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The Distributed Source for Launching Spherical Waves

Capt Carl E. Baum
Air Force Weapons Laboratory

Abstract

In designing an antenna for radiating a fast rising transient
pulse one can think of radiating the high frequencies from some
small region of space, such as near the apex of a biconical an-
tenna. Launching all the high frequency energy from a small region
of space, however, implies large fields there. In order to reduce
the peak electric fields one can make the source region larger. In
this note we discuss an approach which in principle allows one to

a make the source region arbitrarily large while still radiating a
. fast rising spherical wave. This approach relies on a uniqueness

theorem for the solution of electromagnetic boundary value problems
in which it is only required to specify the tangential electric (or
magnetic) field over the boundary surfaces to determine the fields
in the volume of interest. The tangential electric field on the
boundary surfaces is specified to match any particular form of wave
desired as long as the wave satisfied Maxwell’s equations. One can
approximately specify some forms of the tangential electric field
on a surface with an array of capacitors, conductors, and switches.
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I. Introduction

One type of simulator for the nuclear electromagnetic pulse
consists of a pulse-radiating electric dipole antenna. One approach
to establishing good antenna characteristics for radiating high
frequencies is to make the central portion of the antenna as a bi-
conical wave launcher.l The pulser puts an electrical pulse on the
antenna by driving between the two cones at or near the common apex
of the two cones. If the pulser output has a fast rise time and if
the region (near the apex) where the conical geometry is distorted
to allow the introduction of the pulser signal is sufficiently
small, then the antenna can radiate a fast rising electromagnetic
pulse. The initial pa’rtof this pulse has the form of a spherical
wave with an angular distribution of its amplitude appropriate to
the biconical wave launcher. The approach here has been to make
the source region (where the wave is introduced onto the biconical
wave launcher) sufficiently small such that some of the details of
the source region are not critical for launching a desired fast
rising wave: The source region is then considered from a quasi
static viewpoint. One disadvantage, however, to a small source re-
gion is that for a given voltage put on the antenna (ta get a cer-
tain amplitude for the radiated field at some particular distance
away) the electric fields in the source region can be rather large,
thereby leading to insulation problems.

In this note we consider another approach to this problem of
radiating a fast rising pulse in the form of a spherical wave.
This concept allows one to use large source regions. We call this
concept the distributed sourc”efor ’launching spherical waves.

By the-general concept of a distributed source we mean some
electrical energy source which has, at least approximately, the
property of specifying something about the electromagnetic fields
at some surface which we call the source surface. In particular,
we are concerned here with a distributed source which specifies the
tangential components of the electric field at the source surface.
There are various possible types of such distributed sources. One
might use a planar source surface {or even other shapes) to launch
a plane wave in free space or on a TEM transmission line. Another
example, already discussed in the notes,2~3 is the distributed

1. Capt Carl E. Baum, Sensor and Simulation Note 69, Design of a .
Pulse-Radiating Dipole Antenna as Related to High-Frequency and
Low-Frequency Limits, January 1969.

2. Capt Carl E. Baum, Sensor and Simulation Note 48, The Planar,
Uniform Surface Transmission Line Driven from a Sheet Source,
August 1967.

3. Capt Carl E. Baum, Sensor and Simulation Note 66, A Simplified
Two-Dimensional Model for the Fields Above the Distributed-Source
Surface Transmission Line, December 1968.
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source for launching a wave into a conducting medium (like earth)
using a planar source sheet with a particular form of propagating
source amplitude along the source surface.

Conceptually, an important feature of a distributed source is
that its design can be specified by first specifying the form of
electromagnetic wave (satisfying Maxwell’s equations) . Then given
appropriate boundary surfaces the tangential component of the elec-
tric field required of the sources on the boundary surfaces is pre-
cisely that tangential electric field specified by the desired
electromagnetic wave. The present note gives another application
of the concept of a distributed source, in this case to certain
types of outward propagating spherical waves.

II. Basic Concept of the Distributed Source for Launching
Spherical Waves

As illustrated in figure 1 consider some closed source surface
designated Ss. Assume that Ss contains the coordinate origin on
which we center cartesian (x, y, z), cylindrical (Y, $, z), and
spherical (r, e, +) coordinate systems. Coordinates referring to
points on Ss are designated by adding a subscript s to the coordi-
nates sho~n in f~gur

8
1 and listed above. The position vector of a

point is r with r = as the coordinate origin. For the calcula-
tions in this note the medium external to Ss will be taken the same
as free space with permittivity so, permeability Po, and zero con-
ductivity. The basic concepts, however, apply for even more gen-
eral types of media.

Now consider some time-domain solution of Maxwell’s equations
applying to the volume outside of Ss. Assume that this solution is
of a form such that the electromagnetic fields are zero before some
particular t~m~ which we will typically take as t = O where t is
time.4 Let E(r, t) be the electric field vecto$ in the chosen so-
lution of Maxwell’s equations outside Ss. Let n be the outward
pointing unit normal vector for Ss. The ele$tric fie~d has a tan-
gential component on Ss which we express as Es where Es is parallel
to Ss; this tangential field is given by

as(;s, t) = -[3(:s, t) x :(:J] x :(2s) . (1)

Now suppose ~~ is specified on S~ as this part~c~lar function
of & and t associated with our originally assumed ~(~, t) which
solves Maxwell’s equations outside Ss by hypothesis. Clearly then+
E satisfies Maxwell’s equations and the boundary condition on Ss; E
and the other associated electromagnetic fields are also zero for
t < 0 by hypothesis. Furthermore these conditions are sufficient

4. All units are rationalized M.KSA.
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5 Thus if we specify ti~($s, ~)to determine a uniqu~ solution.
then the associated E(r, t) is uniquely determined. The basic con-
cept of this distributed source is then to specify some outward
propagating electro~agnetic field outside Ss satisfying Maxwell’s
equat$ons, use the E field so specified to calculate Es and take
this Es $nd impose it on Ss; the fields produced outside Ss will
just be E and the other associated electromagnetic fields which
were specified at the start of the problem.

There are various sizes and shapes one might choose for ~~ in-
cluding spheres, ellipsoids, cylinders with end caps, etc. This
choice cou~d depend on various considerations such as the peak mag-
nitude of ~ ~n Ss; mechanical convenience, etc. Now the peak mag-
nitude of E(r, t) for each r will gene$ally decrease with increas-
ing r, depending on th$ exact form of E used. An app$o~imate l/r
decrease of the peak \El is typical of many forms of E(r, t) of in-
,terest for this type of simulator (a pulse-radiating electric di-
pole antenna). In these cases ~ne can choose the typical value of
rs large enough that the peak IEI is not too large over Ss. The
typical rs for a particular case might be chosen as a compromise
between various electrical and mechanical factors.

If ~r is the unit vector in the r direction (and similarly for
other un$t vectors)+then+w$ call Ss an outward pointing surfac$ if
for all rs we have er ● n(rs) : 0. Note that the location of r = O
relative to Ss then is a part of this definition. The examples in
this note have Ss as an outward pointing surface. If the P~ynting
vector has only a positive r component then the energy nowhere
flows into an outward pointing surface. In the high-frequen$y or
geometrical-optics limit for a wave propagating only in the er di-
rection (a spherically expanding wave) an outward pointing Ss will
nowhere absorb the wave.

Note that not only are there fields generated outside Ss;
there are also fields generated inside. We do not consider the
fields inside Ss in this note. The shape of Ss, however, can be
influenced by the internal fields. For example, one might not want
to gene$ate an inwardly propagating spherical wave inside Ss focus-

~ because of the large local fields which could be pro-ing at r = .
duced.

.
One way to approximate a given is, depending on the shape of

the waveform des’ired, is to distribute capacitors with switches on
or near Ss and trigger the switches in an appropriate sequence. Of
course, capacitors and swit~hes do not give a smooth distribution
for Es but can approximate Es in a macroscopic view, i.e. over di-
mensions larger than the spacings of capacitors and switches. This

5. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941,
pp. 486-488.
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non smooth characteristic of such a distributed source can limit
its performance in producing a desired radiated field. Perhaps

such problems can be considered in future notes.

III. Distributed Source for Launching a Spherical TEM W-ave
on a Symmetrical Bicone

Now we consider some of the features of a distributed source
for launching a particular type of spherical wave. Specifically,

consider the outward propagating spherical TEM wave which’can prop-
aqate on a perfectly conducting biconical structure with axial sym-
m;try. Zn ~ free-s~ace

+
z = ‘ee$ ‘

i=

medium this wave has

=ZH
’00$

The wave impedance and speed of light are

where P. and &o are respectively
of free space. Ee has the form

= v’f(t*)
‘e r sin(6)

where the retarded time is

the form

(2)

(3)

the permeability and permittivity

(.5)

V’ is some convenient constant with dimension volts and f is some
function of t*, as yet unspecified.

As illustrated in figure 2 choose a perfectly conducting sym-
metrical bicone; let the bicone have both axial and lengthwise sym-
metry by specifying the two cones by 6 = 60 and 6 = n - 00 where
o < 60 < ‘Tr/2.The spherical TEM wave (WUatlOnS 2) has the elec-
tric field perpendicular to the two cones at the conical surfaces.
Thus we only have the fields for 60 < 6 < T - 00 with th:o:o:::ary
condition satisfied on the perfectly conducting cones.
present calculations the cones are assumed to extend from the
source,surface (Ss) to infinity. In a real application the cones
will have finite length. The present results then apply for times
before reflections can propagate from discontinuities in the con-
ical geometry to each position of interest.
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FIGURE2. SOURCE SURFACE WITH SYMMETRICAL BICONE
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As discussed in reference 1
such a symmetrical bicone can be

‘e = + va(t*)fo(e)

where

fo(e) !2 sin(0)

with

the outward propagating wave on
written as

in [ ( )]}e
cot ~

(6)

(7)

Here Va can be considered as the voltage on the bi
appropriate line integral of the electric field -is
path with constant r. For convenience we define

va(t*) = vof(t*)

(8)

cone provided the
restricted to a

(9)

so that we have

v
-Q fo(e)f (t*)

‘O=r
(lo)

where V. has dimension volts and f(t*] is the same waveform func-
tion as in equation 4. For convenience one can take V. as the peak
of ‘de antenna voltage (Va) so that f(t*) has a peak value of unity.

With this special wavs (equations 2 through 10) we have an
outward propagating wave” for @o < @ < n - 60 with the boundary con-
dition of zero tangential electric field satisfied on 6 = $0 and
e T - eo.= This leaves the source surface as the remaining
boundary surface to consider. As shown in figure 2 the source sur-
face Ss connects the two perfectly conducting cones in a manner so
as to form a continuous surface which divides space into two sepa-
rate regions which we can call outside and inside. The outside is
where we have the wav$ of interest as discussed above; the inside
contains the origin (r = 3). Note that the two perfectly conduct-
ing cones are only needed as part of the boundary of the outside
region and do not have to extend into the inside region after

8



. .,

connecting with S~. It is now only necessary to spec~fy ~~ on S~
by equation 1 in order to obtain the desired form of E in the out-
side region+ Note that we must restrict S~ to not intersect the z
axis where E would be singular; the z axis must be entirely in the
inside region. The inclusion of the perfectly conducting bicone
with Ss in order to support this spherical TEM wave is an extension
Qf the concept discussed in section II where the only boundary sur-
face was Ss and it was finite in extent.

.

Since this spherical TEM wave has only a 6 component equati”on 1
for the tangential electric field on Ss becomes

~s(~s, t) = -E@~ x :(2s)1 x :(:s)

v
=- : :O(es)f(tg)[:e x

s

where t~ is the retarded time referred to points on Ss so that

(11)

(12)

Now for convenience let Ss have axia~ symmetry so that the shape ~f
Ss is independent of $. This makes n have no @ component. Then e$is a unit tangent vector for Ss. Define another unit tangent
vector for Ss as

++ +
nf esf e$, (in this cyclic order) form a right
ogonal unit vectors referenced to Ss with the
symmetry. Since we have

then from equation 11 we find

(13)

handed set of orth-
restriction of axial

(14)

(15)

,9 .
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Using vector identities together with ~e ● :4 ~Oand~~ “:~=o
this equation reduces to

(16)

Thus is is parallel to ~s and has a+dist$ibution in 6s (at a fixed
retarded time t=) proportional to (es ● eQ)fo(6s)/rs.

Let Ss be an outward pointing surface, as discussed in sec-
tion 11 so that no energy is flowing into some portion of S~. Also
let Ss have axial and lengthwise symmetry for convenience. Figure
3 illustrates such a case. In order to describe this surface we
can consider rs as a function of 6s. If Ss is also restricted such
that Ys is a single-valued function of zs then we can also use this
kind of a description for Ss. For convenience we define

so that + is the angle from the x, y plane and rs is now an even o
function of $s because of the assumed lengthwise symmetry of Ss.

For purposes of constructing a distributed generator on S~ one
can divide Ss into many small regions, each small region having its
own generator which might consist of one or more charged capacitors
and a switch. For the form of Es in equation 16 it is convenient
to first divide Ss on circles of constant 6 which are also circles
of constant $. Note that Es in equation 16 has no + component.
Thus one could put conducting strips alon? circles of constant ~
and connect generators so as to put trans~ent voltage between these
strips. The generators would be uniformly distributed in @ to ap-
proximate the required $ independent source. The conducting strips
and associated generators are distributed wi,th resp~ct to es in a
manner to approximate the r,equired distribution of Es with respect.
to es (or *.s). .

Divide Ss with respect to es into M source regions which we ‘
call bands. For convenience make this division symmetrical with
respect to +“s. There are two cases to consider.

Case 1: M = 2N (M even)

Define M + 1 = 2N + L angles by

.

,
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FIGURE 3. SOURCE SURFACE AND BICONE WITH AXIAL
AND LENGTHWISE SYMMETRY : PLANE OF
CONSTANT +
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4-N<”” ”< V-2< Y-1 <+0 “1<$2<”” *<@N

where

* -n = -*n

(19)

for n = -N, .*.f -2, -1.,0, 1, 2, ....N

(18)

Note that n = O is used to number one of the angles. Setting ~~ =
$n defines M + 1 circles symmetrically placed on Ss. These circles
are taken as the borders of the bands. The bands are numbered from
-N to N excluding O. Band number n is defined for n ~ 1 by

_ -1 byand for n <

I)n < 1)~ < *n+l

Note that n = O is not used to number one of the bands.

Case 2: M =-2N - 1 (M odd)

Define M + 1 = 2N angles by

where
.

$N+eo s++

*-n ~ -Vn fern=-N, .... -2,-1, 1, 2, ....N

●

(20)

(21)

(22)

(23)

Note that n = O is not used to number one of the angles. The bands
are numbered from -N + 1 to N - 1 includinq zero. Band number n is
defined for n ~ 1 by

12
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and for n = O by

(24)”

(25)

(26)

The spherical TEM wave being considered here has a potential
function or voltage distribution of the form6

v-
V= + f(t*)fv(e)

where

f (,)= ‘++] =‘++)1ve. ln[tan~>)] ln[cot(~)]

with special values

fv(eo) = 1 , fv($) = o ,

In terms of ~ we have

fv = ‘n[c’’t(i - N

[(i]
e

in cot ~

fV(~ - eo) = -1

One can calculate E6 (as in equation 10) from

(27)

(29)

(30)

6. Capt Carl E. Baum, Sensor and Simulation Note 36, A Circular
Conical Antenna Simulator, March 1967.
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(31)

The two distribution functions in 8 for E6 and V are related as

df#3)
fo(6) = - $ de (32)

It is convenient to ye V to define the sour$e distribution on S~.
V implies a certain E and the corresponding Es.

Now choose the M bands of S~ such that the source voltages
driving them are all the same as a function of t:. Call this volt-
age on each band Vs(t~). This requires that the $n be chosen such
that the change in fv across a band be the same for all M bands; we
expres-s this as

since fv goes between -1 and +1 over the range IT- 60 ~ @ ~ 6..
Again consider the two cases.

Case 1: M = 2N (M even)

Define ~n for M + 1 angles by setting

.n
‘V-F for n = -N, ...? -2, -1, 0, 1, 2, ....N

Case 2: M = 2N - 1 (M odd)

Define ~n for M + 1 angles by setting

[

2n+l
ZiVT

for n = -N, .... -2, -1

fv ~

2n-1
2N-1

for n =1, 2, ..*, N
~,

The source current associated with the magnetic field just
outside Ss is

(33)

(34)

(35)

o

.



= 21TY~H4(?S, t:) (36)

since H+ is independent of @ and where some $s in a band of inter-
est is chosen for the path of integration. From equations 2 we re-
place Ho in terms of Ee giving

Is(t:) = ~ Y~E#s, t;)
o

Replacing Ee from equation 6 gives

Y
Is(t:) = # + Va(t:)fo(es)

0s

= 27T
~ sin (6s)fO(0~)Va(t$)
o

IT
Va(ty

=—
Z. [()]ein cot #

Now from reference 1 the impedance of the bicone is

z“ [()]eZa = ~ in cot #

Thus “ ‘
,

.

Va(t:)
Is(t;) = z

a

(37)

(38)

(39)

.

(40)

showing that the source current on Ss through a conical surface of
constant 0s is independent of 0s for a fixed retarded time and that
Is and Va have the same history in retarded time. The voltage
across each band in Ss is just

,
15
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Since the current through each band is I.-(t~)we can then define an
impedance driven by each band as

(42)

so that

V&) = ZIIs(t~) (43)

Note that if rs varies over a band then t: similarly varies for
fixed t. Ideally the size of the bands and spacing between the
generators is small enough that variations over the area covered by
one unit of the distributed source can be ignored. Since, however,
the size of the bands and qenerator spacinq are qreater than zero
then
real
with

equation 43 can only ~e approxim~tely-appli~d to a band in a
distributed source. Also there are source currents associated
the magnetic field inside Ss which are not included in Is.

Consider an example of a waveform defined by

e
-t*/to ●

f(t*) = e u (t*) (44)

where u is the unit step function and to > 0 is some time constant.
Suppose we have a
tance Cl per band

c c1
9 ‘F

capacitive generator an Ss with the same capaci-
and total generator capacitance Cg related as

(45)

Let each band be switched on at t~ = O. Since the resistive im-
pedance driven by each band is Z~ then we have the same time con-
stan’cfor the discharge of each band given by

z
to = ZIC1 = # (MCg) = Z C

ag
(46)

The capacitors in each band are charged to give the same initial
“voltage on each band given by

16
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V.
‘l=Fr (47)

so that

v -t:/’to

vs(t:) = # ~ U(t:) (48)

Depending on the design of the equipment inside S$ it should be
possible to have the source currents associated with the fields in-
side Ss decay in times of the order of some typical transit time
across the inside of Ss. If this transit time is much smaller than
to then the internal loading should not be significant enough to
speed the pulse decay. The internal loading may, however, increase
the pulse rise time, depending on various features of the generator
design. Note that our idealized f(t*) does not include the non
zero rise time of a real generator. Also a real bicone will not
extend indefinitely so that the later portions of the waveform will
be altered by the reflections introduced by changes in the antenna
geometry at the ends of the bicone.

Iv ● Source Surface Shaped as a Circular Cylinder

Continuing with the particular spherical TEM wave used in sec-
tion III we consider some additional aspects of the shape of Ss.
Still keeping axial and lengthwise symmetry one can still specify
the form of rs as a function of ~s, or Ys as a function of zs. One
way to specify this shape is to relate it to the magnitude of the
electric field or some component of the electric field at all
points of Ss. For our present calculations consider an example de-
fined by setting the maximum magnitude of E at each point on Ss
equal to some constant Eo. Ijote that outside Ss for e. < 6 < n -
00 the maximum magnitude of E decreases with increasing r. The re-
gion inside Ss including the distributed source and extending to
(or even partly into) the two conducting cones might be filled with
some gas “of higher dielectric+ strength than air to-minimize elec-
@ical breakdown problems.

. .

Outside Ss for O.< 0 < 7r- 60 the electric field is given
from equations 2, 7, and 10 as

v I [ ()]1e -1

E(:, t*) = : f(t*) 2 sin(0) in cot ~
+
‘0

Let the
maximum

maximum value+of f equal 1 and occur at t* = O. Let the
magnitude of E on Ss be called E. giving

(49)

,
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which implies

V.y=
s “6[()]2E0 In cot ~

(50)

(51)

Now E. is chosen as a constant, applying to all of Ss. Since V.
and 60 are also constants then Ys is a constant. Therefore S~ is a
circular cylinder of radius Ys, a rather simple geometrical shape.
Since Ys is a constant we can define another constant as

,,

v Cot(eo)
h= Y~ Cot(eo) = *

[()]
6

0 in cot #

(52)

The source surface Ss has radius Y
tion given by -h < zs < h.

s with extension in the z direc-
At Zs = MI the biconical perfectly con-

ducting surface begins.

In equations 27 through 35 in the previous section we split up
Ss into bands of equal potentials (in retarded time). To do this
certain values of $ = ~n were defined. For the case that Ss is a
circular cylinder (as in this section) it is convenient to use zs
to define the bands. Since we have

e
()

1 +cOs(es) r z
cot + = - ~+~

sin(6s) = Ys
s

=5+[1,pyj” (53)

then we can write the potential distribution function for Ss from
equation (28) as

18
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This &an be rewritten as

zs

[

h
( )]~ = ‘in’ ‘v arcsinh q

Define the boundaries of the bands by

zn z Ys tan(~n)

(54)

(55)

(56)

Replacing zs in equation 55 by Zn and fv by the discrete values in
equation 34 or 35, as appropriate, the boundaries of the M bands
are then defined.

v. Suxnmarv

It is then not necessary to launch a fast rising spherical
wave from some small region of space which one might think of as a
point source. An alternate approach (discussed in this note) is to
use an array of sources distributed over an appropriate surface
with amplitudes and firing sequence arranged in such a manner that
the desired fast rising spherical wave is produced outside the
source surface. Conceptually one can define the source distribu-
tion over the source surface by defining a desired outward propa-
gating field distribution which solves Maxwell’s equations in a re-
gion outside the source surface (plus any other appropriate per-
fectly conducting surfaces which one might include) . This desired
external field distribution implies a certain field distribution
(including the tangential electric field) on the source surface.
From the uniqueness theorem we only ‘need to specify this tangential
electric field on the source surface to give the desired fields
outside Ss. Within some limitations one ‘might specify the tangen-
tial electric field on the source surface with an appropriate array
of capacitors, conductors, and switches.

By using a distributed-source approach for launching spherical
waves one can avoid having very large electric fields at something
like a point source such as near the apex of a biconical wave
launcher. The distributed source launches a spherical wave outside
the source; the wave appears to come from a point source. There
are also fields inside the distributed source which will be

,
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determined by the source fields and the materials inside the source
surface. Part of the design problem for a distributed source is
the minimization of any adverse effects associated with the in-
ternal fields. Perhaps some design considerations for the internal
fields can be considered in future notes.

In this note we have given particular. attention to some of the
design considerations for a distributed source for launching a
spherical TEM wave as propagates on a biconical structure. There
are various other types of fast rising spherical waves which one
might also consider.

,
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