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ABSTRACT

of a numerical calculation of the propagation of an
pulse guided over material interface is described.

The problem is formulated in two-dimensional Cartesian coordinates
and time. Provision is made for conducting boundaries to guide the
pulse. The numerical calculation employs a mesh that moves with
the pulse wave front.
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I. INTRODUCTION

This note describes the formulation of a finite difference calculation

to analyze the propagation of an electromagnetic pulse guided over an air-

ground interface by metallic conductors. The geometrical arrangement

is shown in Figure 1 and is designed to approximate an EivIP simulator.
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Figure 1

It is assumed that a plane wave pulse is initially established in the left

section of the array, This initial plane wave is assumed to have the

polarization shown in Figure 1 with E = O. The numerical computation
x

begins at t = O as the wave front crosses the origin o where the material

interface begins. The three field components are then computed through-

out the array as functions of time as the wave front propagates to the right.

Layered media with different electrical properties can be included as in-

dicated in the figure.

The problem is formulated in two-dimensional Cartesian coordi-

nates so there is no variation in the z direction. The conducting boundaries

are shown as straight in Figure 1; they can, however, be slanted or curved.

This note describes the numerical formulation developed to treat

the early time behavior of a propagating pulse in the geometry of Figure 1.

This is done by using a mesh that contains the wave front and extends to

the left of it a distance ctP where t is a specified problem time. As the
P
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wave front propagates to the right in Figure 1, zones are added at the “front”

of the mesh and deleted at the back so that the mesh effectively moves with

the pulse. The behavior of the field components at each mesh point are thus

determined out to a certain retarded time 7. This type

employed since the geometric al complexity of Figure 1

computational advantages of transforming the equations

in terms of 7.

of calculation was

negates most of the

to compute directly

This note describes the numerical techniques used for the computa-

tion and describes the computer code developed but does not detail the ap-

plic ation and results of the technique. These results will be documented

separately.
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II. FORMULATION

We take both the air and the earth to

with no sources so that Maxwell’s equations

.
Vxg =-g

V.i=o=v.

~

be homogeneous, linear media

are:

(1)

5 (2)

where

B=pH, c,~, 0+ constant (4)

The fields are determined by these equations plus the equation of continuity

V.; =f) (5)

The fields can be represented by a Hertz vector Ii which obeys the

equation

v2ii - Cp”;- /-40;=o (6)

where

L

E= VXV X;, 13=\4eVXII+ @’x; (7)

It is convenient to define a new vector

Z=VXE (8)
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in terms of which Eqs. (6) and (7) become

..
v2&peG - -=0Mao (9)

>
and G=v x;, B =pe$ +o,u& (10)

Restricting ourselves to Cartesian coordinates in two spatial dimen-

sions with the initial polarization shown in Figure 1, we have only x and y

components of E and a z component of ~. We can then take

@ = (0)1+ (0).; +4:= $(x, y,t) (11)

so that we are concerned with the scaler equation

.. .
V2(J - ,L.tc@- pa+ = o

Introducing a fundamental length L and a

Eq. (12) can be written in dimensionless form

.. .
v2@ + Cll$ + C24 = o

(12)

fundamental time T = cL,

c/Jo
where c1 = -C% , PJ. -

L

The field components are determined from the potential as

E =:
a+

> EY=-FX
x

t

ilz=vxz’ -v%, B(t) = -
I

(V24) dt

o

and

(13)

(14)

(15)

(16)

e
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III. DIFFERENCE EQUATIONS

The differential equation (13) can be expanded

the orem giving

..-

using Taylor’s

j (+(x +-h., y,t) - 2q$(xjy, t) + $(X - h,y, t) + @(X,~ + h,t) - 24(x, y,t)

}{
c1

+@(X, y- h,t) +—
1

~(x, y,t + k) - 2@(x, y,t) + d(x, y,t - k)
k2

+“C2

{

24

}{

4,
~ @(x, y,t+k) - ($(xjy, t) =% < (x+alh, y,t)+~(x, y+a2h, t)

8x ay

~ k2Cl 84d kC2 824
(x, ~,t + ~4k) (17)-(x, y,t-+a3k)+~—12 ~t4

at2

where Q<l

If the higher order derivatives on the right side of Eq. (17) are

bounded we can choose h and k small enough that the terms on the right-

hand side are negligible.

Approximating the left-hand side of Eq. (17) by a difference equa-

tion valid at space and time points that are integral multiples of h and k we

have the recursion relation

{
d(lh, mh, (n + l)k) = Al $((1 + l)h, mh, nk) + 4((1 - l)h, mh, nk)

+ ~(lh, (m + l)h, nk) + O(lh, (m - l)h, nk) -
}

40(lh, mh, nk) + A2q5(lh, mh, nk)

+ A3d(lh, mh, (n - l)k) I,m, n-.+ integers (18)

This algorithm gives the values of–d at time (n + I)k in terms of those at

times nk and (n - l)k. The bracketed term on the right in Eq. (18) is a

finite difference approximation to the Laplacian V2@ at time nk. ‘This

5
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quantity can be used to determine the magnetic field from Eq. (16). Since

the quantity B ~Nis continuous across the material interfaces the Laplacian

is also continuous. This boundary condition is used to couple the numerical

calculation in the separate material regions of the problem.

The Laplacian calculation of Eq. (18) uses the mesh points shown in

Figure 2A to determine the Laplacian at the center point of this array of

points. By keeping more terms in the Taylor expansion of Eq. (17) more

exact representations of V2~ can be devised that involve more points in the

mesh and thus more time and complexity in the calculation. The array of

Figure 2A corresponds to an only slightly more complex approximation to

V21 that has been fotind by experience to be more satisfactory in some cal-

culations.

●

@(mh, nh)
●

&

Figure 2A

Using the Laplacian

of Eq. (18) becomes

calculation corresponding to Figure 2B, the algorithm

~(lh, mh, (n + l)k) = Al
[[

4((1 + l)h; (m + l)h, nk) + 4((1 - I)h, (m - l)h, nk)

+ ~((1 + l)h, (m - l)h, nk) + ~((1 - 1[l)h, (m + l)h, nk) + 4 4((1 + l)h, mh, nk) .

1[ 1]+j(lh, (m + l)h, nk) + 4((1 - l)h, nh, nk) + @(lb, (m - L)h, nk) - 20 d(lh, mh, nk)

+ A24(lh, mh, nk) + A3$(lh, mh, (n - l)k) (19)

1, m, n+ integers

6



The geometrical diagram corresponding to Eq. (19) is shown in Figure 3.

This illustrates the basic mesh point cell used in the body of the numerical

calculation.

1+1, m+l, n

$(lkmh;(n + l)k)

Figure 3
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IY. BOUNDARY CONDI’T~ONS

Three types of boundaries occur in the calculation that require mod-

ific ation of the basic computational algorithm given by Eq. (19).

CONDUCTING BOUNDARIES

Conducting boundaries are treated as perfect conductors by demanding

that tangential E be zero at the boundary surface, this implies

a(j_o
(n---b inward normal) (20)

an

Figure 4 illustrates a curved boundary C cutting through the problem mesh.

The inward normal to C at the boundary point @B will cut through the interior

mesh, which has a sufficiently small uniform spacing h, at 4A as shown.

The boundary value 4B is determined numerically from the interior points

in accordance with Eq. (20) by the equation

(21)

Having determined values of 4B wherever the boundary intersects mesh lines

it still remains to find V2 ~ at interior points adjacent to the boundary. If the

boundary cuts through the mesh then the array of points available to compute

V 2~ will not be uniformly spaced.

6
‘2

—

4

Figure 4 Figure 5
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Figure 4 shows anarray corresponding to that of Figure 2A but having

arbitrary unequal spacing. A Taylor expansion of V24 about @(mh, nk)

gives the difference approximation
,

ANALYTIC BOUNDARIES

During the course of the computation part of the problem mesh cor-

responds to regions where trivial plane wave solutions of the differential

equation (13) exist. These regions are determined analytically and not com-

puted numerically. The boundary between these regions is one where 4(x, y, t)

can be specified and used as a boundary condition for the numerical computa-

tion of 4.

The initial incident plane wave can have any time wave form. One

of particular interest is a unit pulse with a linear rise time. This can be

used to approximate a unit step ir~put wave form. This incident pulse propa-

gates as a plane wave until disturbed by refraction from the ground- air

interface. The solution of Eq. (13) for this case is trivial representing

an undisturbed propagation with velocity c. Referring to Figures 8 and 9,

the electric field outside the shaded areas will consist of only the component

Ey with the wave form indicated in Figure 6. The rise time is TR and the

arrival time of the wave front at the spatial point for which E is being
Y

determined is TA. The magnetic field in this region is given by B = E/c.
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Figure 6

If it is assumed that at time zero the wave front is at the origin (O, O) then

the wave front will arrive at any mesh point (x, y) at time t = x/c. There-

fore, from Eq. (15) and Figure 4

Ey(x, t) ❑ O for t <: (23)

()Ey(x, t) =; t -: for
R =<’<tinK=+TR)8TJ ’24

1- -1

Ey=l for min
[( )

;+T
R’ 1Tx <t~T (25

x

where T is the time at which the refracted wave
x

face first arrives at the point x.

Substituting - ~@ /ax for Ey in Eq.

ferential equation for ~ gives

()2$(x,~) = + x ::’t’ - tx
R

for

10

(24) and

:<t<

from the air- ground inter-

solving the resulting dif -
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Equation (25) can be solved by ~ by first substituting - ~~/8x for E
Y

and then integrating to obtain

$i(x, t) =
[-+(->)] ‘or ~n[:+TR)Tx]stsTx( 27)

At each time cycle Eqs. (26) and (27) are used to set values for ~ at all re -

quired points outside the shaded area of Figures 8 and 9.

NIATERIAL INTERFACES

Material interfaces are taken to lie along coordinate lines, y = con-

stant, corresponding to a mesh line in the calculation. The interface is de-

fined by two sets of mesh, which are spatially superposed but taken to belong

to the different regions of the problem, Figure 7 illustrates a section of the

mesh at such an interface.

Figure 7

The two material. regions correspond to different potential functions

~ and ~’ which are solutions of the differential equation (13) with the appro-

priate values of e, 0, and ~. In order to compute values of ~ and #f numeri-
“2 2tally, we must evaluate V @ and V +’ for the interface points in the two re-

gions. Since the quantity 1/pV2# is continuous at the interface we can eval-

uate it using one- sided differences in each region and average the result to

obtain centered difference expressions for the quantity. This procedure

gives

11
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; V2~(lh, mh) = ~
1

V2@’ (Ih, mh) = —
[[

~h2 P @((l +l)h, (m+l)h)

+ r)((l + l)h, (rn - l)h)+2~((l+l)h, mh) +Zd((l - l)h, mh)+4@(lh, (m+ l)h)

1[- 10~(lh,mh) +-p’ 4’((1- l)h,(m- l)h)+~’((1- l)h, (m+l)h

11+2~r((l +l)h, mh)+2d’((1 - l)h, mh)+4~’(lh, (m- l)h) - 10~’(lh,mh) (28)

Equation (28) allows us

regions. We canthenuse this

potential at these points.

-’J
to determine V2 @ for interface points in both

quantity in the. algorithm for computing the

12



V, LOGICAL STRUCTURE OF PROGRANIMOVMSH2

Several different computer programs have been written to apply the

procedures discussed above to particular problems. The program MOVMSH2

was written to carry out a parametric set of calculations on the geometry

shown in Figure 1. Only two material layers are included. This code is

described here to illustrate the application of the numerical technique.

The application of the finite difference formulas given above can be

visualized by referring to Figures 8 through 11. Figure 8 represents the com-

putational mesh and boundaries at an early time t when the incident plane wave

front W has progressed a distance ~ = ct to the right past the origin o. The

diffraction effects in the air arising from propagation in the ground are con-

strained by causality to the interior of the circle B whose radius is ~. out-

side this circle the incident pulse continues to propagate as a plane wave so

that the trivial solution can be used to determine ~ on this boundary. Below

the ground the wave traveling with velocity v has penetrated to a maximum

depth ~ = vt. The line ~ is the wave front in the ground and is thus a boundary

on which @ = O. The numerical computation is then limited to mesh points in-

side the shaded area of Figure 8, with the appropriate boundary condition

enforced on the boundaries of this region. A problem time t
P

is selected

which determines the extent of the computational mesh and limits the retarded

time that the computation is carried to at any mesh point. Figure 9 shows

the configuration of the mesh at a later time t > t
P“

The mesh has in this

case reached its maximum extent determined by ctp and tip. As the com-

putation is carried further the shaded mesh can be visualized as moving to the

right along with the wave front. The boundary B will continue to approach the

wave front W.

The line b is an artificial mesh boundary where the calculation is cut

off. These boundary points are determined separately from the numerical

calculation of interior mesh

points. This approximation

points by simply extrapolating from neighboring

is less accurate than the numerical algorithm

13
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but since the mesh effectively moves with the wave front with velocity c, these

perturbations will not propagate away from the artificial boundary.

Program MOVMSI12 operates on a moving array of points taken from

the equally spaced mesh shown in Figure 10. At the start of the calculation

the wave front lies between the rth and the r + 1st column of Figure 10. Part

1 of Figure 10 is then treated as the source of a plane electromagnetic pulse

polarized as shown in Figure 1 such that, for each mesh point in Part 1,

Ey increases as a linear function of time until a specified maximum is reached.
*

Ey then remains constant and Ex is continuously zero until both quantities are

perturbed by a reflection from the pulse after the wave has moved out over the

air- ground interface.

The boundaries J32, B3, and B4, in Figure 10 are assumed to be con-

ducting boundaries such that at any time t!

(29)

@(xjjYn,t’) = Mx., y ,t’) forj~r+lorj>r+l (30)
j n-1

4(X I’+l’yi’t’)=4(X
r+2jYi, t9 fori~n+l (31)

The quantities 4: d.
+

and 4.
ljj’ ~$j’

refer to values for 4(x, y, t) at that
~3j

spat e point Iocated at the intersection of the ith row and jth column of the

mesh of Figure 10. These values correspond to a monotonically increasing

sequence of time values t - At, t, t + At where At is the time step to be used

in updating the function d.

The calculations used to update # values at points interior to the mesh

and inside the shaded areas of Figures 8 and 9 are of the form

*
The restriction that Ey be a linear function of time

by a simple change of the functional form for 4(x, y,

(32)

can easily be removed

t) in the Subroutine PHI.

16



for i < n, and

4: j =GL
1 i,j

+G@
2 i,j

+G d:
3 ‘l, j

(33)
>

for i > n. In these expressions for $, the quantities Al, A2, A3, Gl, G2,

and G3 represent constants, and L. represents the Laplacian V24. Points
l,j

lying above ground but outside the shaded areas of Figures 8 and 9 are de-

termined according to Eqs. (26) and (27).

For any column of the mesh the two interior points lying in the nth

and n + 1st rows are always considered to occupy essentially the same point

in space. Of these two points, the one from the nth row will be treated as a

point lying above ground. The one from the n + 1st row will be assumed to

lie beneath the ground. Since in this code p(air) = ,u(ground.), V2@ is re-

quired to be continuous across the air- ground boundary the Laplacian calcu-

lation

where

on the

for points in these two rows must be such that for each j

L =L
njj n+l, j

L is computed according to Eq. (28).
njj

When all of the required interior points have been updated those points

boundaries B2, B3, and B4, when included in the traveling mesh, are

updated according to Eqs. (29), (30), and (31), respectively. The boundary

B1 is not a physical boundary but represents the termination of- the calcula-

tion. Points on B1 are determined at each time step by linearly extrapolating

those values lying in the two columns immediately to the right of B1.

Those columns from Figure 10, which comprise the traveling mesh,

are adjusted with time to insure that the wave front always lies between the

two columns at the extreme right of the mesh. This process requires the

periodic addition of a new column on the right-hand side of the traveling

mesh accompanied by a corresponding deletion of the leftmost column of the

mesh.

17



VI. FUNCTIONAL DESCRIPTION OF PROGRAM MOVMSH2

MOVMSH2 MAIN- PROGRAM

The MOVMSH2 main program is used to read input values, set pro-

gram constants, and to provide a mechanism for transferring from the linear

storage blocks, established during set-up procedures, to the two and three

dimensional arrays used for referencing LapIacian and 4 values during

program execution.

SUBROUTINE MAIN

The basic purpose of this subroutine is to control the sequence of

operations performed by

for Subroutine MAIN can

SUBROUTINE START

the other program subroutines. A flow diagram

be found on pages 22 through 25.

This subroutine uses Eqs. (26) and (27) to set initial values for #Jfor

those points shown in Figure 11 at that time when the wave front has just

started to move out over the air-ground interface.

Subroutine START is also used to compute the depth of penetration of

the pulse into the ground. This depth is then indexed in terms of the number

of mesh rows penetrated as a function of column number in the traveling

mesh.

SUBROUTINE POINTS

This subroutine is used to compute the mesh row numbers which cor-

respond to the input array of y values for plot point coordinates. Since the

mesh travels with time, the relationship between mesh column numbers and

the x coordinates of plot points varies with time. Therefore, this relation-

ship is established in the Subroutine L’PTAPE which is called each tim’e out-

put information is requested.

●



SUBROUTINE CIMPLMTS

This subroutine is used to determine those points, for the current

time cycle, which must be updated according to the finite difference equa-

tions (32) and (33). It also determines which points should be set analytically

by using Eqs. (26) and (27) in order to have 4 values available to compute the

Laplacians required for updating an expanded array of @ values at the next

time cycle,

SUBROUTINE LAPLACE

This subroutine uses Eqs. (18), (22), and (28) to calculate Laplacians,

SUBROUTINE PHI

This subroutine uses Eqs. (26), (27), (32), and (33), as appropriate,

to update @ values at all interior points of the traveling mesh.

SUBROUTINE BNDRY

This subroutine is

‘2’ ‘3’
and B4 of Figure

SUBROUTINE UPTAPE

This subroutine is

used to update 4 values along the boundaries B, ,
1

10.

used to comrmte E and. x
values at all mesh points at which output has been

SUBROUTINE FINISH

E It also stores these
Y“

requested.

This subroutine is used to compute values for the B field and to print

and plot values for E
x’ ‘Y= ‘ and’s

PROGRAM INPUTS, STORAGE, AND SET UP PROCEDURES

In order to make a run with Program MOVMSH2, the user must first

decide on the relative position of the boundaries B2, B3, and B4 (Figure 10),

the

the

the

(x, y) coordinates of those

period of time over which

mesh step, the number of

points at which output will be requested, and

output values are to be observed. The size of

update time cycles per mesh step and the

19
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overall width of the traveling mesh must also be specified. The names and

descriptions of the variables which control these and other program processes

are as follows.

Input Variables

Variable Dascription and Comments

DELX The distance (in meters) between adjacent mesh points.

EYMAX The maximum value the y component of the electromag-
netic field is required to reach (see Figure 6).

MPMOD The modulus us-cd to determine the rate at which plot in-
formation will be saved (i. e. , MPMOD = 1 implies data
will be saved at each time cycle, MPMOD = 2 implies
every other time cycle, etc. ).

NC

NCYC LES

NPTS

NR 1

NR2

NTSPSS

TRISE

VIA

V LG

The number of columns in the traveling mesh. (Note
that this quantity limits the time at which information
can be observed at any space point, )

The number of time cycles the program is required to
run. (This value determines how far the wave front will
advance beyond the origin of the (x, y) coordinate system. )

The number of mesh points at which output data will be
saved.

The number of rows in Part 1 of the mesh (see Figure 10).

The number of rows in Part 2 of the mesh. This value de-
pends on the width of the traveling mesh and should be set

[ 1equal to NR1 + NC ‘: (VLG/VLA) + 1 .

The number of update time cycles per space step,

The rise time of the input pulse in seconds (see Figure 6).

The velocity of light in the upper medium (air) in meters/
sec.

The velocity of light in the lower medium (ground) in
meters/see.

20



Variable

XX(J)

YY(J)

Description and Comments

The x coordinate in meters of the Jth point at which output
is requested J = 1, NPTS.

Similar to XX(J) but refers to the y coordinate.

In addition to specifying values for the above set of inputs, the

user may be required to adjust the dimensions of certain blocks in the

MOVMSH2 main program. In particular, if the block PH is dimensioned N,

then N must be at least as large as NR2 ‘XNC ‘~ 2. The minimum dimension

for the block XLP would be NR2 ‘~ NC.

An approximation for the amount of central processor time re-

quired for a given run can be obtained by the formula

CPU Time (seconds) = . 0(J0064(NCYCLES) (NC)(NR1 + NC/6)

PROGRAM OUTPUT

Printed and Tape Output

1 he printed output from Program MOVMSH2 includes all of the

input variables listed above, It also includes a time history of E E

=

x) y’
B, and B at each of the mesh points at which output data has

been requested.

Microfilm Output

The program produces microfilm output showing each of the

quantities E
‘Ys-a

B, and B plotted against time. Separatex’
plots are produced for each of these functions at each of the mesh points

which output has been requested.

at

21



FLOWCHART FOR SUBROUTINE MAIN

Call START (Set ana~ytic
values for @ for small

position of mesh to provide
initial inputs to the finite
difference process. Also
compute arid save array of

numbers showing the ground
boundary of the wave front

in terms of rows of penetra-
tion as a function of column

number in the traveling
mesh. )

F

Call POINTS (Compute row
numbers corresponding to
the y coordinates of aH re-

quested plot points. )
I

Do 100 NN=NTSPSS, NCYCLES
(This is the top of the time
DO loop for the finite dif-

ferencing process. )

v
I Increase the x coordinates I

of the wave front by the
space equi~alent of the I’@

A

time stop. I
I

c1Increment cur-
rent and pre-
vious times

by At.

(533
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B

E: :

Is MOD(NN, NTSPSS)=O (i. e, ,
is it time to shift all @ values No

one column to the left thus
deleting the leftmost column

of the mesh? )

Yes

Perform
shift

E:

Increment the x coordinate
of the leftmost column in

the mesh by Ax.

Decrease by 1 the number
of the column which may

coincide with the boundary
B4 of Figure 10.

L,
Determine the number of

the leftmost column in the <
mesh which requires up-

dating by Eq. (32).

1

I

Call CMPLMTS (Compute
the row and column numbers
which distinguish those por-

tions of the mesh which can be
updated analytically from those

which require the finite dif-
ference method. )

23
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Call LAPIACE
(Compute Laplacians at

all mesh points re-
quiring updating by the

finite different e method. )

Call PHI (Update 4
values at all required

points inside the
traveling mesh. )

dl

Call 13NDRY (Update
~ values at all required
points on the boundaries

‘1’ ‘2’ ‘3’
and B4

of Figure 10.

Does MOD(MM, MPMOD) =0

}

(i. e. , does the plot modulus No
require saving output data at

this time cycle ? )
J 1

I Yes

*
all requested points in the

travelimg mesh. )

&---

24



Q100

(i. e. , have all. re-
quired time cycles w

I been processed, ) I

i

Call FINISH (List
and make microfilm

plots for Ex, E
v’

C
o

E; t E2 , B, and B
Y

at all plot points. )

I Yes

F%il
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VII. GLOSSARY FOR PROGRAM MOVMSH2

The following variables appear in the MOVMSH2 main

in common storage. (For dimensioned variables an M and N

program, or

in a subscript

position will indicate that the dimensions of the block must be set by the

user. )

Variable Description

AMU The magnetic permeability.

CL!3, C2A, C3A, Coefficients used in updating @ values ac-
CIG, C2G, C3G cording to Eqs. (32) and (33).

DELTIME The time step used in updating @ values.

DEL2GSQ The square of the space step between mesh
points.

13T2 The square of the time step.

DXPTS The space step corresponding to a time step.

EPSILON The minimum distance permitted between the
wave front and any column of the mesh.

JS The number of time frames of output data
presently stored in the block XOUT.

LR(1OO) LR(J) is the row number corresponding to
the y coordinate of the Jth plot point.

MXLP1A2 This quantity is a function of time and is the
leftmost column of the mesh at which # values
require updating by the finite difference method.

NCLB The number of the column in the traveling mesh
which coincides with the boundary B. of Figure

NCM1

NDUMPS

10.

NC1 - 1.

The numb er of output
written on the disk.

‘f

files of plot information
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DescriptionVariable

NFCI

NFR(1OO1)

NLCIJ

NLR(1OO1)

NRIM1

NRIP1

NR1P2

PH(N)

SIGA , SIGG

TIAST

TNOW

XLG

XLP(M)

XOUT(5, 100)

The leftmost column of the mesh which inter-
sects the circle of Figure 8.

NFR(K) is the row number of the last point in
the Kth column that lies inside the circle of
Figure 8.

The rightmost column of the mesh at which the
pulse has penetrated at least one space step
into the ground.

NLR(K) is the depth of penetration of the pulse
at the Kth column measured in rows beneath
the ground.

N-RI - 1.

NR1 + 1.

NR1 +2.

Storage for 6 values.

The conductivity y of the air and ground, re-
spectively.

The time for the previous time cycle.

The time for the current time cycle.

The x coordinate of the leftmost column in the
traveling mesh.

Storage for the array of V2@ values.

XOUT(l, J) associates this data frame with the
x, y coordinates of a particular point at which
output has been requested.

XOUT(2, J) = Time

xouT(3, J) = a4/ay

xouT(4, J) = so/ax

XOUT(5, J) ‘ V24
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Variable Description

XVKF The x coordinate of the wave front.

Y1, Y2, Y3, Y4 Temporary storage.

DESCRIPTION OF VARIABLES FOR SUBROUTINE NIAIN

Variable Description

J Run subscript.

JJ Indicates if mesh columns are to be shifted.

K,L Column and time subscripts.

MM Used to assure that the mesh will be shifted
after the first pass through the time DO loop.

NJ .Indicates if plot information is required for
the current time cycle.

I’m Index for the time cycle DO loop.

PH(NR2, NC, 2) PH(J, K, L) refers to the value of 4 in the Jth
row and Kth column of the traveling mesh.
L = 1 implies @ is for current time cycle.
L = 2 implies the previous time cycle.

XLP(NR2 , NC) XLP(J, K) corresponds to PH(J, K, 1) but re-

fers to Vz$.

DESCRIPTION OF VARIABLES FOR SUBROUTINE START

Variable Description

C2T2 Temporary storage.

J,K, L Row, column”, and time subscripts.
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Variable

N1, N2

PH(NR2 , NC , 2)

TIME

VA L

x

XDC

XLP(NR2, NC)

Description

Used to define the column and
setting initial values for $.

Same as in Subroutine IvIAIN.

row bounds for

Used to define the times at which initial values
for $ are set.

O value.

Used to define x coordinates of points at which
initial values for.@ are required.

The x coordinate divided by the velocity of
light.

Same as in Subroutine MAIN.

DESCRIPTION OF VARIABLES FOR SUBROUTINE POINTS

Variable Description

DPTHG The y coordinate of the air-ground boundary
relative to a coordinate system where the zero
value for y corresponds to the boundary B2 of
Figure 10.

J

NR2

NROW

TMP

Y

Plot point subscript.

Same as input variable NR2.

Row indicator for the y coordinate of a plot
point.

Temporary storage.

The y coordinate of a plot point relative to the
coordinate system described for DPTHG above.

29



>

DESCRIPTION OF VARIABLES FOR SUBROUTINE CMPLMTS

Variable Description

DIST A distance tested to determine if a column re-
quires updating by the finite difference method.

DST A distance used in determining the uppermost
point in a given column which requires updating
by the finite cliff erenc e method.

13x The distance from a column to the origin of
the x, y system.

DXS

D~

K

KK

N1, N2

NSUB

x

(DX)2.

A measure of distance from the Y axis.

Column index.

Column index.

Temporary storage.

The row number of the uppermost point in a
given column lying inside the circle of Figure 8.

The distance used in determining if a given
column intersects the circle of Figure 8.

DESCRIPTION OF VARIABLES FOR SUBROUTINE LAPLACE

Variable Description

J, JM, JP Row subscripts.

K, KM, KP Column subscripts.

GAMMA The distant e from the wave front to the first
column inside the wave front.

NI, N2 Row subscripts.
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Variable

PH(NR2 , Nc ) Same as PH(NR2, NC, 1) in Subroutine MAIN.

S1, S2, T1, T2, T3 Temporary storage.
TMP1 , TMP2 , TMP3

XLP(NR2 , NC) Same as in Subroutine MAIN.

DESCRIPTION OF VARLABLES FOR SUBROUTINE PHI

Variable

EMDTR

J,J1

K,K1

N1, N2

NC

NR2

NSB

PH(NR2 , NC)

PHM(NR2 , NC)

TMPyvAL, vAL2

x

XDC

XLP(NR2 , NC)

Description

EYMAX/TRISE.

Row subscripts,

Column subscripts.

Row subscripts.

Same as input variable NC.

Same as input variable NR2.

The one dimensional equivalent of the sub-
script pair (J, K).

Same as PH(NR2, NC, 1) in Subroutine MAIN.

Same as PH(NR2, NC, 2) in Subroutine IVLAIN.

Temporary storage.

The x coordinate of a column.

The time required for the pulse to arrive at
some point x,

Same as in Subroutine IWAIN.
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DESCRIPTION OF VARIABLES FOR SUBROUTINE BNDRY

Variable

J

K

Nc

NR2

PH(NR2 , NC)

Description

Row subscript.

Column subscript.

Same as input. variable NC.

Same as input variable NR2.

Same as PH(NR2, NC, 1) in Subroutine MAIN.

DESCRIPTION OF VA RL4BLES FOR SU-BROUTINE UPTAPE

Variable Description

DCOL

J,JR

Nc

NCOL

NR

PH(NR, NC)

XLP!NR, NC)

Floating point representation of the mesh
column in which a p~ot point currently lies.

Row subscripts.

Same as input variable NC.

DC OL truncated to an integer.

Same as input variable NR2.

PH(J, K) corresponds to PH~J, K, 1) in Sub-
routine MAIN.

DESCRIPTION OF VARIABLES FOR SUBROUTINE FINISH

BSUM

J

Same as in Subroutine IWAIN.

Variable

B as defined in

Frame counter

32
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Eq. (4)*

for disk file of output points.



, *

Variable

JP

M

N

NPL

NPLTPTS

PH(NPLTPTS, 6)

x2

x3

x4

x5

X6

Description

Frame counter for new file of plot values.

Plot point identifier.

Record count from disk file.

Plot point identifier from output array.

Maximum linear array of points which can
be stored in output file.

Used to store plot point file.

Time

E
x

E
Y

v2d)

-@T
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VHI. PROGRAM LISTING

● ✌

PROGRAM MOVMSH2 (INPUT, OUTPUT, TAPE1)
DIMENSION PH(15000), XLP(7500)
coMMo N /UPDATE/ XWF, XLC, TLAST, TNOW, NC LB, NFCI, ~LP1A2
COMMON /SET/ DXPTS, DELTIME, NLCLI, NCM1, NRIM1 , NRIP1,

1NRIP2 , NR2M1, DELXSQ, EPSILON
COMMON /IPT/ NTSPSS, NCYCLES, DEIX, VLA, VLG, EYMAX, NR1,

ITRISE, NPTS, TRUN
COMMON /ROWS/ NFR(lOO1), NLR(lOOl)
COMMON /COEF/ CIA, c2A, C3A, CIG, C2G, c3G
COMMON XX(lOO), YY(lOO), LR(lOO), XOUT(~, 100), MPMOD
COMMON /S/ X3, NDUMPS
READ 6, TRUN
READ 2, NPASS
DO 1 NNN=l, NP.ASS
Js=o
ND”UMPS=O
REWIND 1
READ 2, NTSPSS, NCYCLES, NR1, NR2, NC, NPTS, MPMOD
PRINT 3, lNTSPSS, NCYCLES, NR1 , NR2 , NC, NPTS, MPMOD

c NTSPSS MUST BE GREATER THAN 1.
READ 4, DELX, EYMAX, VLA, VLG, TRISE
PRINT 5,, DELX, EYMAX, VLA, VLG, TRISE
READ 6, ((XX(J), YY(J)), J=l, NPTS)
DXPTS=DELX/NTSPSS
DELTIME=DEIiX/ (VLA’:<NTSPSS)
NCM1=NC-1
NRIM1=NR1-I
NRIP1=NR1+l
NR1P2=NR1+2
NR2M1=NR2-1
DELXSQ=DELX;~DELX
EPSILON=. 59’DELX/ NTSPSS
DS2=DELX;:’DELX
DT2’DELTI.ME’~’DELTIME
EP1=8. 854E-12
EP2=1O. “:EP1
SIGA=O.
SIGG= 1. E-3
PRINT 7, SIGG, SIG.4
SI.G-~SZGG
AMU=I. 25i’E-6
YI=2. ‘;’EP1$FAMU
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Y3=2. ‘~EP2’~AMU
Y2’DELTIME’:SIGA *AMTJ
Y4=DELTIME’~sIGG’~’AMu
C1A=2. ‘~DT2/(DS2’:(Y1+Y2))
C1G=2. ‘~DT2/(DS2’~(Y3+Y4))
C2A=2.’~:Yl/(Yl+Y2)
C2G=2. ‘~Y3/(Y3+Y4)
C3A=(Y2-Yl)/ (Yl+Y2)
C3G=(Y4-Y3)/ (Y3+Y4)
PRINT8, CIA, C2A, C3A, CIG, C2G, C3G
CALL MAIN (PH, XLP, NR2, NC)

1 CONTINUE
STOP 10

c
2 FORIMAT (1HO, I9,7I1O)
3 FORIWAT (lHO///, llH NTSPSS= ,14,13H, NCYCLES= ,14,9H,

lNR1 = ,14,9H, NR2 = ,14,8H, NC = ,14, 10H, NPTS = ,14, 11H,
2MPMOD ❑ ,12, /)

4 FORMAT (5E15. 3)
5 FORIVLAT (lHO/,9H DELX = ,E15. 3,11H, EYMAX = ,E15.3,9H,

lVLA = ,E15.3,1OH, VLG = ,E15.3,11H, TRISE = ,E15. 3(/)
6 FORMAT (8F1O. O)
7 FORMAT (9H SIGG = ,E15.3,1OH, SIGA = ,E15. 3,/)
8 FORMAT (8H CIA = ,E20.3,9H, C2A = ,E20.3,9H, C3A = ,E20. 3,/

1,8H CIG = ,E20.3,9H, C2G = ,E20.3,9H, C3G = ,E20.3, /)
END
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SUBROUTINE MAIN (PH, XLP~ NR2 , NC)
. .

1

2

3

4
5

6

7

SUBROUTINE MAIN (PH, XLP, NR2 , NC)
DIMENSION LHEAD(l 00)
DIMENSION PH(NR2 , NC, 2), XLP(NR2 , NC)
CoMMoN /UPDATE/ XWF, XLC, TLAST, TNOW, NCLB, NFCI, MXLP1A2
coMMoN ISET / DXPTS, DELTIME, NLCLI, NCM1, NRIMI, NRIP1,

INR1P2 , NR2M1 , DEL2LSQ, EPSILON
coMMoN /IPT/ NTsPss, NCYCLES, DEW, VLA, VLG, EYMAX, NR1,

lTRLSE , NPTS, TRUN
COMMON /ROWS/ NFR(lOO1), NLR(1OO1)
COMMON /COEF/ CIA, c2A, C3A$ CIG, C2G, C3G
COMMON XX(lOO), YY(1OO), LR(lOO), XOUT(5, 100), MPMOD
CALL SECOND (Tl)
CALL START (PH, XLP, NR2 , NC)
CALL POINTS
DO 7 NN=NTSPSS, NCYCLES
XWF~XWF+DXPTS
TLAST=TNOW
TNOW=TNOW+DELTIME
JJ=MOD(NN, NTSPSS)
IF (JJ) 3,1,3
DO 2 J=1$NR2
DC) 2 K=l , NCM1
D02L”1,2
PH(J, K, L)= PH(J, K+l, L)
XLC=XLC+DEIJX
NCLB=NCLB- 1
mxLPlA2=mxo((NcLB+ l),2)
CALL CMPLMTS
CALL LAP LACE (PH, XLP, NR2, NC)
CALL PHI (PH, PH(l, 1,2), XLP, NR2, NC)
CALL BNDRY (PH, NR2 , NC)
MM= NN-NTSPSS
NJ=MOD(MM, MPMOD)
IF (NJ) 5,4,5
CALL UP’TAPE (PH, XLP, NR2, NC)
CONTINUE
CALL SECOND (T2)
IF (T2-T1-TRUN) 7,6, 6
NCYCLES=NN
PRINT 8, NCYCLES
CONTINUE
PRINT 9, NCYCLES, T2
NPLTPTS=NC’~NTSPSSt10
CALL FIN.ISH (PH, NPLTPTS)
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. .

RETURN
c
8 FORMAT (lHO///,35H TIME ESTIMATE EXCEEDED AT NCYCLES

1=,14,///)
9 FORMAT (l HO///, 17H RUNNING TIME FOR,15, 9H CYCLES =, F8. 3,

15HsEc. >/)
END
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— ——. ——————————-——- ..
SUBROUTINE START (PH, XLP, NR2 , NCJ

1

2

3
4

5
6
7

SUBROUTINE START (PH, XLP, NR2 , NC)
DIMENSION’ PH(NR2 , NC, 2), XLP(NR2, NC)
coMMoN /UPDATE/ XWF, XLC, TLAST, TNOW, NC LB, NFCI, ~LP1A2
COMMON /SET/ DXPTS, DELTIME, NLCLI, NCM1, NRIM1, NRIP1,

1NR1P2, NR2M1 , DELXSQ, EPSILON
COMMON /IPT/ NTSPSS, NCYCLES, DELx, Vm, VLG, EYMAX, NRl,

ITRISE, NPTS, TRUN
COMMON /ROWS/ NFR(lOO1), NLR(lOOl)
COMMON /COEF/ CIA, C2A, C3A, CIG, C2G, C3G
DO 1 J=l, NR2
DO 1 K=I, NC
XLP(J, K)=O. (1
DO 1 L=1,2
PEI(J, K, L)=O. O
TNOW= (NTSPSS- 1) ’~DELTIME+EPSILON/ VLA
TLAST=TNOW-DELTIME
XWF= (NTSPSS- 1) ‘~:DELX/’ NT SPSS+EPSILON
XLC=-DELX’*(NC-2)
NC LB=NCM1
NFCI.=NCM1
N1=NCM1-2
N2=NR1-3
TIME= TNOW+DELTIME
D07L=1,2
TIME= TIME- DELTIME
X=-3. :~DELx
DO 6 K=N1, NCM1
X= X+DEI.X
c2T2.(vLA:KT~ME):k*2
EMDT-R=EYIWAX/TRISE
XDC=X/VLA
IF (TIME-XDC-TRISE) 2,3,3
VA L= EMDTR:::((X:~X+ C2T2)/ (2. ‘HULA)-TIME~X)
GO TO 4
vAL-EYMAx:’(-x+vLA~’( TIME- TRIsE/2 .))
CONTINUE
DO 5 J=N2, NR1
PH(J, K, L)=VAL
CONTINUE
CONTINUE
NLCLI=NCM1
DO 9 K=2, NCM1
NTMP= (VLG/ VLA)’~(NC- K)-I-EPSILON+NRIP1
IF (NTMP-NRIPI) 8,8, 9
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8 NLCLI=K-1
GO TO 10

9 NLR(K)=MINO(NTMP, NR2M1)
10 C ONTIIWJE

N1=NLCLI+l
DO 11 K=N1, NCM1

11 NLR(K)=NRIP1
RETURN
END

39



SUBROUTINE POINTS (IPTS)
.,

SUBROUTINE POINTS (IPTS)
coMJMoN /UPDA.TE/ XWF, XLC, TLAST, TNOWj NCLB, NFCI, MXLP1A2
COMMON /SET/ DXPTS, DELTIME, NLCLI, NCMI, NRIM1, NRIP1,

lNR1 P2 , NR2M1 , DELXSQ, EPSILON
COMMON /IPT/ NTSPSS, NCYCLES, DEU, vu, VLG, EYWX, NR1,

ITRISE, NPTS, TRUN
COMMON /ROWS/ NFR(1OO1), NLR(1OO1)
COMMON /COEF/ CIA, C2A, C3A, CIG, C2G, C3G
COMMON /’S/ NDUMPS, JS
COMMON XX(lOO), YY(lOO), LR(lOO), XOUT(5, 100), MPMOD
DPTHG= NR1 M1’~DELX
NR2=NR2M1+1
DO 15 J=l, NPTS
TMP=XX(J)/DELX
NTMP=TMP
IF (TMP-NTMP-.5) 2,2,1

1 NT MP=:NTMP+l
2 XX(J) =NTMP’~:DEILX

Y= YY(J)
IF (Y) 6,3,6

3 IF (SIGN(l. O, Y)) 4,5,5
4 LR(J)=NR1-i-l

GO TO 15
5 LR(J)=NR1

GO TO 15
6 Y= DPTHG-Y

TMP=Y/DELX
NROW=TMP
IF (TMP-NRow-. 5) 8,8,7

7 LR(J)=NROW+2
GOT09

8 LR(J)=NROW+l
9 IF (yY(J)) Io,ll,fl
10 LR(J)=LR(J)+I
II IF (LR(J)) 12,13,13
12 LR(J)=l

YY(J)=DPTHG
13 IF (LR(.J)-NR2-1) 15, 15,14
14 LR(J)’NR2-1

YY(J)’- (NR2-NRl-2)’~’DELx
15 CONTINUE

PRINT 16
PRINT 17
PRINT 18, (( J, XX(J), YY(J), LR(J)), J=l, NPTS)

“ .
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RETURN
c ..
16 FORMAT (78H THE FOLLOWING LIST CONTAINS ALL POINTS

lAT WHICH OUTPUT WAS REQUESTED/)
17 FORNIAT (87H POINT NUMBER x

1 Y ROW, //)
18 FORMAT (12X,15, 16X, F10.2,12X, F1O. 2,16X,15)

END

41



. .

--.—- —-- —. .-— ---—- .- —-

1

2
3

4
5

6

7
8

9
10

11

12
13

Su Bfi(_)u ‘rl..N.ticN1.PLM’l’s
.,

SUBROUTINE CMPLMTS
CoMMoN /UPDATE/ XWF, XLC, TLAST, TNOW, NCLB, NFCI, wLP1A2
COMMON /SET/ DXPTS, DELTIME, NLCLI, NCM1, NRIM1, NRIP1,

1NR1P2 , NR2M1 , DEI.iXSQ, EPSILON
coMMoN /IPT/ NTSPSS, NCYCLES, DELX, vm, VLG, EYIktAX, NR1,

lTRISE, NPTS, TRUN
COMMON /ROWS/ NFR(1OOI), NLR(1OO1)
COMMON /COEF/ clA, c2A, c3A, CIG, c2G, c3G
IF (NFCI-2) 4,4,1
X= XLC+(NFCI-’l)’~DELX
DO 3 KK=3 , NFCI
X= X-DELX
DLST=SQRTF(X+X+DE UC3Q)
IF (DIST-XWF) 2,4,4
NFCI=NFCI- 1
CONTINUE
NFCI=MAXO(NFCI, 2)
IF (NFcI-NCLB) 5,5,9
NSUB=NRIM1
DO 8 K=NFCI, NCLB
IF (NSUB-2) 8,8,6
DX= (NCLB-K)’~DELX
DXS= DX$’DX
N1=NSUB-2
DO 7 J=l, N1
DY=(NR1-NSUB+l) ~DELX
DST=SQRTF(DY’~DY+DXS)
IF (DST-XWF) 7,8,8
NSUB= NSUB- 1
NFR(K)=NSUB
N1=NCLB+l
GO TO 10
N1=2
NSUB=2
DO 15 K=N1, NCM1
DX= (K- NC LB) ’~DELX
DXS=DX’:DX
IF (NSUB-NRIM1) 11,11,14
DO 12 J=NSUB, NR1
DY=(NR1-NSUB)$: DELX
DLST=SQRTF(DY:~DY+DXS)
U? (DIST-XWF) 13,12, 12
NSUB=NSUB+I
NFR(K)= NSUB
GO TO15
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14 NFR(K)=NR1
15 NFR(K)=MINO(NFR( K), NR1)

IF (NFCI-2) 18,18,16
16 N2=NFCI-1

DO 17 K=2, N2
17 NI?R(K)=NR1
18 CONTINUE

RET-URN
END

. .
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SUBROUTINE LAPlL4 CE (P13, XLP , NR2 , NC)
..

SUBROUTINE LAPLACE (PH, XLP, NR2 , NC)
DIMENSION PH(NR2 , NC) , XLP(NR2 , NC}
COMMON /UPDATE/ XWF, XLC, TLAST, TNOW, NCLB, NFCI, WLP1A2
COMMON /SET/ DXPTS, DELTIME, NLCLI1 NCMIS NRl~lj NRIPL

INR1P2 , NR2M1 , DELXSQ, EPSILON
COMMON /IPT/ NTSPSS, NCYCLES, DELX,VLA, VLG, EYNL4X, NR1,

ITRISE, NPTS, TRUN
COMMON /ROWS/ NFR(1001), NLR(1OO1)
COMMON /COEF/ CIA, C2A, C3A, CIG, C2G, C3G
DO 1 J=l, NR2
DO 1 K=l, NC
XLP(J, K)=O. O
DO 6 K=NFCI, NCM1
N1=NFR(K)
IF (NI-NRIM1) 2,2,6
COMPUTE LAPLACI-ANS INSIDE CIRCLE AND ABOVE GROUND
DO 5 J=N1, NRIMI
JM=J- 1
JP=J+l
KM= K-1
KP=K+l
IF (K- NCMI) 4,3,4
GAMMA =XWF-(K-NCLB)’~ DELx
S1=(PH(JM, K)+PI$(JP, K)-2. ‘~PH(J, K))/ DELXSQ
s2=2. ‘~(GAMMA’~PH(J, KM)- PH(J, K)x(DEM+GAMIWA) )/( DEU+GAMU

l~i(GAMNU3+DELX))
XLP(J, K)=(Sl+S2)’~DEIiXSQ
GO TO 5
CONTINUE
TMP1=PH(JM, KM)+PH(JM, KP)+PH(JP, KNI)+PH(JP, KP)
TMP2=PH(J, KM)+PH(J, KP)+PH(JM, K)+ PH(JP, K)
XLP(J, K) ’( TMP1+4* ‘~(TMP2-5.:~PH( J, K)))/6.
CONTINUE
CONTIIVUE
COMPUTE LAPLiACIANS ALONG AIR GROUND INTERFACE
IF (MXLP1A2-NC) 7,15,15
DO 11 K=MXLP1A2, NCM1
TI’(PH(NRl, K-l)+ PH(NRIPlj K-1)) /2.
T2=(PH(NR1, K)+ PH(NRIP1, K))/2.
“T3’(PH(NRl, K+l)+PH(N=lPl jK+l))/2.
IF (K- NCM1) 9,8, 9
GAMl~=XWF-(K-NCLB) ’~DELx
S1=(PH(NRIM1, K)+ PH(NR1P2, K)-2. +T2)/DELXSQ
S2=2 . '``(GAMMA'~`Tl-T2': (DELx+GAMm))/ (DEm``GAMm*{GAMm+

lDELIi))

●
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9

10
11
c

12

13
14
15

TMP3=(Sl+S2)’~DELXSQ
GO TO 10

.,

CONTINUE
TMP1=PH(NRIM1, K- l)+ PH(NRIM1 , K+1)+PH(NR1P2, K- 1)+ PH(NR1P2,

lK+l)
TMP2=T1+T3+PH(NR1 M1, K)+PH(NR1P2, K)
TMP3=(TMP1+4. ‘~:(TMP2-5. ‘:T2))/6.
XLP(NR1, K)”’TMP3
XLP(NRIP1, K)=TMP3
COMPUTE iMPLACIANS BELOW GROUND
IF (WXLPIA2-NLCLI) 12, 12, 15
DO 14 K=MXLPIA2, NLCLI
N2=NLR(K)
DO 13 J=NR1P2, N2
JM=J- 1
JP=J+l
KM= K- 1
KP=K+l
TMP1=PH(JM, KM)+ PH(JM, KP)+PH(JP, KM)+ PH(JP, KP)
TMP2=PH(J, KM)+ PH(J, KP)+PH(JM, K)+ PH(JP, K)
xLP(J, K)=(TMP1+4. ~:(TMP2- 5. >:PH(J, K)))/6.
CONTINUE
CONTINUE
RETURN
END



SUBROUTINE FINISH (PH, NPLTPTS)
..
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SUBROUTINE FIFJLSH(PH, NPLTPTS)
DIMENSION PH(NPLTP’TS, 6)
COMMON /UPDATE/ XWF, XLC, TLAST, TNOWj NCLB, NFCI, MXLP1A2
COMMON /SET/ DXPTS, DELTIME, NLCLI, NCMI, NRI.M1, NRIP1,

1NRIP2 , NR2M1 , DELXSQ, EPSILON
COMMON /IPT/ NTSPSS, NCYCLES, DEU, VLA, VLG, EYRfAX, NRIj

lTRLSE, NPTS, TRUN
COMMON /ROWS/ NFR(1OO1), NLR(1001)
COMMON /COEF/ CIA, c2A, c3A, CIG, C2G, c3G
COMMON /S/ NDUMPS, JS
COMMON XX(lOO), YY(lOO), LR.(lOO), XOUT(~, 100), MPMOD
IF (;S) 4,4,1
JJS=JS*5
NDUMPS=NDUMPS+l
BUFFER OUT (1, 1) (XOUT, XOUT(JJS))
IF (UNIT, I) 2,453,3
PRHVT 1%
CONTINUE
DO 17 M=l, NPTS
REWIND 1
PRINT 19, M, <XX(M), YY(M)
JP=O
ELSUM=O.0
PRINT 21
DO 16 N=l , NDUMPS
fF (N- NDUMPS) 7,5,7
IF (JS) 7,7,6
NNIXD=JS
BUFFER IN (1,1) (XOUT, XOUT(JJS))
GO TO 8
NNIND= 100
BUFFER IN (1,1) (XOUT, XOUT(500))
IF (UNIT, I) 8,10, 9,9
PRINT’ 20
STOP
DO 15 J=l , NNIND
NPL=XOUT(l , J)
IF (NPL-M) 15,11,15
D’xx(M)*’*2+YY( M)i’*2
X2= XOUT(2, J}
X3=.XOUT(3 , J)
X4= XOUT(4, J)
X5”XOUT(5, J)
X6= SQRTF(X3’~X3+X4’~ X4)

46



R=(VLA~X2):~:~2
IF (R-D) 12,12,13 . .

12 B1=BSUM
BsuM=x4/vIA
x5=( BsuM-Bl)/DELTIME
GO TO 14

13 BSUM=BSUM+XOUT( 5, J) ’: DELTIME’:MPMOD
14 PRINT 22, X2, X3, X4, X6, BSUM, X5

JP=JP+l
PH(JP, 1)=X2
PH(JP, 2;=X3
PH(JP$ 3)=X4
PH(JP, 4)=X6
PH(JP, 5)=BSUM
PH(JP, 6)=X5

15 CONTINUE
16 CONTINUE
17 CONTINUE

RETURN
c
18 FOR1’vIAT (35H CANT WRITE ON OUTPUT FILE)
19 FORMAT (I HI, 18H VALUES FOR POINT ,12, 6H, AT (,F6. 2, lH, ,

lF6.2,1H), //)
20 FORNIAT (34H CANT READ THE INPUT TAPE)
21 FORMAT (113H TIME EX EY

1 E-TOTAL B B-DOT,//)
22 FORNIAT (2X, E12.4, 5E20e4)

END
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SUBROUTINE BNDRY (PEL NR2 , NC)

SUBROUTINE BNDRY (PH, NR2 , NC)
DIMENSION PH(NR2 , NC)
coMMoN /UPDATE/ XWF, XLC, TMST, TNOW, NCLB, NFCI, MXLP1A2
coMMoN /SET/ DXPTS, DELTIME, NLCLI, NCMI, NRIM1, NRIPI,

INR1P2 , NR2M1 , DELXSQ, EPSILON
COMMON /IPT/ NTSPSS’, NCYCLES,

1TRLSE , NPTS , TRUN
COMMON /ROWS/ NFR(1001), NLR(:

DELX, VLA, VLG, EYMAX, NR1,

001)
COMMON /COEF/ CIA, c2A, c3A, CIG, c2G, c3G
DO 1 J=2, NR2M1

1 PH(J, 1)=2. ~PEI(J,2)-PH(J,3)
IF (NCLB) 5,5,2

2 D03 K=l, NCLB
3 PH(NR1, K)= PH(NRIM1, K)

DO 4 J=NRIP1, NR2MI
4 PH(J, NCLB)=PH(J, NCLB+l)
5 DO 6 K=l, NCM1
6 PH(l, K)=PH(2 , K)

RETURN
END
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SUBROUTINE PHI (PH, PHM, XLP, NR2 , NC)

SUBROUTINE PHI (PH, PHM, XLP, NR2 , NC)
DIMENSION PH(NR2 , NC) , PHM(NR2 , NC), XLP(NR2 , NC)
coMMoN /UPDATE/ XWF, XLC, TLAST, TNOW, NCLB, NFCI, MXLP1A2
COMMON /SET/ DXPTS, DE LTIME, NLCLIj NCM1, NRIMI, NRIPI,

1NR1P2, NR2M1, DELXSQ, EPSILON
coMMoN /ITP/ NTsPss, NCYCLES, DELX, vLf3, VLG, EYmX, NRI,

lTRISE, NPTS, TRUN
COMMON /ROWS/ NFR(lOO1), NLR(1OO1)
COMMON /COEF/ cIA, c2A, c3A, CIG, C2G, C3G
UPDATE PHI VALUES LYING ABOVE GROUND AND INSIDE CIRCLE.
DO 1 K=NFCI, NCM1
N1=NFR(K)
DO 1 J=N1 , NR1
NSB= (K-1 )’:NR2+J—
TMP=CIA’~XLP(NSB) +C2AZ:PH(NSB)+C3 A~P~(NSB)
PHM(NSB)=PH(NSB)
PH(NSB)=TMP
UPDATE PHI VALUES ABOVE GROUND OUTSIDE CIRCLE FOR
COLUMNS IN VICINITY OF CIRCLE
K1=MAXO(2, NFCI-2)
DO 13 K=K1, NCM1
J1=NFR(K)-1
X=( K- NCLB)’~DEILX
IF (J1-2) 13,2,2
EMDTR=EYMAX/TRISE
XDC=X/VLA
C2T2’(VLA*TNOW) ’:’:2
IF (TNOW-XDC-TRISE) 3,4,4
VA L= EMDTR’~’((X:~X+ C2T2)/ (2. WLA)-TNOW’~X)
GO TO 5
vAL=EYMAx’1:(-x+v L&:( TNow-TRIsE/2 .))
IF (VLA’KTLAST-X) 6,6, 7
VAL2=0. o
GO TO 11
C2T2’(VLA’:TLAST) ’:’:2
IF (TLAST-XDC-TRISE) 8, 9,9
VAL2=EMDTR’~((X’~ X+ C2T2)/(2. ‘WLA)-TLAST+X)
GO TO 10
vAL2=EYMAx>:(-x+vM~:: (TusT-TRIsE/2. ))
CONTINUE
CONTINUE
DO 12 J=2, J1
NSB=(K-1)’:NR2+J
PHM(NSB) =VA L2
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,

12 PH(NSB)=VAL
13 CONTINUE
c UPDATE PHI VALUES BELOW GROUND

DO 15 K=MXLP1A2, NCM1
N2=NLR(K)
DO 14 J=NRIP1, N2
NSB=(K-1)’:NR2+J
TMP=CIG~XLP(NSB) +C2G:~PH(NSB)+C3 G’:PHM(NSB)
PEIM(NSB)=PFI(NSB)

14 PH(NSB)=TMP
15 CONTINUE

RETURN
END
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SUBROUTINE UPTAPE (PH, XLP, NR, NC)
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SUBROUTINE UPTAPE (PH, XLP, NR, NC)
DIMENSION PH(NR, NC), XLP(NR, NC)
COMMON /UPDATE/ XWF, XLC, TLAST, TNOW, NCLB, NFCI, MXLP1A2
COMMON /SET/ D2KPTS, DELTIME, NLCLI, NCMI, NRIMI, NRIPI,

1NR1P2, NR2M1, DELXSQ, EPSILON
COMMON /IPT/ NTSPSS, NCYCLES, DEI.X, VLA, VLG, EYIWAX, NR1,

ITRISE, NPTS, TRUN
COMMON /ROWS/ NFR(IOO1), NLR(1OO1)
COMMON /COEF/ CIA, c2AJ c3A$ CIG, C2G, C3G
COMMON /S/ NDUMPS, JS
COMMON XX(lOO), YY(1OO), LR(lOO), XOUT(5, 100), MPMOD
DATA (JS=O), (ND’UMPS=O)
DO 13 J=l, NPTS
DCOL=(ABSF(XX(J) )-XLC)/DELX+l. 00001
NCOL=DCOL
IF (DCOL-NCOL-. 5) 2,2, I
NCOL”~NCOL+l
IF (NcOL-1) 13,13,3
IF (NCOL-NC) 4, 13, 13
JS=JS+l
DIV=DEllX
IF (NCOL-NCMI. ) 6, 5, 6
XXD=(NCOL- l)+ DELX+XLC
DIV=XWF-XXD
CONTINUE
XOUT(l, JS)=J
xouT(2j Js)=TNow
JR= LR(J)
IF (JR- NR1) 7,7,8
XOUT(3, JS)=(PH(JR- 1, NCOL)-PH(JR, NCOL))/DELX
GO TO 9
XOUT(3, JS)=(PH(JR, NCOL)-PH(JR+l, NCOL))/DELX
XOUT(4, JS)=(-(PH(JR, NCOL+l)-PH(JR, NCOL)))/DIV
XOUT(5, JS)=XLP(JR, NCOL)/DELXSQ
IF (JS-1OO) 13,10,10
JS=O
NDUMPS=NDUMPS+I
BUFFER OUT (1, 1) (XOUT, XOUT(5.00))
IF (UNIT31) 11,13,12,12
PRINT 14
STOP
CONTINUE
RETURN

FORNIAT (23H CAN’T WRITE PLOT
END
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