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Abstract

The waveforms of the magnetic field are calculated and graphed at

observation points close to, as well as far away from, an infinite cylindrical

antenna excited by a step-function voltage across a circumferential gap of

infinitesimal width. Analytical expressions for the early time and the late

time behavior of the field are also derived. Precise criteria are given

concerning the validity of some previous results obtained by performing an

inverse Laplace transform on the time-harmonic far-field expression.
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I. Introduction
-.

i

.

Recently we have presented some quanti.tatfveresults on the radtation

field of an infinite cylindrical antenna; Ioaded with either finite or zero

resistance per unit length and excited by a step-function voltage across a

delta gap.
1,2

The nethod used in the previous calculations is first to make

the far-zone approximation to the time-harmonic field and then to invert this

far-field expression to the time domain. Although the results obtained via

this method are, to be sure, correct for dlstznces very far away from the

antenna and for not too long an observation time, it is not clear precisely

where and when the results do not hold. To settle this question we have to

look for an expression for the field valid everywhere and for all time, and

from this expression we can then deduce, analytically or numerically, some

precise criteria for the validity of the previous results. This is one

objective of this note.

The second objective of this note is to present some new results on

the time behavior of the field near the antenna. These results should be

valuable in the present development of an airborne EMT slndator.

One aspect of the present problem has been considered by WU3; that is,

he calculated the total current on an infinite cylindrical antenna excited

by a step-function across a delta gap. Later, Morgan re-derived Wu?s
4

expression for the current by a different method. Independently, Brunde115

studied the sasneproblem with a treatment of the field included; however,

he gave no quantitative results. The approach we shall use is slightly

different from Ekcundell’s,but much simpler. We shall.numerically evaluate

some derived formulas for the field and present some quantitative results

in graphical form.

In Section II, we begin with a previously derived expression for the

time-harmonic magnetic field and proceed to take its inverse Laplace trans-

form for a step-function excitation. After several transformations of variables

we arrive at a contour integral. This contour integral is then deformed, in

Section 111, into two different

which is suitable for numerical

forms of the solution for small

7
a few concluding remarks.

representations by a real integral, one of

computation. in Section IV, some limitin~

and large times are given, together with
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11. Formulation

The time-harmonic magnetic field :* of a pe~fectly conducting,

infinite cylindrical antenna
2

its surface is given by

m

ik?
7$(0,2) =—

27TZ0 I
-m

The geometry and notation of

1 and 2, and are depicted in

of radius a and having “xz=- 7$(2) on

.icz
e

d< . (1)
Hil) (k* - ~2)1/2) (kz- ~2)1/2o (a

the present problem are the same as in references

Fig. 1.

Letp=- ik and ~ = vo/<pc) , i.e., the exaltation is a step

function

.

where v

In going

H(l) (ix)
o
tion are

We

of voltage V. . Then, the inverse Laplace transform of (1) gives

ZOH (p,z,t) ~

\

= Kl(vp)
=— ePct dp . #

v 2mi
o J VKO (va)

c
P

= (c*+p*)l/’2 , the proper branch of which is

from (1) to (2) we have used (- C2 - P2)1’2 =

‘l)(ix) = - (2/Tr)Kl(X)=- i(2/m)Ko(x) , and HI

shown in figures 2 and 3.

(2)

defined in Fig. 2.

2 1/2
i(<z+p) ,

. The paths of integra-

now change the integral over c in equation (2) to that over v .

First, let us determine the path of integration C in the v-plane. Since

c = (v*-p$l/2 ‘2 2 1/2
, we must choose the branch of (v -p) in the v-plane .

such that along CV we have

(i) c to be real in conformity with the path of the ~-integral,

(ii) Re v> O to guarantee damped waves for p +W ,

(iii.) ImC>Oforz>O, and ImC<Oforz<Oso that the

waves are damped for \z]+~.

Now we write
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i = v’(vl+iv2)2 - (pl+ i@2)2

To make L real along Cv we must choose C such that
v

‘Ivz = PIP*

and

22
‘1 - ‘2

-P;+p;>o .

Thus, Cv must run alongside the

satisfied and V120. Since C

part of hyperbolas (3a) where

is positive real on one part

negative real on the other part of C~ (that is, the phase of

(3b) iS

of c and
v

c differs

(3a)

(3b)

by T in going from one part of the path to the other), there must be a

branch cut running between the two parts of C . Hence, we arrive at Fig. ~
v

without the arrows, and the direction of Cv is still to be determined.

To determine the direction of Cv we define the two branches of

dv~ as follows. The first branch is defined so that ? = ip at v = O

and the second branch is defined so that c = - ip at v z ~ . Clearly, the

first Riemann sheet maps into the upper ~-plane and the second sheet maps

into the lower C-pi-me. Then, in accordance witk the condition (iii) we use

the first branch for 2>0 and the second branch for 2<(). It is not

difficult to see tha~ ~he path Cv depicted in Fig. 4 actually corresponds

@
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to a path slightly displaced from the xeal C-axis into the upper C-plane.

A path slightly displaced from the real. g-axis into the lower ~-plane

(for z < O) will transform into C; on the second Riemann sheet with

direction opposite to CV .

Under the transform <=v’’v2-p2 we now can write (2) as follo~7s:

Mt.&
J

epct d 1 J Kl(vp) ei~V2 - p2Z

v P%
o

K. (va)
c Cv 4V2 - p2
P

Since on the first Riemann sheet i’v2-p2+k

dv , 2>0 (3)

v as lv~ +ca in the

first and fourth quadrant of the v-plane respectively, and since Ko(va)

has no zeros for Iarg VI < n/2 , we can deform C into r as shown in
v v

Fig. 4. Now the branch point v = p always lies to the right of rv (that

is to say, r,, can be made independent of p) and, therefore, we can inter-
V

change the order of integration in (3) and obtain, with

where

yk=~ !
KI (Vp)

1

I

-lp~ 2-lJz
dv-—

e

0
K. (va) *Ti

rv c ip2- V2
P

1 I
Kl(vp)

=—
27ri K. (va)

Io(v~(ct)2 - 2Z )dv ,

rv

for Ct>z (4)

for Ct<z

6
we have used a well-known result for the inner integral.

The in~egrand in (4) has no singularities to the right of rv (Fi&. 5)

and behaves as exp[ - v(p - a - J(ct)L - ZZ)] as Ivl + = in the right half

plane. Thus, (4) gives
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for ct <“/(p - a) + z2
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111. Solution

If rv is deformed into the imaginary axis of the v-plane (Fig. 5)

we have, noting that the tntegral arourxlthe branch poi~t v = O is zero,

,~=L I
Kl(vp)

I (v~)dv
2 2 1/2

2ni Ko(va) O
T = ((et) - z )

o
rv

1
0 KI(VP)

J

‘m Kl(vp)
=—

21Ti
I (v~)dv +&

Ko(va) o I K. (va)
Io(v~)dv

- im o

(6)

1
0 Kl(iv2p)

~

m Kl(iv2p)
=—

2T Ko(iv2a)
Io(iv2~)dv2 ++

I Ko(iv2a)
Io(iv2~)dv2

-m o

m H(2)

J
~(V2P)

~ ~(l)
.

~

~ (V2P)
=-—

2:
Jo(v2-r)dv2+5 Jo(v2~)dv2

OH :2) (v2a)
(1)

o Ho (v2a)

mJl(v2P)Yo(v2a)

I

- Jo(v2a)Y@@ ~ ~v ~(ct)z
1.— ~2, 1/2
l-r 02-

)dv2. (7)
J~(v2a) + y~(v2a)o

Setting p = a in (7).we find that the total current I(z,t) is given by

4V ~ Jo(v2((ct)2 - Z )2 1’2) dv2
0(I(z,t) = 2~aH = ~

$ OJ J~(v.a) + Y~(v2a) ‘2
o ..

(8)

3
which is identical to Wufs expression.

To obtain a form suitable for numerical integration we proceed as follows.
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First, we substitute niIo(v~) = KO(VT) - Kolv~eifi) ancl TiIo(vT) =

.
Ko(vre-=m) - Ko(vr) into the first and second integrals in (6) respectively

and obtain

5E$=_J_ 0 Kl(vp)

J [KO(VT) - Ka (v~eiw)]dv
v
o 2T2

K. (va)
-.im

1
‘m Kl(vp)

-—
~

[Ko(v~e-ir) - Ka(VT)]dV
2T2

K. (va)
o

1
0 Kl (VP)

I

‘a K@
K (u-rein)dv- ~

I

.
=— K (v-re-L*)dv

21T2 Ko(va) o 21T
Ko(va) O

- im o

\

1 0 KI(VP)

I

1
‘m Kl(vp)

_— K ~va) Ko(v~)dv +—
J

K (wr)dv
2T2 o 2T2

Ko(va) o
-.ico o

!!!!
(9)

We now deform the integration path of the first integral into C3 + L- ,

that of the second integral into C2+L+, and those of the last two integrals

into the positive real axis (Fig. 5). From the asymptotic forms of K. and

‘1
it is easily seen that respective integrals over the infinite quarter

circles Cl , C2 ? C3 and C4 vanish for T > p - a . By making use of the

formula7

the integrals over L_ , L+ and the real posttive axis become

4.56
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+

-.

Kl(vlp) - ~iIl(vlp) .

Ko(vla)
K (vlr)dvl

+ miIo(v Ia) o

Kl(vlp) +-niI1(vlp)

Ko(vla)
Ko(vl~)dvl

- riIo(vla)

1
= Kl(vlp)

~ 1 Ko(vla)
Ko(v@dvl

o

Io(vla)[Io(vla)Kl(vlp) + I1(vlp)Ko(vla)]
Ko(vl?)dv ~ , for r > p -a (lo)

Ko(vla)[K~(vla) + IT21~(vla)]

N Writing u = vla and multiplying both sides by r we finally arrive at the

dimensionless form

‘zoH+ r
rn10(U)[IO(U)KI(U p/a) + KO(U)I1(U p/a)]

_—
v a J’

Ko(u ~/a)du ,
0

0
Ko(u)[Kj(u) + T21~(u)]

for
2 1/2ct > ((p - a)2+2)

This integral was numerically evaluated as function of T for several values

of r and 0 , where T is

T =

defined by

Ct - ((P - a)2 + 22)1’2
a

(11)
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The results are presezted ia figures 6 through 13.

Setting p = a in (11) and making use cf the Wronskian relation

among the modified Bessel functions we arrive at an alternative representa-

tion for the total current

4V =

~

10(U)KO(U r/a)
I(z,t) =--#

du—

o 0 Ko(u)[K@ + T21~(u)] u

which was used for nuw.ericalcomputation in Ref. ~.

.-. -
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IV,. .Remarks

It is expected that, for p/a >> 1 and for some interval OE the

observation time aT/c , equation (11) should reduce to equation (4) of

Ref. 1. Since equation (11) is valid for T > p - a , the statement that

p/a >> 1 also implies that ~/a >> 1 . Using the appropriate asymptotic

forms for II(u p/a) , K,(u p/a) and Ka(u ~/a) in equation (11) we obtain

For observation time much smaller than p/c , i.e., for T << p/a , we have

Ct - r << p . Then

‘r = ((ct)z- Z2)1’2= ([(et-r) +r]z- Z2)1’2

= (p2+ 2r(ct - r) + (et- r)2)1’2

Insertion of this approximate expression of T in (12) gives

m et-r

s.zs;ne
j

10(U) -u ( )a sin @ du
e —

v
o K:(u) + r21j(u)

u
o

(12)

(13)

which is identical to the integral used in Ref. 1. Thus , the previous results

are correct if p/a >> 1 and T << p/a .
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The curves labelled l’r/a2 104” in.figures 6 ‘thrcugh 13 correspond

to those obtained in Ref. 1. It appears that there is a difference between

them in the early times. This apparent dtscrepsncy is due to two different

definitions of T . Let Told denote the T. used in Ref. 1. Then, for

p[a >> 1

T=ct
- ((p - a)z + z2)l/2_ Ct -(r-a)+~in6_l

a a

= Told - (1 - sin 0) .

This equation accounts for the difference just mentioned.

Next, we shall deduce the Iimiting forms of equation (11) for large

T and small T . From the definition of T , i.e., !!!!
_= ((et)T

2 - ~2)1/2
= {T2 + 2T((&- 1)2 + (Z)2)1’2 + (g- 1)2}1’2 ,

a a a a a

we see that T/a + m as T+a, and that -r/a+O/a-l as T+Cl.

Late time behavior of rZoH4/vo

Substituting

m

J
-Xu T/a

Ka(u ~/a) = e dx—.

1 4X2 -o1

into equation (11) and interchanging the order of integration we have

$
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rnIo(u)[Io(u)Kl (u”p/a) + KO(U)II(U p/a)]

?=:[,’:’ /

~-ux ~/a
du . (14)

-lo
Ko(u)[K~(u) + n21~(u)]

For large x ~/a the inner integral can be evaluated asymptotically in the

same way as described in Ref. 1. Thus , (14) becomes

co

1 J d(ln x) -1/2

‘2sin0 --=#-+)
‘+lnx]~ [In ~a x

1 1
‘2sin6 9 as T/a + ~

in(*)
(15)

where r = 1.7810..O . It is to be noted that the asymptotic formula (15)

was derived under the condition p/a<~/a+=. For T > 100 , one can use

(15) to extend the curves, except the ones labelled “r/az 104,” in figures

10 through 13, since the difference between the results calculated by (15)

and those obtained by numerically computing equation (11) is less than 3%

for T a 100 .

Early time behavior of rZnHh/v
n

Let ~/a - p/a+ 1 = c . We wish to examine the limit of rZ H /v
040

as &+Cl, Following the same procedure as in Ref. 1 we break equation (11)

into two parts, viz.

461

____w> 6 — . . . . . . ., . .-.<.L-A --..-,, . ----- —— --- .. —--- — —. V... -.— -.. ------- . -...-—x —_-... — — . --



where 6 is chosen in such a way that in evaluating

asymptotic forms for the modified Bessel functions.
12

one can use the

Thus

-u& - u (p
e

- a)/a
du . (16).

If p > a and (p - a)/a >> s + O , then (16) gives

If p = a and c + O , then (16) gives

fiz
12

-~ (a + zz)k((ct)z - 22)-4 .

.

--
8

(17a)

(17b)
!!?

[

11 is easily seen to be negligible compared to
12

when E + O . The curves

in figures 6 through 9 indeed have the behavior described by (1.?)for small

I T. Using (I?b) one can immediately deduce that the total currant I(z,t)

I takes the form

~

v
I(z,t) --+

2G a
2 z% ‘ as et - 2+0+’

o ((et) - z )

i
j

Before concludf,?.gthis

i ‘;,~oughoutthis note we have

note, two additional remarks are in order.

treated exclusively the magnetic field Hh ,

~:Itting aside the non-vanishing components E= and E8
,

: of the electric;
i ‘:eld. Of course, Er” and E6 are obtainable from H

$
via Maxwellts

,,

,,
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equations; but’an extra integration ov@r time is required, thus making E
r

and
‘e

expressible in terme of double integrals. Very far away from the

antenna, howc.ver,we have—E
0
=ZH , i.e., E

0$ e
and Z H have identical

0+
waveforms. The reason that H

$
can be expressed as a single integral is

that we have considered a step-function excitation which allows one integral

of the double integral (i.e., the inner integral of (4)) to be evaluated

explicitly. The second rem,arkis that although we have treated an infinite

antenna in this note, the results are still valid for an antenna of total

length 2h if the observation, time aT/c < h/c + (R2 - Rl)/c , RI and R2

being respectively the distance from the observation point to the excitation

point and to the nearer end of the antenna.

2.

3.

4.

5.

6.

7.
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Figure 1. Infinite cylindrical antenna with a gap generator.

9

f!!!
464



.

/
/

/
/

/

/
I 7 CUT: ;,t2=- P,I

I
I

P2

——
Figure 2. Branchof v=~~2+p2 : v=pat C=O.

465 ‘

.—— —-— -—-— ~— .--- —-
—.-—. —

—..—. . .. . . ---
,.



..

.

i P2

.

CP

Figure 3. Path of Integration

~.. - - -.,._ ._=___ .. ~....% ...=.,._ . . . —= —.?r-’-- . .._. _ — —.-— -.—-



$

.

--

-----

/

-.
-=.

“cuT:v1V2=~]~2

-P

v,

.

Figure 4. Branch of < = ]V2 - p2 : c = ip ati= Oifz>o,

andq=-ipatv= Oifz <O.

467
..

—. ——— —--— —--- - - ._._ - -+ ,.



.

.

.-

i Z$2

C2

-~ ---- ----

--%

/ -.

1—
‘1

rv

/

!!!?

Figure 5. The branch where largvl <T .



‘5

‘

1.(

:
.4

.7

.(

.5

.4

.3

.2

.1

0

$- z/2

-.

=2

1 I ! I J

1
1

2 3T4 5 6

“ Figure 6. Magnetic-field waveforms for a step-function excitation.
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Figure 8, Magnetic-field xaveforms for a step-function excitation.
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Figure 9. Magnetic-field waveforms far a step-function excitation.
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Figure 10. Magnetic-field waveforms for a step-function excitation.
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Figure 11. Magnetic-field waveforms for a step-function excitation.
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Figure 12. Magnetic-field waveforns for a step-function excitation.
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Figure 13. Magnetic-field waveforms for a step-function excitation.
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