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Abstract

This note considers the characteristics required of a planar
admittance-sheet terminator with coplanar conducting flanges.
This admittance sheet terminates an infinitely wide parallel-plate
transmission line. The sheet (plus flanges) is sloped at some
arbitrary angle with respect to the transmission line. The re-
quired surface current density on the admittance sheet is com-
pared to that on a distributed LR termination (using the incident

s electric field for the calculation); this is used for choosing a
good value for the surface inductance. Sloping the termination
makes the required current for an ideal termination more quickly
approach its late-time (or low-frequency) value which should be a
useful feature in realizing good quality distributed terminations.

— —. — . —



_. ...-. —.—

16 Introduction

—... ,.
,

.

t

In an earlier notel we introducd the concept of an admit-
tance sheet as a distributed termination for a TEM transmission
line. In appropriate geometries the required characteristics of
such an admittance sheet to provide a perfect termination can be
determined from the solution of an electromagnetic boundary value
problem. However, the required surface admittance on the sheet
may not be completely realizable as passive lumped elements. A
first order approximation to the surface admittance uses series
inductance and resistance to give what we might call a distrib-
uted LR termination. While a distributed LR termination is not
in general a perfect termination it can match the ideal admittance
in both high and low frequency limits. The surface resistance is
chosen to match the low frequency limit of the ideal surface im-
pedance. The surface inductance is chosen &o minimize the re-
flections for frequencies with wavelengths of the order of the
cross-section dimensions of the transmission line. A convenient
way to choose the inductance is to calculate the ideal surface
current “density on the ideal termination and compare it to the
surface current density associat-xl with a step :unction electric
field on the distributed IJR termination.

Another note2 has given a detailed calculation of the char-
acteristics of an ideal admittance sheet which terminates two
parallel plates and is perpendicular Lo the direction of inci-
dence of the TEM wave between the plates. Values for the surface o

inductance in an LR termination to approximate the ideal termina-
tion are also given.

The purpose of this note is to calculate some of the charac-
teristics of another type of admittance sheet terminating two
parallel plates and the inductance anc~ resistance values of the
corresponding distributed LR termination. Specifically we con-
sider the case of a sloped planar admittance sheet ccmnecting the
edges of semi-infinite perfectly conducting plates. As illus-
trated in figure 1A we also include perfectly conducting flanges
(semi-infinite) connected to the edqes of the parallel plates ”and
coplanar with the admittance sheet. This allows us to calculate

: the currents on the admittance sheet as a boundary value problem
.,’ with a plane boundary.

1. Capt Carl E. Baum, Sensor and Simulation Note 53, Admittance
sheets for Terminating High-Frequency Transmission Lines, April
1968.

2. R. W. Latham and K. S. H. Lee, Sensor and Simulation Note 68,
Termination of Two Parallel Semi-Infinite Plates by a Matched Ad-
mittance Sheet, January 1969.
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From the calculations in this note we find some of the ef-
fects associated with sloping the termination. These include how
the parameters of the approximating LR termination .sh~uld change
and how closely the ideal surface current is approximated by the
surface current associated with the incident electric field driv-
ing the approximate LR termination. While some practical cases
of interest do not have the conducting flanges the calculations
of the present note should apply at least qualitatively to such
cases. Also the results of this note can be compared with the
results in reference 2.

One of the reasons for considering a sloped termination is
to make the incident wave arrive at the terminator at different
times over the surface of the terminator. The reflections are
then somewhat dispersed in time, or from another viewpoint the
incident wave is not reflected directly back from the termination
but is reflected at some other angle so thati the rsflected wava
can in turn be reincident on the termination after reflecting Ofr
a conducting plane. The present boundary value problem does not
calculate the reflections from an LR termination so this effect
is not observed. Perhaps future notes can consider some idealized
geometries in which such reflections can be calculated.

11. Boundary Value Problem

Now consider the boundary value problem which we will usc to
calculate the surface current density associated with the ideal
admittance sheet. As illustrated in figure lB the coordinates
for the calculation are estab.Lislled with z = O as the plone ot
the admittance sheet and perfectly conducting flanges. IH this
problem we are concerned witl~ the fields tor z > 0 and the asso-
ciated surface currents on Lhe z = O plane. Note that we have a
&wQ-d.imQnRiLanal p%ablem SSi&-lGQour cl~omekz!? and the iLIGic~Gnk Fielfls

are assumed independent of y. On the z =0 pi.anc the admit~:lncc
sheet occupies the region O x ‘ d where.j

d=h
sin(<)

(1)

“

e

3. All units are rationalized MKS’A.
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x = Y Cos(o)

(~)

z = Y sin(+)

The second set of coordinates involves the position on the admit-
tance sheet and the position of the observer with respect to this
other position on the admittance sheet. This position on the ad-
mittance sheet is needed as an integration variable in calculating
the fields and surface current densities. We use x’ for the co-
ordinate on the admittance sheet instead of x. With this we have
the cylindrical coordinates of the observer (with respect to (x,
z) = (x’, O)) as (Y’, $1, -y) given by

x-x’= Y’ Cos($’)

(3)

Z=Y’ sin(+’)

See figure lB for an illustration of these coordinate systems.

Another coordinate we use is < shown in figure 1A. The two
parallel plates are at < = O and L = h. We use g to indicate po-
sitions on the admittance sheet in terms of the perpendicular
distance from one of the plates (extended). For z = O ~ is re-
lated to x as

L=&x= sin(c)x (4)

For purposes of normalization we sometimes use, for positions on
the z = O plane,

(5)

In setting up the boundary value problem we need to specify
the tangential electric field on the admittance sheet as that
given by the incident electric field. The incident wave is spec-
ified in the time domain as a step-function plane wave of the
form

++

() r*e
i. 3= Eo+ t - ~
lnc



++
E

()

r*e
3. =

3
Lnc

#U2u t-—
0

c (6)

where

(7)

and where E. is a convenient constant of dimegsio~s V/m. The
unit vectors for the coordinates are ‘~ritten ex~ ey, etc. The
three unit vectors for the incident wave (as in equation 6) can
be written in terms of coordinate unit vectors as

+ +

‘2 = ‘Y

+

‘3
= Cos(c)=x + sin(c)~z

These unit vectors for the incident wave are related by

++ +

‘lxe2 = ‘3 ‘

+ +
ex$=e
23 1’

For use with the step function we have the relation

++
r*e

3
= x COS(L) + z sin(<)

On the admittance sheet the tangential electric field for
O<x<disgivenby

(1is = iinc )(I
,

●S e + z “z )+xx
2=0

lnc 2=() Y ‘Y

(=Eout - ~cos(~)) sin(;)=
x

6
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(9)
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Thus the tangential electric field on the source has only an x
component. Since we will be integrating over this field we use
x’ for the coordinate and also write the x comF~nent of the elec-
tric field on the whole z = O plane as

E; = E. sin(c)u(t - $cos(E)JIu(x’) - U(X’ -d)] (12)

Having the tangential field on the z = O plane with only an
x component and only a function of x’ and t we can write the ex-
pressions for the fields for z > 0 using the results of a pre-
vious note.4 From reference 4 equations 39 through 43 we have

J“
~aEj

Ez = cos(~’) dxl

-..=* ‘:4 “

where

J
m aE;

Ex =-— ‘in($’) dxl

-mat *e:@ “

e’=-
00 * %[(%)2-n-’”U(t - :)

h:= +[($)2- 1]-”2U(t - :)

(13)

(14)

(’15)

(16)

(17)

and where * indicates the convolution integral with respect to
time. While we are not going to explicitly calculat-e–and graph
these field components we will use the expressions for the mag-
netic field to calculate the surface current density on the z = O
plane associated with this magnetic field.

4. Capt Carl E. Baum, Sensor and Simulation Note 66, A Simplified
Two-Dimensional Model for the Fields Above the Distributed-Source
Surface Transmission Line, December 1968.

7



.

.

111. Currents Produced by Incident Electric Field in an
Inductive-Resistive Termination

For comparison with the surface current density associated
with an ideal admittance-sheet termination we first consider the
surface current density associated with a termination whose sur-
face impedance is given by the series combination of a resistance
Rs and an inductance Ls. The surface admittance of this LR sheet
is then

Y; = [sLs + Rs]-’l (18)

where s is the Laplace transform variable (with respect to time) .
Now for O < x < d the incident electric field on the termination
from equation 11 has only an x component given by

Es
(

= E. sin(<)u t - ; CoS(c))
x

(19)

Associated with this electric field and the surface admittance in
equation 18 there is a surface current density for O < x < d with
only an x component given by

e

[-

RS
(t-~os(<))~

E. sin(g)
Js = Rs

l-e
I (

‘ut- : Cos(g)) (20)

o

Note that we are not including any reflections, etc. in calculat-
ing JSO; this surface current density is used for comparison with
the surface current density on an ideal admittance sheet to see
how close the two can be brought to having the same amplitude and
time history.

Now as t + ~ we want JSO + EQ/Zo to’ terminate the parallel
plate transmission I.ine at late times (or low frequencies) . Note

that for low frequencies the magnetic field for z > 0 will be
negligible compared to the magnetic field between the parallel
plates. Thus we constrain

For convenience define

(21)



(22)

so that the normalized surface current density associated with
the LR terminator and incident electric field is

j~
o

For
use with

7* :
G

=

and

-r* E
h

The first

convenience we define two normalized retarded times for
surface current densities on the z = O plane as

1

[

Ct
— - Cos(g)

sin(g) x 1

Ct - x COS(E) = Q - a cot(c)
h h

normalized retarded time (equation 24) will be used

(24)

(25)

when we are only considering the effects associated with the end
of the admittance sheet at x = O. The second normalized retarded
time will be used when the effects associated ‘~ith both ends of
the admittance sheet are included.

Corresponding to the two normalized retarded times we define
two characteristic times as

3, ah

‘<SC ‘h-~
(26)

Also define two dimensionless parameters related to the surface
inductance as



and

-C*

[1-—6;
js=l-e,u(T~)

0

These are the forms we will use for later comparison.

Iv. Currents Associated with Ideal Termination

e
(27)

In equation 12 we have the tangential electric field on the
admittance sheet; note that it can be split into two terms as

E~ = E. .sin(~)u(t - ‘# cos(E),)u(x’)

E~ = -E. sin(~)u(t - ‘~cos(~))u(x’ - d)

where

(31)

Note that we will normally think of C in the range O < L < m/2.
For positions near x = O the effect of E~ will be nokiced–first
in time with the effect of E; coming in later.

10
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A. Effect of the end of the admittance sheet at x = O

Now ccnsider the effect of lZi,. The resulzs will apply for
times before any effects associated with the end of the admit-
tance sheet at x =d(or~ = h) can propagate to the position of
interest on the admittance sheet. We need the surface current
density on the z = O plane associated with Ei. We get this from
the magnetic field in equation 15. Defininq normalized surface
current densities as

ZH

]:-*
‘1 o +=0+

we have for x > 0

[

sin(c) m
j =- ~
‘1

o

and for x < 0

Jsin(~) m
js=-n

2 0

(32)

2

1
-1/’2

) -1 “(’ - g)l~ (33)

[[

2

1
-1/’2

* (
Ct

) -1 )1
dx ‘

x - x’ U(t + ‘; “ x, _ ~ (34)

Performing the convolution integrals gives

11
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cm

[[

-1/’2

sin(~) Ct - x’ CO S(L)
j=-~ ( ,x -x,] )2-1
‘1

1
u

“ U(ct - x’ COS(L) -lx-x’[)~~

and

m

\[

2 1
-1/2

sin(~)
(
Ct - x’ Cos (c)

js=-~ ) -1
-x + x’

2 0

“ U(ct - x’

With the chosen sign
the +x direction.

For convenience

-&

‘%-l-

Cix‘
Cos (c) +x- x’) XP _x

(35)

(36)

convention jsl and ]s2 are taken positive in

define

(37)

Consider first js2 which we can write as

Ct+x

\

l+cos(g) -1/2
sin(g) u (Ct+x) [(et-x’cos(<))2 - (X’-X)21 dx ‘

js=-~
2 0

T-l

\

-Xl+cos (c)
sin(~) U(T-1) [-sin2(&):~’2=-—

m
0

-1/2

+ 2X(1+TCOS(5) )X’ + X2(T 2-1)] dx’ (38)

12



From a standard reference5 we have

‘r-l

[

-Xl+cos(c)

sin(g)u(r-1)
sin2(C)$’ -l-TCOS (C)

js=- ‘7r *“
arcsin

2 -r+cos(<) 1

Iu(T-1) i’r
— — - arcsin

[
l+Tcos (&)=-

‘Tf 2 T+cos (t) II
U(’r-1)

[

l+Tcos(g)=-
‘lr

arccos
-r+cos(c) 1 (39)

Thus we have the surface current density on the z = O plane for
x < 0 ?nd for a semi-infinite admittance sheet, i.e. including
only El. We will later use this result to find the surface cur-
rent density on the admittance sheet associated with E~.

Now consider j~l which we can write as

[

‘1
-1/2

j=- Qy u(ct-xcos (~)) [(et-x’cos(E))2 - (x’-x)*] dx ‘
‘1

‘o

/

‘1
sin(~)u(~-cos (~))=_ [-sin2(C)x’2

‘IT
x
o

-1/2
2 2-1)]+ 2X(1-TCOS (L)) + x (T dx ‘

where the limits on the int-egral are

(40)

5 . H. B. Dwight, Tables of Integrals and Other Mathematical
Data, 4th cd., Macmillan, 1965, eqn. 380.001.
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Ct+x T+l
‘1 = 1 + Cos(c ‘x 1 + Cos (g))

(41)

Thus we have two cases to consider. Note we restrict O ~ g < m/2.—

First let COS(G) < T < 1 so that using reference 5 j~l can
be written as

j=-
sin(~)u(-f-cos (~)) -1

‘1
TT sin(~)

-r-l-l

[

‘l+COS(H
-sin2(c)x~ + l-Tcos (&)

● arcsin
T-cos(g) 1

1-T

‘l-coS(E)

= -U(’T-COS(C)) (42) 9

1 This result applies for all ~ < 1. Second let T > 1 giving

i==-
sin(~)u{~-1)

‘s
1 m

T-+1

[

‘l+COS(L)
-si.n2(~)>l-TCOS (~)

*“ arcsin
T-coS(c) 1

0

Iu(T-1) n~ + arcsin
[
l--rcos(g)=_

‘rT T-COS (~) II

= [-u(T-1)11 - * arccos’~~~~j~~~)
) II

(43)

We can write one equation, combining the results of equations 42
and 43, to give a result valid for all T as

9
14
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U(T - 1)
[
1-

j = -u(r - Cos (c)) + ~ arccos ~
“cCos(g’)

:)1
(44)

‘1
- Cos(

Now the surface current density (in the +x direction) re-
quired on an ideal admittance sheet is given by

Js=H -H (45)
y z=o- Y Z=o+

Thus for times bei’ore the effect of the end of tne admittance
sheet at x = d is seen we have a surface current density of the
form

E

[
Js=#u(T-cos(~)) +j

o ‘11

From this we define a normalized surface current—density for
x>i)as

j = U(T - COS(G)) + js

‘3 1

[

= U(T - 1) ~rccos 1 - ~ COS(E)
‘rr T - Cos(c) 1

(46)

(47)

In terms of the normalized retarded time ~~ appropriate to this
case we have

.%=
T sin(E)r* + cos(~) (48)

x <

giving

1 ( 1 - COS(E) ~rccos

[

sin(~) - T; COS(5)

js = ;uT*- ) 1 (49)
3 < sin(g) T*

c

Note the interesting limiting case for small ~ as

lim j = U(T;)
g+o ‘3

15
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where G is kepk a constant in taking the limit. Note in this
limit that x + ~. Another interesting limit is the case for
large T: which is given by

lim j = 1 - ~ (51)
~*+OJ
<

‘3

Note that this limit is no-t1; an additional term associated with
the end of the admittance sheet at x = c1is needed to make the
limit 1.

In figure 2 we have j~3 plotted as a function of T~ for var-
ious values of ~ in the range O < 25\7T < 1. Note that as $ + O
the js3 waveforms shift toward the left–and top of the graphs.
Basically this means that for small C the undesirable features of
js3 shift to earlier times or higher frequencies. Also for small
~ the late time asymptote shifts up toward 1. Now one could de-
fine an ideal js~ as a unit step function; then one would only
need Rs to make Isa the same as js3. Since js3 is not a step
function we can choose 6C (and thus Ls) in equations 27 and 28 in
a manner which makes jso best approximate js3 in some sense. In
figure 2 we have included jso for various values of f3L for com-
parison with js3. Then for a given value of L one can choose a
value of .f3~which makes the LR termination “best” approximate the
required termination as given by js3. Note that these results
only include the effects associated with one end of the admittance 9

sheet. We now go on to consider the case with both ends included.

B. Effects of both ends of the admittance sheet

The effect of including E; in calculating the surface cur-
rent densitiey can be easily obtained,from the results for Ei by
noting that E2 can be obtained from El by a change in sign, a
shift in x by an amount d, and a time delay d cos(&)/c. The re-
sults for jsl and js2 can then be used by replacing ct by ct -
d cos(~) and replacing lx! by lx - dl. Then on the ideal admit-
tance sheet we have a surface current density from equation 45
for O < x < d given by

E

[
Js=#u(T-cos(E)) +j +j’

o ‘1 ‘21
(52)

where j~2 is obtained from js2 with the substitution mentioned
above as

U(T’ - 1)
j: = [

1 + -r’ Cos(g)
arccos

2
‘n -r’ + Cos(<) 1 (53)
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where

-c’

In

.ct - d COS (E)

lx - d~ t
‘=’*

normalized form we define

Js ‘U(T - cos(~)) +j +j’

4 ‘1 ‘2

In terms of the normalized retarded time ~fiand a
5) we have (for O < x < d)

Ct
T

[
h T* + f cos(~) 1

= sin(~)= —= —
x xh u

q + COS(C,)

(55)

(from equation

Ct
“ =

-dcos(&) = h
[

d
d -x d-x

T; + ; Cos(c) - ~ Cos(:)1

(56)

(57)

In terms of Ti we can write

Note that for small ~ we have

lim j = U(T;)

E+o ‘4
(59)
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where a is kept a constant in taking the limit. Note that’
this limit we also have d + ~ and x + ~. AISO we have the
ing case :or large ~fias

lim j = 1
~*+a
h

‘4

in
limit-

(60)

Comparing this result to that in equation 51, note that including
both ends of the admittance sheet makes the late time limit 1, a
contribution of &/n coming from the end at x = d.

In figures 3 through 9 js4 is plotted as a function of Tk
for various values of G ranging from n\2 down to .01 7r/2, and for
various values of a (= ~/h) with O < u < 1. Note that as ~ + O

all the js4 waveforms tend toward Unit–step functions, i.e. they
rise close to unity sooner. However also note that as & + O the

influence of the end of the admittance sheet at x = d appears
later and later in time after tile initial rise. As E + O a pla-

teau of 1 - L/n is rapidly approached by j~4 (like js3 in equa-
tion 51). The rest of the rise of js4 to 1 occurs after the ar-
rival of the signal from x = d; on the last several of the fig-

ures this remaining portion of khe rise of js4 has not begun
(except at a = 1) in the time scale of the graphs.

AlSO included in figures 3 through 9 are curves of jso (from
equation 29) as a function of ~-fifor various values of ~h.
These are for comparison with js4. The value of f3hneeded to

make jso best approximate js4 (in some sense) decreases as L * O.
For any given value of & one can try to pick some value of Ph

which makes jso best approximate js4 over the entire admittance
sheet (O < a < 1) , or one might even make 13h take on different
values at–dif~erent positions on the admittance sheet.

v. Summary

In this note we have considered the effect of sloping a dis-
tributed termination plus conducting flanges at the end of an in-
finitely wide parallel-plate transmission line. While we are

mainly interested in a case without flanges~ the present results
should apply in a qualitative manner. Note that as g + O the

present case with flanges tends to a case in which there are no
flanges (in the limit), i.e. one flange merges with one of the

transmission-line boundaries and the other tends toward an exten-
sion of the other transmission-line bcundary, thereby tending
toward a continuous ground plane.

One of the advantages t-o-be gained in sloping the termina-
tion is that the required current, in the t-e-rmination more quickly

19
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approaches (for a step-function incident wave) the late-time lim-
iting current. Roughly speaking this occurs because the disturb- @
ante from the endof one of the parallel plates can reach a typ-
ical position on the termination more quickly after the arrival
of the incident wave at that position. There is some contribu-
tion from the end of the termination reached last by the incident
wave but as G + O this contribution is small. As K + O the re-
quired value of 13h+ O also. Since Ls is proportional ta Phsin(:.]
for a given h, then as L + O we also have L,s + O, reducing the
required surface inductance in the termination.

We would like to thank Sgt. Richard T. Clark and A2C Robe::t
N. Marks of AFWL and Mr. Joe P. Martinez of Dikewood for the nu-

merical calculations and graphs.
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