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Abstract

The time behavior is obtained of the radiation field of an infinite

cylindrical antenna loaded along its length with uniform resistance and

excited by a step-function voltage across an circumferential gap of

infinitesimal width. It is found that the late time behavior of the

, radiation field is inversely proportional to the square of time, whereas,

in the case of no loading, it varies in inverse proportion to the logarithm

of time.
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I. Introduction
---

The present note is a generalization of a previous onel in which the

radiated field is calculated of an infinite cylindrical, perfectly conductin~

antenna excited by a step-function voltage across a delta gap. Instead of- ‘-’

being perfectly conducting the antenna is now loaded with constant resistanc~”

along its length, i.e., the loaded resistance is independent of frequency

as well as position along the anterlna. There are two reasons for studying

this particular problem. The first:is a mathematical one in the sense that

this problem lends itself to exact analysis within the Maiwell field theory.

The second reason is a practical orlein that, since any antenna that will

be built must be of finite length
..

, reflections from the ends of the antenna

will occur$ thereby introducing undesirable features in the radiation field,

One way to minimize such undesirab].efeatures is to damp the current pulse

to an insignificant magnitude by the time it reaches the ends. A possible

method of achieving this iS to laac[ the antenna along its length with

resistance.

Nonuniform resistive loading along the antenna will undoubtedly provide

us more freedom in shaping the radf.ationfield, but this is a much more

difficult problem to analyze and m:~y be taken Up for study in the future.

In Section II, the time-harmc)nicfar field is obtained by the saddle-

point method. Then, assuming the generator voltage to be a step function in

time we calculate the radiation field in Section III by performing an

inverse Laplace transform. The time behavior of the radiation field is

graphed as well as tabulated for a wide range of resistance values.
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II. Time-Harmonic Far Field

The point of departure is the iritegral~quation (20) of Reference 2

for the total current on the surface of an axi-symmetric antenna.2 In the

present case where the antenna is an infinite cylinder of radius a , that

equation becomes,*in the cylindrical coordinates (P,z,@) ,

co m

+1(Z)+I K(z - z’)I(z’)dz~ =
/

Y(z - z’)(Ez(z’))dz’

-co -m

where

0 42’ i-2a’ - 2aL cos $

* Z?r

~

eik~z2 + 2a2 - 2a2 cos +
Y(z) =*

o
0 lzz-l- 2a2 - 2a2 cos ~

2Tr

I(z) = a
I

H$(a,z,@)d$

o

2T

and Zo is the free-space

When the cylindrical

wave impedance and k is the wave number.

antenna is excited by a voltage V across a

(1)

(2)

(3)

circumferential gap of infinitesimalwidth and is loaded along its length

by R ohms per meter, we write

*The interested reader may refer to the Appendix for a detailed derivation,
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z,+) = vj~z.)+Ez(a RI(z) . (4)

The physical meaning of R will be discussed

Integration of this equation across the

since the integral of RI will go to zero as

at the end of Section III,

infinitesimal gap gives V ,

the gap’s width tends to zero.

This

near

may be seen from the well-known fact that I(z) varies as Inklz]

the delta gap.

Substituting (_4)into (1)we get

)I(z’)dz’I(z)

this

m m

f

-R
J
Y(z - z’)I(z )dz’ = VY(Z) . (5)

-Cu

equation we employ Fourier transforms. DefiningTo solve integral
... --..

m
.

Y(c) = JI(z)e
-i<z dz

-m

similarly for ~(~) and ~(~) we have, from (5),and

(6)

..-, r
----

Since3
..-— :

~2kia2
Y(g) ‘1) (Aa)Jl(Aa) ,

‘-~—Hl

,.- ..—-.
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and

9 (Wronskians)

where A = t’k2- G2 , the inverse Fourier transform of (6) iS then given by

-02

where b = 2raR/Z The path of integration in (7) is along the real axis
o“

in the complex g-plane with upward indentation at c = - k and downward

indentation at c = k .

To obtain the fields off the surface of the cylindrical antenna we

regard (7) as a boundary condition for
‘4

which, due to the symmetry of the

problem, is the only component of the magnetic field and is independentof

the azimuthal coordinate $* The equation that H@(p,z) satisfies is
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which is directly derivable from Maxwell’s equations. The solution of (8)

that satisfies the radiation condition at infinity and is equal to I(2~a)--1—- —- ..-.—_.
atp=a, I being given by (7), is easily seen to be

m

ikV

\

H(l)(Ap)
1= .— —

27rz e‘<z d<

-’w&) (~a) + i8kH\1)(Aa)
?

c1

,> .

HJP,z)

from which we obtain

AH(l)(Ap)
0 ei<z ~:w

d~ . (lo)
AH~l)(Aa) + ik@H~l)(Aa) ..

+0, (r,e,$) being the spherical coordinates,In the far zone where 6

one may use the saddle-pointmethod to evaluate (10). Thuss

Vi eikr 1-——
T P lI~l)(kasin 0) + i13csc 6 H\l)(ka sin 0) ‘

E@ =

which becomes, intermsofp=-iu,

K. and

v
e-pr/c

3e=—
2P K (p

o ~sin 6) + @ csc @ Kl(p~sin e)

functions.where

..



III. Radiation Field for a Step Voltage
-—.

In the case where the voltage of the slice generator is a step function

in time, i.e., v(t) = voU(t) , equation (11) becomes

.pEO ~ e-prfc

—“ZK(P:v ?
o

0 sin $) + 6 csc 6 Kl(p ~ sin 0)

and its inverse Laplace transform is

Jt - r/c)p *

K.(P ~ sin E))+ i36Kl(p~ sin 0) p

where qo=a -l(ct - r)csc 6 , 68 = B csc 6 , and the path C is shown in..—
Fig. 2 of Ref. 1.

For 6@>0 (passive resistance) the function, KO(L) + f36Kl(c), has

no zeros for which ~arg Cl ~ m . Thus, following the same procedure as

in Sec. 11 of Ref. 1 we have

PE6 o
—=
v ?
o

if ct < r - a sine

(12)

(13)

(14a)

m

1

J

Io(x) + i3#1(x) ‘xq~ &
=— ey , (14b)

20 [Ko(x) - f$Kl(x)]2 + T2[IO(X) + f?@1(X)]2

ifct>r-asinO .

.—.



In terms of the normalized time.
‘e

defined by
.—

Ct - (r - a sin 6)
‘0

= q8 + 1 ,:
a sin 8

equations (14) become

9

pE9
—=
v o 9 if T8 < 0
0

0

where

-cl

——-—.
Equation (15b) was

.

—+,.. . .

(15a)

, -—..

(15b)

Io(x) +@&(x) x
= e— (15C)
[Ko(x) - f3eK1(x)]2+ n2[Io(x) + 6611(x)]2 2X “

evaluatd numerically for a wide range of
%

values,

and the results are presented in Table I andTable 11 and also in figures
.

1 and 2.

s—+ _ ~

Early time behavior of pE6/vo

The technique

integral (15b) for

described

T6 << 1 ,

pE6
1—. —.

in Ref. 2 can be applied directly to the

The result

1

is ..-

9 as T6+.0 (16)

.
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which is plotted in broken lines in figure 1.
—.

Late time behavior of pE8/vo

An examination of (15c) shows that so long as 66 ~ O , f(x,~~) and

all its derivatives with respect to x exist at x = O . Thus, integrating

(15b) by parts one can easily develop the following asymptotic series:

m

J
-xT w fn(o,Be)

f(x,~e)e ‘dx--- ~
~ni-1 9 for T6 >> 1 .

0
n=O

0

Keeping the first two terms in the series we have

pE6 ~ ~

(

1—..

)
—+— for T6 >> 1 .

v
2 $>:

3 9
0

%T6

(17)

This equation is plotted in broken lines in figure 2.

In Tables I and II, the radiation field is tabulated for a wide range

of
%

values and for 0.2 s T@ < 1000 . If the radiation field is desired

for T6 < 0.2 and T6 > 1000 (or To > 105 when f3 is of the order 10-2),
0

it can be calculated from the asymptotic forms (16) and (17), respectively.

If the radius of the antenna is about one meter, the

1000 roughly corresponds to 3 microseconds after the

edge of the pulse at a distant observation point.

At this point it is perhaps pertinent to say a

value of ‘e
equal to

arrival of the leading

few words about the

physical meaning of R ( = 2.86 sin 6/~a) introduced in equation (4).

According to (4)
2?l

1
z J Ez(a,z,@d@

(E ) Ez(a,z)
R=+=

:: = 2na H@(a,z)
(18)

a
J

H$(a,z,$)d@

o
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where

R iS

the last step follows from thes~etry.. of the present problem. Thu!j,. ..———-

defined as the ratio of the averaged longitudinal surface electric

field to the total (conduction.anddisplacement)current flowing through the
..$

cross-sectionalarea of the antenna. R is sometimes refereed to as the.-.
n:.. .. ... &

“internal” impedance in contradistinction to the”’’surface~‘impedancedefined
%
:J(

by E# .
$

If one integrates the time-average Poynting vettor over the

antenna surface, he will find that the total time-average ohmic loss per

unit length along the antenna is exactly given by R\I/2/2 . Hence, Az o EL

can be appropriately interpreted as the total resistance between two cross

sections of Az apart, Of course, Az should be smaller than all relevant

wavelengths so that AzEZ can be meaningfully defined as the voltage drop.

. .
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1

2

4

6

8

10

14

20

26

30

40

50

60

70

80

90

100

1000

0

51.5

38.3

32.6

29.3

27.0

21.4

17.3

15.5

14.5

13.8

12.8

11.8

11.3

11.0

10.5

10.3

10.0

9.76

9074

9.52

9.50

7.20

.02

51.5

37,8

31.8

28.4

26.0

20.3

16.2

14.4

13.2

12.3

11.1

9.98

9.16

8.73

7.87

7.22

5.69

6.24

5.84

5.50

5.22

.369

.03

50.9

37.3

31.4

27.9

25.6

19.9

15.7

13.8

12.6

11.7

10,4

9,20

8.32

7.84

5.92

5.21

5.64

5.16

$.75

!.40

4.09

.137

Table I. Values of H x 10’ .
0

.04

50,3

36.8

30.9

27.5

25.2

L9.4

15.2

13.3

12.0

11.1

9.80

8.49

7.56

7.07

5.10

5.37

\.78

i.30

3.89

3.54

3.24

.064

.05

49.8

36.3

30.5

27.1

24.7

19.0

14,8

12.8

11.5

10.5

9.20

7.85

6.89

6.39

5.40

4.66

4.07

3.60

3.2-1

2.37

2.59

,036

.06

49.2

35.9

30.1

26.6

24.3

18.6

14.3

12.3

11.0

10.0

8.65

7.27

6.30

5.78

4.79

$.06

3.49

3.03

2,66

2.35

2.09

.022

12

,07

48.7

35.4

29.7

26.2

23.9

18.2

13.9

11.9

10.5

9,54

8.14

6.74

5.76

5.25

4.26

3.55

3.00

2.57

2.23

1.94

1.70

.015

–.08

48.1

35.0

29.2

25,9

23.6

17.8

13.5

11.4

10.1

9.08

7.67

6.26

5.29

4.78

3,81

3.12

2.60

2.20

1.88

1.62

1.40

,011

.09

47.6

34.6

28.9

25.5

23.2

17.4

13.1

11.0

9.66

8.66

7.23

5.83

4.86

4.36

3.41

2.75

2.26

1.88

L.59

1.35

1.16

.008

.10

47.1

34.1

28.5

25.1

22.8

17.1

12.7

10.6

9.26

8.26

6.83

5.43

4.47

3.98

3.07

2.43

1.97

1.63

1.36

1.14

.973

.006

.20

42.6

30.5

25.1

21.9

19.7

14.1

9.75

7.65

6.32

5.36

4.06

2.88

2.14

1.80

1.21

.859

,632

.479

.371

.294

.237

.001

.40

35.7

25.1

20.3

17*4

15.4

10.1

6.26

4.46

3.39

2.67

1.79

1.08

.715

.559

.329

.211

.144

.103

.077

.059

.047

0

.80

26.9

18,3

14.4

12.1

10.4

6.22

3,26

2.05

1.40

1.01

.583

.304

.181

,134

.073

.045

.030

.021

,016

,012

.010

0

.

---
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2

4

6

8

10

14

20

26

30

40

50

60

70

80

90

100

1000

1

239

162

126

104

89,2

51.3

25.4

15.2

10.0

7.02

3,89

1.95

1.13

.832

.446

.273

.183

.131

.098

.076

.060

0

DE.
: Table II. Values of --Q x 103

v
o

2

154

101

76.5

61.6

51.3

26.2

10.7

5*55

3.28

2,11

1.04

.474

.264

.191

.101

.062

.042

.030

.023

.018

.014

0

4

90.3

57.6

42.5

33.4

27.2

12.5

4.29

1.96

1.05

.630

.283

,121

,066

.047

.025

.015

.010

.007

.005

.004

,003

0

6

63.7

40.2

29.4

22.9

18.4

8.05

2.55

1.09

.557

.321

.138

.057

.030

.022

,011

.007

.006

.003

.002

.002

.001

0

8

49.3

30.9

22,4

17.3

13.9

5*9O

1.78

.732

.362

.204

.085

.034

.018

.013

.007

.004

,003

.002

.001

.001

.001

0

—.
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40,1

25,,1

18,,1

14(,0

11(,1

4.65

1.36

.543

.263

.146

.059

.0’23

.01.2

.009

.004

.003

.002

.001

.001

0

0

0
——

-2T

20.8

12.9

9.26

7.07

5.60

2.24

.608

,228

.104

.055

.021

.008

.004

,003

.001

.001

0

0

0

0

0

0

40

10.6

6.55

4,68

3.56

2.80

1.10

.285

.103

.045

.023

.008

.003

.001

.001

0

0

0

0

0

0

0

0

60

7.13

4.39

3.13

2.38

1.87

.726

.186

.066

.029

.015

.005

.002

.001

0

0

0

0

0

0

0

0

0

80

5.37

3.30

2.35

1.78

1.40

.543

,138

.049

.021

.011

.004

.001

0

0

0

0

0

0

0

0

0

0

102

4.30

2.64

1.88

1.43

1.12

,433

.109

.038

.017

.008

.003

.001

0

0

0

0

0

0

0

0

0

0

. ..__+*___..s ,.. .

.+
— —. .

103

.433

.266

,189

.143

.112

.043

.011

.004

.002

.001

0

0

0

0

0

0

0

0

0

0

0

0

104

,—

.043

,027

.019

.014

.011

.004

.001

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
.—
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App”endix

For pedagogical reason we shall give here-some steps that lead to

equation (1) in the text. Instead of treating the cylindrical structure

as a special case of an axially symmetric body we consider, ab initio, an
..+- .,.-.. .*A. - --,- ..... .____ .-L.= . ,.-. ----

infinite cylindrical. structure io which equation (1) applies, From the

fact that ~ at an interior point ~ in a source-free region bounded by

a regular surface S can be expressed in terms of the values of 3 and

%onS 6 -iwt
, we write, with the time factor e suppressed,

—.-

.’

where

~ eik~p2 + p
,2

- 2pp’ Cos($ - +’) + (z - z’)
2

G(~,;’) =~

Jp2+p’2- 2pp’ cos(@ -@’) + (z- 2’)2

and ~’ is the inward unit normal to S . In the case under consideration

there are no sources at infinity and the surface S is just that enclosing

the infinite cylindrical antenna.

Taking the @-component of (A-1) and noting that V’ = - V we obtain,

after some vector algebra,

.

-. ----- ——. .

where dS’ = ad$’dz’ . We now multiply (A-2) by a , the radius of the

(A-2)

cylindrical antenna, and then integrate the resulting equation with respect

16
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to @ from O to

integrates to zero,

27T
r

2n . Since

we have

the last term on the right side of
-—

2?T 27

.=,-y -t

.. . ..- ““a
co

a
J

H$(p,z,$)d$ = 2~iuea2 JCIZVH Ez(a,z’,$’)d$’
J

. .—. .-

d~ cos Y G(p,a;z,z’;Y)
o o

aH$(a,z’,$ )d$’ I d$ G(o,a;z,z’;V) (A-3)

o-m o

where we have made use of

21Tr

~J
00

which follows from

Noting that

>
0

is a functionthat G($)the fact of Cos + .

[
& G(p,a;z,z’;$) 1 =~a

z ~G(a,a;z,z’;$)
p=a

(A-4)

m 21T

Lim
Jfp+a _= o

I(z’) $G(o,a;z,z’;Y)ad~ dz’

1

II(z’) $ G(p,a;z,z’;~)
~

ad+ dz’ 9 (A-5)
p=a

-co o
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one immediately obtains (1) from (A-3). (A-4) canbe verified by straight-

forward differentiation. The term - 1/2 on the right side of (A-5) comes-—

from Che contribution of the integral over a small area on the surface

surrounding the point that the observation point approaches when taking

the limit p+a .

18
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