.20512
14.	4.18988
15.	4.17675
16.	4.16530
17.	4.15525
18.	4.14635
19.	4.13841
20.	4.13128
22.	4.11903
24.	4.10887
26.	4.10030
28.	4.09298
30.	4.08666
32.	4.08114
34.	4.07628
36.	4.07197
38.	4.06812
40.	4.06466
42.	4.06154
44.	4.05870
46.	4.05612
48.	4.05375
50.	4.05157
55.	4.04683
60.	4.04289
65.	4.03956
70.	4.03671
75.	4.03424
80.	4.03208
85.	4.03018
90.	4.02849
95.	4.02698
100.	4.02563

Y_{∞}	γ / λ	${ }^{1}$
4.25465	. 42701	. 76893
4.23150	. 38585	. 70182
4.21221	. 35192	. 64505
4.19588	. 32347	. 59648
4.18189	. 29928	. 55452
4.16977	. 27845	. 51793
4.15916	. 26033	. 48577
4.14979	. 24443	. 45729
4.14147	. 23035	.43192
4.13403	. 21781	. 40917
4.12732	. 20656	. 38866
4.11575	. 18723	. 35319
4.10610	. 17120	. 32360
4.09794	. 15770	. 29854
4.09095	.14618	. 27706
4.08488	. 13622	. 25844
4.07958	. 12754	. 24215
4.07490	. 11989	. 22779
4.07074	. 11311	. 21503
4.06701	.10706	. 20362
4.06366	. 10162	. 19335
4.06063	. 09670	. 18406
4.05787	. 09224	. 17563
4.05536	. 08818	.16793
4.05305	. 08445	. 16087
4.05093	. 08103	. 15439
4.04630	. 07358	. 14025
4.04244	. 06738	. 12848
4.03918	. 06215	. 11852
4.03638	. 05767	. 11000
4.03395	. 05379	. 10262
4.03183	. 05040	. 09617
4.02996	. 04741	. 09048
4.02829	. 04476	. 08542
4.02681	. 04239	. 08090
4.02546	. 04026	. 07684

Table ld. Normalized Capacitance and Figure of Merit

