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Abstract

In this report an épproximation scheme is developed which is
applicable, in principle, to both ground bursts and to very low alti-
tude air bursts and to all distances from the exploéion. Ihis result
1s achieved by limiting our attention to fields near the ground and to
the early phases of such signals, specifically to times T < h/c (l, c

respectively gamma ray mean free path and light veloecity).
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1. ¢ Introduction

"Ina private conversation'with the author, W;'J;:kéfiéé'poiﬂ£edv
out that the high frequency approximation, recently déveloped for &
unified theory of the air'bﬁrst;(l) could also lead to considerable
~ simplification of the ground burst problem. The essence of this method

is-to express everything in terms of retarded timé, T ='t:—“f/c;'ahd’u
"to neglect 3/dr of any field quantity compared with a/ca+”6f ‘the” sdme’
quantity. However, for the ground burst, terms in 3/36 must be kept
as they will be large near the ground. This scheme leads to equations
previously found(l) for Ee and §$ but to a complicated eéﬁahién for E;.
So far everything is streightforward; it is at this point that

Karzas' suggestion becomes. significant. His pfoposhlﬁis to%simﬁiiffvh
the radial equation by a procedure used by Longmire(e) in a different
context. Namely .one éonsiders‘pwo regions, an-inneffregidp where
conductivity is high and conduc£ion éﬁrrént dominates displacement

current, and an outer region where the reverse is true. Following

Longmire, we may call the reglon where conduction current dominates the

diffusion zone and the outer region the wave zone.

In this report we have carried out ‘the details of maklng the ap-
proximaetions outlined above and of applying the results to the calcu-
lation of the magnetié field in the near zone. The results are found

to compere quite favorably with those of the same problem solved by



'sfepwis‘e numerical integration of Maxwell's equations.(3) This part of
the theory, then, consists of an improvement of Longmire"sv théory of
the nea.r'field(a) in that: (1) the calculations are easier in the
present theory and (2) the present theory ex‘bend_s 'lj.o Mger disﬁances
from the explosion. In Secfion h_vthe theory is applied to calculate
+the distant field. However there”ex.ists np'bhing to which we can com-
;pa.re- fhis i‘esult. Thus there is no inherent upper limit to the distance
-of é,pplicability of the present theory. _ It Q.lso turns out to be very
easy to extend the theory to ﬁhe case of low altitude air bursts. This

topic is discussed in Section 5.

2. The High Frequency Approximation

in the variebles r &nd retarded time T = t - r/c, Maxwell's

equations for a ground burst are

~ 1 3E 1 d .
=22 4 YgE = ———— 2 (sin 6G) - bmj ,
¢ oT 2 gin g 98
) 1aF 136 2@
(2.1) W 'é"g"' ‘*ﬂUF-‘a?‘;'é? ’
136 _3E, 13F 2F
[ cdr 98 cor or ’

o where .we have set




def. .def def

“(2:2). . B, EVE, . rE %P, rB_ = G .

r

1t is convenient to define a new function % by the relation

T

def
- (2.3) P S v//ﬂch(T')dT’ .
- P ) ‘ . o . .
We see from this definition that & venishes at T = -0, Or equivalently

at r = +00, or at g = 0. Integrating the G-equation ylelds

T
e
(20"") G =F + ‘§'§' - 'QF-(M ch’ .

Sep@ing{this into the F equation yields

T

2 2
F BE 373 2°F(+') .,
(2.5) 2, ypor =SB _ 28 3F) g,
ar 06 oroo ; ar2 A
ST

Now for a burst in contact with the ground the operator a/ae cannot be

considered small, but 3/dr operating on j or on g is of order (L/x + 2/r);



we anticipate that it will be of the same order when operating on fiéld

quantities. Therefore the approximation

(2.6) aa—T >> -gl—_

ol

should have the same range of validity as we found when treating the air

burst.(l) When we consistently ignore 3/3r of a quentity compared with

3/cdT of the same quentity, Egs. (2.5) and (2.4) simplify respectively

to
[ oF _13E
&t A =35
(2.7) <
od
G=F+— .
L ob

If E were known these would be soluble by quadratures. In particular

we have
° . - Il .
’ ! .
(2.8) F = eX(r) \/%B_Eja-’;_l e-X(r ) ar’ ,
o .
‘Where
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@

(2.9) _ X d.gf f 2ﬂc(r')dr" .

. r »

However setting the second of Egs. (2.7) into the first of Egs. (2.1)
does not lead immediately to a decoupled system.
In order to simplify the rg.dial equation we sepé,rate space into

two regions r <'Rr and r > R,, where R is the redius of radial satu-

ration defined by

(2.10) =

Because .0 is'a very rapidly varying funetion of positibn,:-we,.SeeA that.

as soon as r.is appreciably lesé' than-Rr we have

(2.11) o < ing for r <R, .

-

It therefore follows that

e

(2.12) F = 1%5
_to very good precision and that
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(2.13) |7| << |2¢/26] . forr <R, .

Using the inequality (2.13) to approximete G and (2.11) to drop the
displacement current the equation for the radial field reduces to the

following diffusion equation for &:

(2.14) ———=———-————(s:.ne——)-lma forr <R_ .
. .e.oTm :.r2‘ sin © 38 \ - 08/ . SR S T

When r > R the inequality (2.11) is reversed and we have

(2.15) [F| >> [Sé}éel' for r > R, .

When r is only a bit greater than ‘Rr" it follows- from the :inequality

(2.6) that Eq. (2.12) is still a good approximation to F and (2.15)
follows from the fact thet 3/cdt >> ing. For larger r we are essentially
in a radiation field; therefore ¥ is nearly constant and § varies as l/ r2.
Thus the inequality ’becc')mes even stronger with increasing r. Meking use
of the inequality. (2.15) to estimate G and dropping now the conduction

current, the first member of Eq, (2.1) simplifies to

1JE _ 1 3 ‘ |
(2.16) TR - T35 (sin 6F) « unJ | for r > Rr .




The final step - in the simplification of the radial equetion would
be to use Eq. (2.12) for F, ignoring the fact thet it is no longer
correct at large distances for which 2m < a/ar. Actually, we shall

modify Eq. (2. 12) slightly, setting

[

I » A g ,

(2.17) F=%ws
N l

where A is &s yet undetermined; we suppose, however, that A is inde-

pendent of §, so that we have the following diffusion equeation for B

brg 3E _ 1 d JE hg ) .
(2.18) * 50 == - splsin 8355 ) - =% bt for r >R, .

In the end we shall find that A can be so chosen that, although Eg. (2.17),
and hence E as determined by Eq. (2. 18), are wrong at large distances,
nevertheless E is accurately defermined over the range which contributes
significantly to’the integral of Eq. (2 8) '

Note that our procedure in51de the saturation zone leads exactly to
Iongmire s diffusion phase treatment.( ) For according to the inequality

T

(2 13) we haVe

(2:19) - < =@

0
oqoi
<'.D‘r9‘

“ for r < R .
) D o
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DifferentiatingvK.“(E.lh)'with‘respeet;to 8.yields.

kg 3G 1 3 [ioa3eY , 35
(2.20) —-...-:—-__(s]_n 0 = ) - Y S,
T S FY I Y

2

1 o) . d o)
(2.21) -——-———(s:l.n ] —--) =
r° gin B_a?_ o ‘an 2

_within our epproximation we recover exactly Longmire's "diffusion

phase" equation( )

o]

o

2 |
(2.22) | b 3G _ 3G, gseia) .
_ ¢ arT 3z° J

Here z is height above ‘the ground and 5 is the usual Dirac s-function.
| The equations developed above will treat adequately'the diffu51on
zone and the wave zone of the problem. There 15, as ve shall see, &

third zone, which we shall call the intermediate zZone where saturation‘

'is achieved near the gamma ray peak but which later desaturates, ow1ng

to the decrease of g. In this zone the principles are as outlined

The difference between the two expressions involves derivatives with '
respect to r which are negligible.

14




above but the detalled treatment is & bit more complicated, as we shall

see in Section 3.

3. The Near Fields

(A) The Conduct1v1ty
For a ground burst the Compton current denS1ty is well- descrlbed by

the very simple expression

€ for 1 <0

(3.1) j=e—s5—4q e for 0 <7 <7 ,

e for v > Tl .

Here Y is a constant proportional to the bomb yield, A i5 the effective

gamma ray mean free path and QL n, T, are constants. Typically a is

-%T"
of order 108, n & few times 107 and e L of order 1/200. Numerlcal

(4)

calculatlons have demonstrated that such refinements as rounding off
the corners of Eq. (3 l) have little effect on the signals produced.

In calculating the conductivity, it is convenient to multiply’the -
equation for the electron density by ewo ‘

electron drift velocity evaluated at unit electric fleld strength We

, electron charge times the

obtain the equation

15



. . s _a s
(3.2) =t PS= A

where S is the conductivity at a fleld strength of one esu, Ae is &
constant involving evy and the number of secondaries madé perwprimar&,
end B is the electron attachment coefficient. Thé mctual conductivity
depeﬁds on field strength; being proportional, very nearly, to 1//|E| at
high fields and leveling off at low fields. Using Eq. (3.1), Eg. (3.2)

can be readily solved to give

for T <O ,

(3.3) s

1

A []_ at+n ~(B- n)T]

- T ol for O < 7 < Ty -

-
If we vere to use & conductivity which 1s truly field dependent,
our equatibns would become nonlinear and their solution in closed ana-
lytic form would bé'hopélesé. We therefore use & linear conductivity
law but-névertﬁéless'take some account Sftfield dependence as follows.
At close distances the radial E-field dominates except very neer the
ground wﬁere, hoﬁéfér,:the'vérticai field is large. For the purpose of
calculating’oﬁufherefore, ﬁélassuﬁe>thaxﬁthe électfic field has evéfy-.

where the megnitude it would have for & symmetrical burst. Thus inside

16




the saturation region, for example, we set

(3.1) IE] = &, %° _5/6 .

In this region ¢ is given by

(3.5) * | o= si/|El = s/vE, .
These combine to give

(3.6) B, = (-3/s)

whence we can calculéte c;L A£ iéfge distaﬁdeé fhé-fieidsvare small aqd
o} aséumesra vélue independent of‘field stréngth; | | 1 ‘
The second of Egs. (3.3) will prove a bit awkwar&. VWé see fhétrit
may be simplified by noting thgt at sea 1eve; B = 108(sec)"l whereas g,
is & few times 10'. Thus after two shakes or so the exponential will

have become smell and the equation

371 S=-gS— '  forr>0

will be & good approximation. We shall use Eq. (3.7) rather than the

second member of Eq. (3.3). This treats incorrectly a short period

17



following 1 = 0, but as only integrals over g enter into the theory,
this contributes but a small error. As an example we have, according to .

the above scheme,

)
A

(3.8) o

> when r < Rr »

during the saturation phase.
It is now clear that saturation is much more easily produced during
the n-phase than during the g-phase. In the first place the ratio of

*
saturation voltages.

E 2
H_ [ B=-n
(3'9) E = ( B + Q'.)

is quite small, typically of order 1/50. Mbreover the operator B/CBT is
of order q when T < O and only of order » for T > 0. This introduces an

' addltional factor of order 10 in favor of n-stage saturation. Thus the

- . .
) %a’ E represent the saturation voltege E evaluated respectively for
T <0 and for 7 > 0.

18




situation - is as follows: Points sufficiently near the explosion satu-
rate during the g-phase and remain in saturation thereafter. Slightly
more distant points saturate at T = o, the-onset of the u-phase, and
thereafter remain in saturation. Still more distant points saturate at
T = 0 but ét some later £ime 0 will have dropped to the point that they
unsaturate. And finally there is the region which never saturates. The

time at which saturation occurs we call Tg and,
(3.10) T <0,

the inequality holding if saturation occurs during the g-~phase and the
equality if not. Similarly the time at which the observation point

comes out of saturation is denoted by Ty Clearly

for if unsaturation has not occurred by the time g levels off, it never
will,

(B) The Diffusion Zone

We have seen that thgre is et any instant a radius r = Rr inside of
which saturation has occurred and outside of which it has not. Clearly Rr
is a function of T, increasing during the g-stage and decreasing during
the n-stage. At sufficiently early times, any fixed observation point

r is outside the saturation zone. Later, however, saturation may occur.

19



That region which saturates at some time. and never subsequently unsatu-

rates we shall call the diffusion zone and this zone is the-sﬁbject of

this su'bsection.

According to the approximation scheme. of Section 2 we have
r~
28/29 for r <R_, .

(3.12) G =.<

F forr>Rr,

and morecver, at least for radil and times not . too far removed from

*
seturation

for r not >> Rr .

4]

1
(3.13) F= prr=s

We shall make G, as defined by Egs. (3.12) and (3.13), continuous as we
pass from the wave phase into the diffusion phase., To this end it is

convenient to define a new field function ¥ by

Note that here a.nd elsewhere in this Section the constant A of Section
2 is set equal to unity. : .

20




E/Mno for T <71, ,

(3.14) y 9t

<7<
) for 1, <T <71, ,

*
and & new source function S by

rE
Tﬁs' (4no)? for T < T, ,
(3.15) s %t ¢
Es(lmc) for 1o < T <7, .
\

With these definitions Egs. (2.1%) and (2.18) are both comprised in the

slngle equation

: 2
kng 3y _ 3%y *
(3.16) dng ¥ 3 g%y .
¢ ar az2

If ¥ is a continuous solution to this equation, the magnetic field is

glven by

21



(o | e
5 oY ' ,
?;-Sg- for v < TS (but not << TS) ’
(3.17) G = 1
oY
g-sg for Te < T < Tu P

and is clearly continuwous. At points well before saturation we must
compute F from Eq. (2.8) and thence G from Eg. (3.12).

If we introduce the new independent variable

(3.18) o g=f{i—f,§,

Eq. (3.16)_becpmes

2
.19) A 23X, 5%
(3 9 ag Vaz2 | C 3

. | .
and is readily solved by the standard Greene's function method to yield

= - . N
We have used the Greene's function appropriate to a pexrfectly conducting
earth, »

22 , ‘l'




¢

(3.20) | w(g,__z):fs*(g') erf | —m——tm— dg'r,

where "erf" is the error function

2
(3.21) | ert (x) %EF £ f eV ay .
' J

0

 Actually we are more interested in 3y/36 than in ¥ itself. Differenti-

ating Eq. (3.20) ylelds

(3.22) B--z f s’ eBuech)
C-C

Using the expressions previously developed for ¢ and j we find that (,

* .
S may be expressed expliecltly as follows:

[ -c/bmw - for 7 <0,
(3,_23) , € = W c/lmm + go - _g+ . for 0 < T < Tl.’ _
Lc(-r - frlr)/ll-frpl + c‘l for 1 > Tl ,V

a3



where go, g+, gl are:constants so chosen that { is continuous, namely

.

-c/hﬂug_o s €, = dlhnuo+o ’

o
(3.24) 4
¢q = ¢lry) .

“

Here ¢ o’ 0.0 Mean respectively the g~phese and the u-phase values of o
evaluated at T = O, (Remember we are using an expression for g which is
discontinuous at v = 0). In terms of { we can express the source function

as

Q. St
boo_(¢*)? R e
5
cE : ,
.._O;L. | - for 7, <T<0 ,
al
(3.25) s*(¢’) = {
cE

for 0.<T1<q ,-

E hncl for v > Ty

It is fortunate that the field on the ground is particularly inter=

esting, for in this cese the integrals arising from an ﬁpplication of

2k




Eq. (3.22) are all elementary. Limiting ourselves now to the case z = 0,

11: is convenient to brea.k the range of 1ntegration at the two pomts T =

C a.nd T=Ty wrrbing

. f go o gl C\
’ . * 4 !
(3.26) . I= Il + I2 + I3 = J f o+ f + bE—(G_)Eg_ .
"® & 1
- P

For the individual integrals we readily obtain the result

.
& .C.E(.T_T_tan'l g_s_.]_)_ E£-1+

ad ¢\2 VG 4

2(tan'1 ‘/% -1 - tan™t ‘/Cg—o- 1)} for { <O ,

(3.27)

(1 s ) 1 VI~ C—IS];C. * 'l} - } t; $0
- 57 0g or Yy,
*) I |

=..._{1°;+W}

_go

13 = 2EKJunccl(T - Ty} .

25



“In the sbove formulas we heve 8t fér short

(3.28) N

end the subecriﬁte's? é, 1 refer to evaluation of the quantity indexed ‘at-
respectively Tn= Ts,io,,fl.

Naturaelly 13 isito be taken as zero when T < Ty and I2 vanishes for
T < 0. For TS ¥, We have, of;course,“onlszi-which reduceés to- the:par-

ticularly simple form

cE ng :
< X for 7 < Tg

eC

"ﬁ

(3.29) I,

As we have mentioned earlier, saturation is much more readily
achieved in the u-stage than in the a,stage.j There will therefore be
a8 conslderable range of dlstances where saturatlon does not occur durlng _
the a-phase but does during the u,phaSe. In all such cases one is to
set Ts =0 and use the simple-Eq. (3;29) for-i .

Our one remeining task is to determine the time of saturation Ts
clearly it is the dividing line between domlnance of dlsplacement and of
conduction current. From the form of the solutipns obtained we see that
any determination of T4 Which lead to q/2 < breo, < 30/2 would be satis-

factory., We choose to define Tg by

26




(3.30) bmeo, = hnco(TB) = 32 ,

because this definition assures the continuity of 3E/368, and hence of F,
as well as of G.

The equations develoﬁed above have been used to calculate a pulse
sha.pe,__Bcp vs. T, shown ag the solid curve of Fig., I. The pulse has a
sharp peak &t, or near, T = 0, and this peak field has been plotted
against the distance from the explosion, again as a solid cufve, in
Fig. II. Unfortunetely no data exist for comparison with these results,
We therefore chose the constants, yleld, a, etc., to be the same as those
_ used for a previously reported numerical integration of Maxwell's
equations (Ref. 3,-Figs; 8, 9, 10). The results of thié numericel inte-
gration are plotted as circled points in Figs. I and IT in order that
comparison might Be_made to the present theory.

(C) The Int;rmediate Zone - Desaturation

Outside the diffusion zone is a region where ¢ is large enough at
the peak to cause saturation, but at 1 = Ty it has dropped so low that
saturdtion is‘no longer possible. Thus &t some time T, 0<T, <7y,
desaturation occurs. Thﬁs the ﬁeriod T>T, is to be treated in a wvay
which is analogous to, but as we shall quickly see not identical to,
the treatment of the wave phase.

The time T_ is characterized by the fact that at this time the
gpproximation G = aﬁ/aé breaks down, and from the equations already de-

veloped we readily see that this time is given by

27



(3.31) bno, = bmo(r,) = u/2e

approximately. We shall define T, bY Eq. (3.31) and, as before, arrange
that G shall be continuous across Ta®

- In order to discuss the transition to desaturation it is convenient
to return to the second of Egs. (2.1) which in our high frequency approxi-

metion may be written as

' JF -
(3.32) =t 4110F = -

Considering first the period 0 < 7 < T, We can write the solution as

T

s> FERCAYN |
F=e“{F, +A/\(.E1:r3 CBT)?,-M"Gc-dT ,

0

(3.33) .

hn (o)

Integrating_by rarts ylelds




(3.34) F = e2{F +[Eﬂ%£]T-

0 CaT o
T
1 ([ 1 aG] >
f T ca'r[lmc w57 | moeedt >,
0 .

and the process may be continued obtaining an expansion in powers of the

operetor

(3.35) 5= o

During saturation § is small. Therefore, keeping only lowest order terms

we have

1l 3G - 1
(3.36) F = T wor * {Fo'[%'ca-r]w}'

We shall be particularly interested in Eq. (3.36) evaluated at T = Ty
The time intervel T > 7 can be treated in the same fashion and we

obtaein an equation like Eq. (3.33) but T replaces the time 7 = O. Again.

successive pertial integration produces an expansion of thé integral,

this time in powers of Q-l. 'The first step of this process yields

29



r T
F= e-z Fu + eEG - Gu - h//ﬁ hnchqT »

(3.37) <

As the operator § is large for T > T,» We can drop higher order terms and

obtain

- -2
(3.38) F=06+e™F -0].

Combining this with Eq. (3.13) we obtain

1 N
(3.39) G = W%g— + e E[Gu - Fll] .

Setting this value into the radial E-equation and dropping, as before,

the conduction current, we obtain

(3.50) B __ 1 2 [Sinﬂé?. ~ by -
eotT ~ 2 . B_F To 38 | °
_.L-__.a_[m 3 - ¥ )] |
r2 sin 9§ o8 u u

30




The essential difference between this phase and the wave phease is seen to
be the term e_EtGu - Fu] in Eq. (3.39)rleading to en additional source
term in Eq. (3.&0). This added term is-merely an integration constant
which vanished for the wave phase.

As we are more intérésted in 3E/36 than in E itself, it is convenient
to differentiate Eq. (3.40) by 6, obtaining directly an equation for JE/30.
This introduces derivatives of Gu - Fu by 0 which are most conveniently

eliminated by introducing the new variable

def E -5
(3-hl) vV = ﬁ + ll-TTO(Gu - Fu)e .

The resulting equation for V becomes

kno 3V _ 3%V 2 K ()2 -3
(3.,4-2) —c—-g = ;2- - &Esﬂ(hﬁc) 6(2) Y (I'I'TTO') [GIJ. - Fu]e .

It is clear that for thet period of “time for which Eq. (3.13) is a good

approximetion we have
(3.43) V = bnoG .

Thus, to solve continuously across 7 = T we -extend definitions as

follows:

31



V=Va=lm0uG for-r<'ru s
iy {8, = ko 5"
(3.44) Sa = 'rrcuS for 7 < Ty ?
S'b =0 for r < Ty ?
and
S=E(1+Trc)2' for v > 1
a s u?
(3.145) . ~
=X -z
Sb =3 (IHTQ) [Gu - Fu]e for T > Ty
We also set

Va being that portion of V arising from the source ternm, Sa.’ and given as

before by the expression

6 7 ’ A
(3.47) Voa.I f SO0 Ppuegty
R Ve ¢t |

and V. being that part of the solution which vanishes at T = T

s | ®




and thereafter has the source .Sb. For Vb the Greene's function solution

is
G o
’ 2 ,
(3.48) vy = f —% f Sb(g’,z')dz"e'(z"z Y/M¢-¢") ,
: Mun(¢ - ¢7) / .
- -

2 .
T Tu

To evaluate the integrals of Eq. (3.48) we first note that it has

already been determined that

¢
(3.19) oo [ Sghagt fMec) L
. Wi NE - ¢! ’ u
-00

Differentisting gives (see Appendix A) ,

(3.50) 1 G __ 1 oG
lf-Tl'O' CoT (hﬂc)a BC

TSTu,

L |

R S A i (SN
(ko) 5/ Jo-¢7

~00
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* _
where S / means as*/ag’. Combining Egs. (3.50) and (3.36) gives an ex-
pression for F; hence, evaluating F and G at T, Ve obtain the following

expression for Sb:

Sy

S (cl ’) I'K(,-l-ﬂc)a f s*(C”) - S*'(C”)/(hﬁcu)E dg” ‘(zl)e/u(g.u_gﬂ)_g
,Z = ————— e
’ i o
-Q0
(3.51) . .
0 * * 2
- S (¢") - s (¢")/ (4o ) N2 0y
_ ru(hno)e e-‘u U//ﬂ 0 dg”e-(z ) /h(go-g > .
ot Vg - €
-0
When Eq. (3.51) is set into Eq. (3.48), the integration over z’ is readily .

performed and one obtains

¢ Cu

ST(¢") - ST (o )2 2B (g mgloct)F
V.b =I5 ] flmc(g')]edg' '/ ¢ ¢ Tu ac’e 2%/ C+ng C-C7)-z
o/ L+ - -0

. ) i
c o, N . . B
-z S*(¢") =S¥ (Um0 )?  aBIM(ere ctec") S
* [ Deno(c’)1Pag” f e+ Co-C -C O  agre CHey=C'~¢
+ ¢y - -

3k




Here T is & constant (in 1) given by evaluating the second of Egs. (3.33)
at Ta® Evidently Vb vanishes for 7 =_ Ta and for Ty = 0.

In general Eq. (3.52) is very complicated, but when z = 0 it can be
worked out. Note first that the integrations over (” are elementary and

similar to those already woi'ked out. Writing

[ g | ¢
* " [ . * F/4 I/
. et f s7(¢")ag L e fS.(g )ag ’
" YN o7
-00 go .
(3.53) 4 L
: *,0 0 » S *,0 0 #
¥ def f e 2 dsf/.___s e
AN Vo= ¢

L R

we see that I, is precisely the Ii of Egs. (3.27) end I, is & slight

generalization of Eqs. (3.27), namely

- log

L-JT-8/8 ~ L1-/T-E7J5

L ver [ 14 fTEJE L+ iTEE
(3.5%) Iy~ 'nlilog : L J .

The other two integrals are of the same type and yield
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. .3 : ' '
(].4—-fil), 52--_1 >, . for (<O,

: 2
JIT=CJC+ 1
(3-55_) 3(%) log A

— for { >0,
T -G/t -1
~ cE e z g g
I, =-—% 4‘/1-—59-5—0 T-E/E +
nEg/E e
1+ JT-EJE

A 4

2 +./1 - 7
(&) log 1‘1 i g--log-.
L-LSESE LA IR

o

When setting these results into Eq. (3.52) we must make the substitutions
C~g+g, - ¢'y E—= € + By = E’ into the first integral and similer ones
in the second. In working out these integrals we have made use of the

fact that Tg = 0. For if saturation occurs during the a-stage, desatura-

tion cannot occur.
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The final integration over (’ has the appearance of being elementary
but very complicated. We shall not ettempt to carry it out exsactly but

shall rather treat a particular case, where Ta is sufficiently great that
~-HUT -3
e Y<< 1, In this case e V is essentially zero and the second term of

~

Eq. (3.50) may be dropped. In this ca.se"fl and I, enter only as & sum and

there is a cancellation of the largest terms in the brackets. We start,

therefore, by subtracting this term, defining

* ° - .-
U (o . Sy
656 T2V, L= M,
g - g0 ’\/C = go
and also defining
(3.57) o =cMx& 1, 2

We find
cE o € E=G/C+1
K (€) = =2 { 41 - 2+ z¢ Llog —
VTR
cE 1+,/1~¢EJE 1+JT<-EJE
K,(§) = —K—“{los - log = )
l-«/l-§07§ l-«/T-f;u?E_
4 | | 7 ‘ (continued)
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(3.58) < K.(¢) = - °E_ (1 - 3¢,/¢ . %o ogm+ 1}
3 /1 - Co; B «/l - golg =L
By 5#/5
Ky(8) = 4w = E.7E + - ) )

gogu[ L+ /T8¢ L+ /I-EJ¢ J
— log - log .
2g

1-m J.'-Jl-gu?g

-UT
Now, when e Y i appreciably less than unity, it is readily seen that

K€+ ¢ -¢')s K5+ 5, -8), K¢+ ¢, - ¢')and K (g + 5, ~g") are
slowly verying functions of (’ as is also e'z, whereas [4ﬁ0(€')]2
rapldly varying. The-latter has its peak at 7/ = 0 (i.e. at go). ‘Thus
it is a good approximation to evaluate the K's all st ¢! = ¢, 8nd remove

them from the integration obtaining

r -
JK. . +J ~ |
(3.59) V= Il oK o, - | 33 eex,u SN
A | (ko)
L |
where
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R« g

g, =2 f (’+nd’)2d£ | , J =X / (kmo)ag’ ,
oo NC+ G, - ¢ g ¢ VE+ g, - E

S S
(3.60) < )
23t = -u(T-7_)

J, =2 (bmg)Tag , and =f[1-e v
’ C/S(g+gu-g')3/2 2zt

. S

Explicitly, these work out to give

-3/2

el gl S
1 nE AT EY¢C
r;_u[log ASEJC L roe I+ EJCH Jgu/g]
L IEE - JIFEJC - LT
ofr+ g /a7 /2 g\ /2
G61) 3 3, = i ) (g) .
i[logﬁ FEJEH L - SEESE Jgu/gJ
B T ETEE-1 JIFEJE - AR

(continued)
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el1 + g,/¢17%2 S 5
ERREPYAEC B [3 'é(l T)]\/'CEJ <

.

-

-0 I 7C + 1 JT
+§ul:log +EJC + o +§u/c+«/gu/cj|

- 1o > .
A Y. -y JIFETT - JTTT
In Eq. (3.59) the K's stand for Kl(g * 0y - go), K2(§ + 8, - go),
K3(g + G- go) and Kk(g +E, - go). The J's are precisely given by
Egs. (3.61) and = by (3.60).
The integrals for Va. have been already worked out and we have
( ¢
0
8,4¢” ) caEa l: ,J. ) &-‘-
=T wyl “
=00
CO ‘VI - COJC + 1
B log for (>0 ,
,\/]__.g?'g' -1

(3.62) <

¢
S ac’ g 1l+,T-€JE
aC =;"'|: 1-%—-+1og . §o§-
o«/c:-c’ W ENE L -JT-ESE

l -+==]1log .
1- - 8




For our numerical example we chose the deéaturgtioﬁ time Tu to be -
helf way between the pesk , T=0, dpd the ;Bhouidei( T = 1-17..:_ *Iitie abovver
formulas were employed to comi)ute'- the. so.‘.l.id?'é;urvé of Flg 'TIT and for
comparison the results of a mmerical solution ‘o:f‘ Mme_li'é :-géuét:fbh.s(:i’)'
are shown as circles. For times near 'rl'it: was found that the terms v,
and V' very nearly cancel one another. Thus had the terﬁ v, not been
included, i.e. had the integration constant Fu - Gu been omitted, quite
e different result would have been found. In fact, it mey readily be
seen from Eq. (3.62) that the term V, alone gives a G which increases in

magnitude during the interval Ta <7< Ty-

-4, The Distant Region

By definition, the distant zone is thet in which saturation never
occurs. Thus the radial field is determined for all time by Eq. (2.18)

which may be written in the form

(k1) E=-a-25+s()‘,
o "2 T ¢
where
(k.2) ¢ %t f £, 5% 2 me)P .
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Note that now the A of Eq. (2.17) is not assumed to be unity, which was @
an app;qpriqte va;_!.ue for the near ﬂfiel‘q.. It I;ril,].'_l?e our task i;o show that

A=1 1523139 & good approximation for the distent field, By, (k1) is

formally ;idenfzri.ga]_-.ﬂ, with Eq. (3.19) and Eq. (3.22) gives the solution on

simply ;_"_eplac;ingA Y - 'E and ,S* ...s. On_thg ground plane z = O and all

the Integrations are glemepfca;‘y._ We limit our attention henceforth to

this plane and write .
" oo L, aE._ .}'ﬁ. e . T ’
(4.3) 5= - [Ia + I +I1],

CLA

where

Wy - S . _
(4.4) I = __Tae(-g)3 5% I, =I =0 for T <0,
and

-
[ C2E

J for { <O,
Ia. = - 3
caEa - C . L go 'l‘]. ‘4/1.- g07g + 1
53/5| " - = - % log .
a2<;3 o ¢ 2 JI-¢CJc-1
L for >0,
(continued)
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°E £
i, < _ X 0, 1
(2 %“?;ﬁh% Loy
I =0,
c
Kt

o L+ /T -E]JE
og
1 - L

R 3 g
= w | E 08 4y 2
"o ;@ﬁ[%vl e LY
1+~/l-§J§ 1+ -E]/8
(4.6) < +12'-log —%log L
1-A- @O;"S 1.1 §l7§
8U01 L
I, =A7-2-En,\/1molc('r - Ty s
L

,0<1'<1'l

.

P;T>Tl°

It is seen that, during this period, 3E/30 is of the form ro3/ 2 times a

function of T alone, and also that 3E/36 is proportional to 1//A.

As the region now under consideration has never saturated, we can

use the approximation

(4.7)
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with confidence. For the calculation of F, however, we must use Eq. (2.8).
The complication arising from this is that the range of integration includes
regions which were previously saturated for varying portions of their
history.

Let R be the maximum range at which y-phase saturation occurs. Then
for all r > R_we can apply Egs. (4.3) through (4.6) to the calculation of
3E/36. An exsmination of these equations shows that JE/30 can be expressed

in the form

(h.8) )3/2

cvlo)
D} =

_ ar Yreg
oy (o

2R .
o a fo(T) L4 r m

For r < Rm we have the more complicated expression

~J

B -z
(4.9) ge v, + V- bmoe[G - F D, r<R_.

The symbols on the right-hand side of Eg. (h.9) are all defined in
Section 3C where ana.ly'tlc expressmns for them will be found. From

Eq. (3 62) we see that \A ma.y ‘be written as




ST

1- ——-+
2C f“":;r‘
V=_r"'Ea TTCUJ l-gg-1+
a a
2e /v ‘Jl- (L + A)e™?T
\

(4.10) <

V,, is given by Eq. (3.59) in conjunction with Eqs. (3.58) and (3.61), and
hno(Gu - Fu)e'35 is obtained by multiplying Eq. (3.51) by -c/(4mo) and then
using Eqs. (3.58). Quantities of the type go/g, go/g etc. are all functions
of 1 alone. Quantities of the type gu/ ¢ are functions of T, and hence

depend on r, for we have

(4.11) KT, = % (R -r)+ 2 log (Rm/r) .
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However, so long as T is appreciably grester than 1 terms like gu/g are
small. It is thus seen that all of the expreséions in curly brackets in
Egs. (3.58), (3.61), ﬁnd (4.10) are slowly varying functions of r so long
as T is not too close to Ta® Thus we see that the functions Vﬁ, and the
part (rﬁfﬁ)[Jlnl + T Mgy - Jexh/(hﬂau)e] are of the form n/bmeo/q times a
slowly verying function of r; the term (rﬁfﬁ)[-J3%3/(hncu)2] is of the form

r(hnco/a)3/2 times & slowly varying function of r, and (Gu - Fu)e'z is r

times a slowly varying function of r. We can therefore write JE/38 in

the form

" \ 1/2 3/2

L _  ar brreg breo

2 " ¢ Ea ( a ) f.l(rr"ru.) + (T) f3("-"1-1_1) -
(4.12)

-3
hﬂU(Gu - Fu)e , r<R_ .

~

* We bave stated thet f,, f, and (G, - Fu)e-z are slowly varying
functions of r; so also is r. This statement we now meke precise. Note

that, according to Egs. (4.8) and (4.12), all of the integrals entering

into Eg. (2.8) are of the form




the limits of integration being (Rm,r) for Eq. (4.8) or (O,Rﬁ) for

Eq. (4.12). >Note'that the factor (1mcc/o,)n/2e'x hes & peak at r = R ,
given by ‘

U n i .
(4.14) eio(R ) =z (1 + 20/R ) ,

and that this pesk is very sharp, so that most of the contribution to the
integral comes from the range (Rn - k,Rn + A). As Rn normally turns out
to be.of order 5 or 10 times A, the factor r varies little over

(Rn - MR+ A}, as also does ¢n(r). Therefore Eq. (4.13) can be readily

approximated by the expression

yn/2
(4.15) &y = 35 Rn$n(Rn)f( hﬂ:c’) e*ar, n=1,2, 3,

provided Rn lies inside the range of integration. If'Rn lies outside the
range, we are to substitute for R in Eg. (4.15) that limit nearest to

R . lNote, moreover, that the three R given by Eq. (4.14) differ from
the meen by less than A. Thus the three R of Eq. (4.14 ) may be identi-

fied with this mean, setting

v}
]
0
il

1 2 33 = Rs 2

(4.16) |
—% (1 + 23/R)) .

N
Q
—~
o]
2]
~
|
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We see now that Eq. (2.8) wmay be written in one of two forms, depending on

whether RS is greater than or less than Rm. In the former case we have

r
oE 3/2
X, . Yreg -X
eXF--—z?Rsfo(T)f(a) e dr
R
m
- ( R, / Ry y
aE 1/2 3/2
by bmeg -X 4meo “Xar
(k.17) - T?.C_.Rm< fl(T’Rm)f( 5 ) e dr + f3(T,Rm)/( S ) e Tdr
0 ’ 0

R
e}
-3 -X
[(Gu-Fu)e ]R /2110& dr , for R. >R .
%0

In the other case

r
oE. 3/2
R I == R £ (1) f ( h’;cc’) e Xar
R
n
" R R '\
g /2 3/2
1
(4.18) - 2R < fl(-r,Rs)f(l’zc") eXar + £(7,R )f(h”c") e Xar b .
0 0

(continued)




i 3 X
[(Gu-Fu)e ]R f 2rnge”"dr , for R, <R_ .

The integrals can all be evalueted. First we note that

R
m

-X
(k.19) f eXomgar = ¢

0

(Xm means X at r = Rm) exactly. Next we note that an obvious change of

variable yields

b
1/2 -1/2
(4.20) —g‘(—: f(hﬂ:o) /e'xdr= /(I‘L—TEE) /e"‘xdx .

Now

0 0]
dgf . 21TAC
(4.21) X "= f 2rodr =T+ avr
: - 7

k9



to a good approximetion so long as r is two or three times )\ or greater.
Thus the epproximation of Eq. (4.21) is valid over the important part of

the range of integration and Eq. (4.20) becomes

b _
1/2 -X
Q bte X, . 1 e
(k.22) Ba (T) e dr = f—-— ax

use having been made of the fact thet 1 + 2\/r is a slowly verying function.
The remaining integral can be expressed as an error function. The integral

of (lmco/c,)3/ 2 is dome in the same way, and we obtain
’ -

R

- .
a hmge 1/2 =X 2¢c 2\ -1/2 .
B 5 e lar =[Sl + 2 Jﬁ[l-erf,\/'x—m],

3
R
g /2 1/2 X
3 -
(h.23) <& (1‘2"0) e%ar - 5%(1 + %) {.\/)Ee m +@[1 - erf 4‘2;] ,
5 _
R ) ,
| 3/2 _ 2 [ X
e Sl 8] o
. \
m

+ "[.erf,jg-erfﬁ] .

e




Here R means RS or:Rm accbrding'tdrwhich is appropriate, and erf is the
error function defined by Eq. (3.21).
Equations (4.17), (4.18), and (4.23) combine to give an analytic

expression for the distant field. The functions f_., f., and f are

0’ "1 3
complicated but can be constructed from expressions already given. Our
-n(T-T)
formulas were all developed under the assumption that e Yo 1.

When this is no loﬁgér trﬁe; functions whiéh.we sﬁpposed to be slowl&
varying no longer are indeed so. This, however, does not affect our
results. Tor e-n(T-Tu) not << 1 can only happen at redii r approsching
the saturation radius, where king is approaching the value n/2c.'.But'és
w/2c is >> 1/, it follows that the factor e"x effectively cuts off this
portion of the range of integration to & negligible contribution.

We haﬁé found an.expression for'the distent fiéld components F én&
G under the assumption that Eq. (2.17) is & good approximation when used
in the equation.for the redial E-field: Accordihg to our above consider-
ations the approximetion- is adequate i it is good over the range -

E (Ré - MR+ A} which contributes.significaently to the integral of

" Eq. (2.8). We are now in & position to check this.

"The full expression for F is much too complicated to work with. We
shall rather restrict our.attention to such early timefthat,Rs is notice-
8bly larger thamR . " In this case Eq. (4.17) applies and only the:first

term is important. We can, in fect, write
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2c X
(4.24) F = -RE £,(1) \/EX(]' + 2’\/33) Ie™ ,

where
(h.25) d = [ﬁe-xmc& = ﬁe'x + ﬁg[ 1. erf (4/}_()] .

Combining this with Egq. (4.8) yields the result

(4.26) _El_é.é.ﬁ 1+ 2W/Rg Lo ofi Lo ext D)
’ RCE r 5 " .
) q/i + 2)\,;1' ﬁe _

In Fig, IV we have plotted the quantity 4(X)/9(0) and from this we can

see that 80 percent of the infinite integral comes from the range 0.3 <

‘X < 3.k, In Fig. V we have plotted the bracketted expression of Eq. (4.26)
versus X, and over the same range of X it varies Ll.14 to 1.48. Accordingly,
identifying, for the moment, this bracketted expression with A, A is

slowly vary:i.hg end can be removed from the integration when it hes been

evaluated at r = R3 » the peak of the integrand. This procedure gives

(h21) . [ 1+ @ 1_'%@ = 1.2524

I‘=R3
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as our 5est estimete of A. As the resulting fields 3E/38, F and G are all
proportional to Afl/a,'we see that seﬁfing A = 1 makes an error of at.most
12 percent in the distant field and becomes extremely accurate in the neer
field.

In considering only fhe first term of Eq. (4.17) we restricted our-
sglves to early times, such that Rs is appreciably larger than Rm" Later
on R will exceed R  appreciably and the appropriate equation is Eq. (4.18).
Tt is now found that the dominant term is the second, the term proportional
to fl(T,Rs). As now c(Rm) << o(RS), the upper limit of integration can be
replaced by infinity. Repeating the foregoing analysis leads to &n
~analogous result. It thus appears that setting A= 1 in Eq. (2.17) is very
accurate in the near and intermediate zones; in the far zone it leads to
errors of ten to twenty percent.

As an illustration of the foregoing theory, we have calculated a
pulse shape for the field radiated to large distances. ' For.this we set
X =0 (r = o) into Egs. (4.17), (4.18), and (4.23), we computed f,, f,,
f3 and (Gu - Eu)e-g'from the appropriate equetions, and coﬁbined'resgltsf
Anticipating that the fields would be large at r = RS,Jthe region from 7
which most of the signel comes, we used. our "large field”lcéndugtivity,;
i.e., we computed conductivity as though the field were-gm,ras iﬁ Eq. (3.8).
The resulting fields were indeed large, but .not as large as qz.;.An.;
attempt was made to fake into account the field dependence of the conduc-~

. % :
tivity by scaling the calculeted value of Foo with the correction factor

£ .
The index 00 means F at r = 00.
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1
RE

(4.28) Corr. Factor =

This factor is explained as follows: The factor l/RS converts F to Ee;_
the factor 1/2 accounts for the fact that half the integral for Fﬁo is
accumileted for -0 < r < R_;, the other helf in the renge (Ry,0); the E,
was the electric field originally assumed in calculating g. “The result
of all this is shown in Fig. VI as s curve of rEe (or r%mq,vs. T. The:
constants o, B8, ®, A and yield of our previous examples epply. - Unfortu-
nately there exists neither data hor-a'numbrical solutionh of Maxwellls -
‘equations for comparison. 'Piobably the greatest uncertainty.in Fig. VL
results from the scaling according to Eq. (4.28). ~ This doubtless gives a
first_step toward a self-consistent conductivity, but, as qa enters into
the qomputation_in other ways than as & pure mulpipligr, one really ought
to repeat'the calculation using the fields‘given by Fig. VI to compute
our new values of O. This would be a ;ather lepgthy proceés_for hand

computetion.

: 9+ Dependence on Angle. and on Height of Burst .

'The high. frequency spike, shown in Figs. I, III, and VI is confined
to the -vicinity of the ground plane., At close distences the.layer thick-

- ness § within which the spike amplitude is appreciable is reeadily esti-

mated from ‘the relationship.
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But on the,ground'Er'= 0 (perfect conductivity is assumed) and Maxwell's

(5.1) = [

equation for the radiel field enables us to evaluate 3B/3z, obtaining

(5.2) s = |umy/B|"t

In the near zone § will vary from a few centimeters to a few meters at
the peek of B, depending on the distance and on the yleld. As we have

1/2, thus so elso is 5’1.

seen, B is roughly proportional to o

When it comes to calculating the angulsr depéndenCe‘of the radisted
field, it turns out that identical formulas, properly interpfeted, yield
peek field vs. colatltude 8, or peak field Vs, helght of burst. For this
reason, we first consider the problem of what we shall call a semiair
burst, that 13, 8 burst off the ground, but sufficiently near that the
1onlzed reglon is con51der&bly larger than the burst helght. ThlB Wlll A
abe made preclse Later.

It is simplest to develop the approximetion scheme &b initio, starting
with Maxwell's equations written in ﬁerms of the cylinder coordinate system

(p,¢,z); z is measured from the ground plane, positive upward. The distance

r from the point of the explosion is

(5.3) r =wpf + (z - B)%,
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h being the burst height. Introducing the retarded time
(5.4) T=1t-r/e.

Maxwell's ééﬁéti‘bhs take ‘ti'xe ‘form

3E ‘ 3B 3B
_-_.B. | 3 = - CQ zZ - h Cp
Jeer T hﬁc_:ﬂp N _.,hzr,rf]p 3 " TF oor’

: '. BE' .

1
(5..5)‘. o { ca: + lmoE + ll-n,] = BE?_ (pB ) - -E-c—a—fre, ‘

it

oB E . OE | A
Eh RS R} ;:aeuz RNl P | [\Z -h E B R ] e .

COT ~ op 32 caT r p r 'z

C W

It 1s convenlent to 1ntroduce the longltudlnal and tra.nsverse components

-H

of E in place of Ep and E . Us1ng the same symbols as prevmusly, we deflne

[e%feg ,2-b§

. (5.6) L 4 SO B M e T
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With this notation, the result of formamlly integrating the third of Eqgs.

(5.5) is

def '
G : B =F+4,

(5.7) {

op oz

3B ok
] d.gf p(-—-—-E - -—E) cdrt .

. =00

The next step is to eliminate Bcp by setting Eq. (5.7) into the first two

members of Eqs. (5.5). If we define the differential operators

_9Dd ,z2-0d
1Tt 3z 7
(5.8) <
_z-83 p3
LV_L_ ap"%az"

and if we construct appropriate linear combinations of ‘the tWO-‘=E-equétiohs 3

- .
these can be expressed as

o
j is presumed to have only a longitudinal component.



r-§§2'4 boE = = V G = bmj ,
1 1
(5.9) 4 V2P =5V E-59 4,
G=F+ 3%,

and the expression for § may be written

(5.10) T ) ='f‘[leE - v”F]ch .

-00

So far everything is exact; Egs. (5.9) and (5;10) are equivalent to
Egs. (5.5).

To reduce our equations to a manageable‘sét we must meke approxi--
mations. As before, we start by‘diéidiﬁg“spacé into two zones, r < Rr’
the diffusion zone where conduction current dominates displacement
. eurrent, and r-> R where displacement current dominates; The standard-
series of approximations in the diffusion zone lead us exmctly to
Longmire's theory of the diffusion phase;(2)'therefore we shall consider .
only the region where the conduction current is negligible compared with

displacement current. Thus our first sapproximation is to set
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. : ‘7 P P a . P 7'_:
(5-11) . c—a'r >> h-TTO' .

To this we add an analogue of our high freﬁuency epproximation, namely,

ve shall assume that, in dperptor form, '

d
(5.12) Es? > ?” .

When h = 0, Eq. (5.12) is exactly our previous high frequency approxi-
mation, However, when h # O there is an additional term on the right-
hand .side,of Eq. (5.12) which is proportional to 3/3z, so that Eg. (5.12)

is equivalent to the condition

(5.13) E%? >> Max E%,

e 11=2

%]
oz | °

As 3/dz, can be large, we.see that we are restricted to very modest burst
heights, .just _how.modest we shall see after obteining a solution to our
equations.. e . )

The approximation implied by Eq. (5.12) clearly allows us to simplify
the second of Egs. (5.9) to

1k VF + 2moF = ZpV.E .
(5 ) Ol + o 2pl
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Setting this into Eq. (5.10) and the result into the third of Egs. (5.9)

gives
= iF_ AR “hmg
(5.15) G = J/P o V”F + hﬂUF} edt
-00 :

. b = *
which, by virtue of Egs. (5.11) and (5.12) reduces to
(5'16)" A 2 G= F .

Using these results and dropping tle - conduction current; the first of'

Egs. (5.9) now simplifies to

oE -
(5-17) Loyt = 0 VJ_F - ll-'l"l',j_. .

Ve use Byss (5.14), (5.16), and (5:17)-to adséribe the high frequency
portion of & semiground burst. "The equations bear a close resemblance
to those for the ground burst but are complicated by the fect thet the

-operator v

f conteins an admixture of 3/dz:

*
It should be noted that we are here treating the wave zone proper. For
the intermediate zone, after desaeturation has occurred, other integration
limits must be used as in- Section 3C. . . 5
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Our final task is to decouple Egs. (5.14) and (5.17). 1In coordinate
form Eq. (5.1%) is

BiPn

oF . 2 - h oF
(5.18) f:a—p+ — % + 2M0F = - &

3E

2r gz ’

the term in 3E/3p being small both by virtue of the high frequency
approximation and by virtue of small h/r. We now borrow e result from
our ground burst results,”namely, that for purposes of estimating E,

3F/3p wey be dropped from Eq. (5.18). Thus we heve

2
(5.19) =B OF | onor = - £ 3E

r D2 2r Jz

Equation (5.17) tekes the form

ok - L
(5.20) a7 =

'oll—'

oF
a—-,'HTJo

The second term on the left-hand side 6f Eq. (5.19) is'raﬁidly'
varying. Thus, except for a narrow range in r, it will either dominate

or be negligible. In the former case, i.e. when

. - h. . .
(5.21) e g% << 2no
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we have

2
(5.22) F=7-‘%

L B ~ . .- - 2 .
br“c 3B 3°E r 2
(523 .. dmlem _af et e
) Cp2 aT 822 \p2 s

In this case we have recovered exactly the wave phase theory of the ground
burst, for r/p is simplj—a,ponstant with{n the limits of our approximation
(among other things the skin thickness must be <<r).

When the reverse of Eq. (5.21) is true, we have

(5.24) Z-hoF __p QE

which, when set into Eq. (5.20), yields

(5.25) 3T ~ 2z - B) oz " lm‘j_ ’

& first order wave equation. Its.domein is the region for which




P R L T LTI z‘_ha' .
(5.26) < 3 > emo ,

and therefore: does not ;inc‘llid,e the singularity-at z = h,. W s
A full scale attack on the. semiground burst problem would require.

solving Eqs. (5.23) and (5.25) in the appropriate regions, subject to

appropriate boundary conditions ’ and Jon‘:ping these solutions smoothly.

We shall not attempt to carry out such a éroéram here, but shall rather

regtrict our attention to the region where Eg. (5.21) holds, that is to

the region governed by the diffusion equation, Eg. (5.23). The extent of

this region is readily seen. The skin depth 6z, during the w-phase for

example, is given by

(5.27) (82)Pronr®/ep” = 1,

whence Eq. (5.21) becomes

-~

5 ,
Z - h brieo
(5.28) | [ 5 ] <==.

If we are interested in the radiated field, we wish to satisfy this

inequelity in the neighborhood of r = R [see Eq. (4.15)] which gives
h 2 2c
.2 = < &2 .
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Typically this will limit us to burst heights of two hundred meters or

less. ‘. |
Formally, the identification A = p2/r2 reduces Eq. (5.23) to an

equation elready studied. There is, however, the question of & boundsry

condition at z = 0. Note first that Egs. (5.6) yield

. . _A_E zZ = h
(5030) & Ep T r E+ - rp F ?
and .that

z-h_._ p[z=-h3E
(5-3]-) TP F=- 21‘[ 2ner oz ] *

Thus the inequelity Eq. (5.21) yields

Z - h
(5.32) S~ F<<fE.

It follows that the true boundary condition Er(z = 0) = 0 may be replaced

by

(5.33) E<0 @atz=0,

within the accuracy of our“aﬁpfoximation. Thus our previous results éli

K | B




apply and we may write

¢

(5.34) _ L / S(¢ag’ -2 hec")
YR ) e
= Q0

where

s €T B_(x/p)?(km0)?

(5.35)

3

C dgf E

hnUr

The only difference from our previous results is that we can no longer
set =2 /h(g <N qual to unity. ,

Evaluating the integral of Eq. (5.34) for generel z solves both the
problem of variation of field with height of burBt and the problem of
variation of field with angle above the horizon; Confinlng our attention
to the radlated field we see thet in the case of the ground burst at an
angle.B gbove the horizon, we must integrate Eq. (2.8) along the line
Z =1 cos §. For the semiground burstrobserfed in the hb:izontal_plane_
Eq. (2.8) is integrated along the line z = h.

We saw in the last section that the rediated signal was sharply

peaked, with the peak occurring late in the u-phase, where e~ 7 << 1,
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We shall now compute the variation of this peak with angle 6, or with -
burst height h, At the time of the peak, it is readily seen tﬁat the
function S(C’)//C - ¢’ is sharply peasked at 7' = 0, the gemma ray peak,
and that, were z = O in Egq. (5.3#), practically all of the integral comes
from the neighborhood of 1/ = 0. But wheﬁ.e'uT << 0, the function
e_za/h(g-g’) is slowly varying in 7’ near T’ = 0. Thus this fector can

be removed from the integration to a good approximation, yielding

()
(5.36) VE=.L ¢ \ ©p s(g')ag’
4 ol ¢
=00

The remeining integration has been treated in detail in earlier sections;
our previous formulae now simply carry an added exponential factor.

In carrying out the integration of Eq. (2.8) the qusntity (rz/p)€ is
slowly varying near r = Rs and may simply be repleced by its value at
r=R. The quantity ¢ in the exponent-is rapidly varying and, when the
1ntegra£ion vuriable has been changed to X, Eq. (k.20) is used to feplace
. In principle, we would have to work out aeparately each of the terms
of Eq. (4.17). In fact it is sufficient to consider only the term in-
volving fl(T,RB), for this term is considerably larger than the others
at the peak:and also contributes the broadest diétributibn in 9 or in h.

Thus, instead of the first of the integrals of Eq. (4.22), we have to

consider the 1ntegral




00 Aya e 2.2
e A2 2
(5.37) J(zo)ﬂ-ggf(iﬂfg) exp :(—:-2—?—5-2—0 ar .
8 0

At the time of th& péak the upper limits"R or o are eguivalent. The -
above integral is readily worked out by changing the variebleé to X and . -

using the approximations of Eqs. (%.20) and (%.21). The result is

L . . -1/2
: .8) ol ..-:--rJ(.zo). : }(R - (l " EK/R )
5‘3 " - = l + .
O [ (5) I VeXe(RE -2d) |

Here z0 is h 1n the case of a semialr burst or 15 R cos 9 in the case of

a ground burst and ull other symbols have the1r prev1ous mean1ngs.
P e N .
Uslng the calculatlon leadlng to Fig. VI e have calculated the
N A

peak slgnal as a function of burst helght h and show the normalized

o

result in Fig. VII. In doing this account has been taken of the fact

that the conductivity is field dependent when the fields "a.re strong.
e

'I'hls means, essentially, tha.t Eq (5 38) holda for weak flelds, but the’

fleld ratio is more nearly the square of Eq. (5 38) when the fields are

1

strong. The same data whlch make up Fig. VII reappear in Flg. VIII now

. ‘\..'

plotted as peak f1eld of a ground burst versus 6. All that is required

is to make the converslon h - R cos 6. In making the calculatlons we

P | i

ook the "skin 'bhlckness" A, ‘

B L ST P
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2\e
(5.39) b= \, w(I + 2\ /R]) *

to be 60 meters, a rather typical value. In converting h to 9 for our
angular distribution curve & value for R, must be assumed; we choose

1000 meters as typicel,

6. Conclusions

The main results for the near field of a ground burst as shown in
Figs. I, II, and III indicate that the theory of the early part of the
radio flash herein developed gives very reliable results in the near
zone. In the rediation zone we have, unfo;tunate;y, nothing to test our
theory ageinst. Howevcr, the success cf the theory in near and inter=-
mediate zones lends confidence to our distant fieldrrecult; for tﬁe
principal source of the distant field at the time of the peak, is the
intermediate zone, Just about the p081tlon correspondlng with Fig. IiT.

The major uncertainty centers on the‘alr conductivity.. For our '
analytic theory is lineer whereas in fact the air conductivity depends :
con the field present, provided that Tield exceeds about 0.0k esu. We
have attempted to take this into acccunt by using a iinear conductivity
lew with a ccnductivity consistent with the resulting field, a sort of
a "self consistent conductivity" épproach. Compatisons tith a numericalu
solution of Maxwell's equations which employed the full nonlinear conduc-

tivity seem to indlcate that this approach leads to valid results.




There is much more work which could be done in the development of
the theory here given. 1In the first place, a program was mentioned in
Section 5 which would-extend the range of: validity of the semiground
burst theory to altitudes of perhaps a kilometer. -Secondly, it at present
looks possible to extend ﬁhe theory to include the effects of finite
ground conductivity. Thirdly, it should be mentioned that sufficient
progress has been made on a nonlinear theory to make one hopeful that
the effects of field dependence of fhe conductivity might befter be taken

into acecount.
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Appendix -

In the solution of the diffusion equations studied in this report,

- integrals of the type

2

S |
(a.1) I(z) = fﬂ_)ic_ RSN (N4
. Vg - ¢’

vhere ga is a constant, are frequently encountered, and it is convenient
to know how to manipulate them. Differentiation with respect to z is
straightfofward, but that with respect to { presents an apparent diffi-

cultj. For the usual rule gives

a2 /ME-C") '-z2/4(g-g')
(h2) 5= o2 | B — o] osteagt G Sl
| V-] . o4 VAN

a
and the first term is clearly singular.r Note, however, that

2 2
-2°/4(c-C’ ~z/h(c-C’

Ve - ¢! o'l S -¢

T0




and that if we make this substitution, the second term of Eq. (A.2) can

be transformed by partiel integretion so that we have

2 P 2 ,
(A.ll») ﬂ - :’Lim S_(gl)e-z /‘h'(g'c ) ) S(Q')e-z /ll-(g—g ) X
N = |
a
g
f 98 _ag’  ~2/MeC’)
{ XN -¢f
a

and the singular term is in fact cancelled out by another. Thus we have

the result
22/uc-c) ¢
S(C )e 1fp7 ’ 2 )
(A.5) oL__= + [ 8gac’ -27/h(g-C)
oz VC = Ca ‘VC - C&

where a prime has been used to denote the derivative of S. Often in our

work ga is -00 so that the first term vanishes.
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Fig. VI. The Radiated Field in the Equatorial Plane.
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