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1. Introduction

In this note we present improvements in the methods for treating the
Compton current and the air conductivity, for use in EMP calculations.

Specifically, we shall give:

(a) a method of treating the effect of multiple scattering, as well

as slowing down, of the Compton recoil electrons;

(b) a method of treating the time lag between the production of the

primary ionization and of the total ionization;

(¢) a discussion of the problem of equilibration of the free elec-
trons, from the initial ionization spectrum to the spectrum

appropriate to the instantaneous value of E/p .

2. Slowing Down of Compton Recoil Electrons

The energy loss of relativistic electrons in moving through matter is

given by Bethe's formula (Ref. 1); per unit track length, it is

4
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In these formulae, N is the density of atéms, Z the atomic number,
e, m and v the electron charge, rest mass, and velocity, ¢ is the

velocity of light, and

y = , B = T . ‘ (3
For air we take the effective atomic number

Z = 7.2 4)
and the mean excitation potential I - (Ref. 1) to be

I = 80.5 ev . (5)

In solving the equations of motion of a Compton recoil electron, one
can take account of the energy loss by imagining that the electron experi-
ences a force directed opposite to v » of magnitude given by the right-
hand side of Eq. (1). This procedure, however, does not yet take into
account the multiple scattering of the Compton electrons, which has the
following effect. A beam of electrons, directed initially in the x-direction,
is greatly broadened in angle by the scattering, so that the electrons spend
a lot of their energy moving in directions oblique to the x-direction. Eq.
(1) is correct for the energy loss per element of length of the actual trajec-
tory of an individual electron, but its use with ds replaced by dx will
overestimate the average distance electrons will travel in the x-direction

before stopping.

In the past, we have taken account of the multiple scattering by not-
ing that, experimentally, the mean range of electrons in the Mev region is
about 2/3 of the total (or "extreme') range. We have therefore simply
multiplied the drag force (right-hand side of Eq. (1)) by a factor 3/2.
This procedure, however, gives a wrong distribution of ionization along the

path of the Compton electron. The ionization per unit length is proportional



to - gg » and is important because it determines the air conductivity.

Now at the beginning of a Compton electron track, the multiple scattering
has not yet had much effect, and multiplying gg- by 3/2 overestimates

the ionization per unit length. Similarly, the ionization density is
underestimated near the end of the range. In EMP from high altitude bursts,
the peak electric field tends to come when the Compton electrons are near
the beginning of their range; an overestimate of air conductivity by a
factor 3/2 may lead to an underestimate of the peak electric field by the

same factor.

Obviously, we need a treatment in which the multiple scattering is

allowed to build up along the trajectory.

3. Multiple Scattering of Compton Electrons

We shall use the simple form of multiple scattering theory due to Williams
(Ref. 2), which will be adequate for our purpose. According to this theory,
the mean squared angle 62 of an initially collimated beam increases with

distance traveled as

dez 8nNz2e*
- = qrﬁz;%—' [2] . (6)
where

[2]
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Here emin is the minimum angle of scattering, below which the scattered
angular distribution falls substantially below that given by the Rutherford
formulae. For scattering by neutral atoms, as in our case, emin is deter-
mined by the screening of the nuclear charge by the atomic electrons. For

the Fermi-Thomas atomic model, Mott and Massey (Ref. 2) give

0.0153 z/3
min - By

(8)



Then

. (131/75-1)
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In Eq's, (6) and (7) we have departed slightly from standard theory,
in which 62 is the mean square angle in only the gaussian part of the
angular distribution. Then the argument of the logarithm in Eq. (7)
becomes (el/emin

which the scattering is multiple. However, we are using 62 as the mean

) , where 0; depends on s , and is the angle below

square angle of the entire angular distribution, in which case the argument
(2/emin) is correct (Ref. 3).

Eq. (6) is strictly correct only when 62 is small, where successive

écattering angles add linearly. Consider, however, the obliquity factor

1
cos 0

n = (10)

This factor relates the differential track length ds to the distance dx

in the direction of initial collimation,
ds = n dx . (11)
For small 6 ,

1+ 7 R 12)

=
1

so that Eq. (6) becomes

dn 4mNz%e"
32' = v [2] . : (13)

For large mean angles of scattering, this equation has the virtue that near



the end of the range, where 7 will become'infinite, the mean cos 8
will become zero, according to Eq. (10); thus all correlation to the
initial direction is lost. This is a desirable result, whereas having
627 become infinite (as results from Eq. (6)) is not. We shall there-
fore use Eq. (13) instead of Eq. (6), and note that 1 starts at unity

for an initially collimated beam.

4. Mean Range of a Collimated Beam

Suppose that we have a monoenergetic beam, collimated in the x
direction, entering a slab of material. Then the equations for the change

in kinetic enegy W and obliquity factor n (we drop the bar on 1) are

a- s, (14)
e R (15)
where
2. 4.2
W) = memrernr @ (16)

4,.,2 . .
g0 = Ty om (17)

Dividing Eq. (14) by Eq. (15) and using

W= -D)me? (18)
we find
- 22 [2]

Now, it turns out that the ratio



-
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is very nearly independent of energy W or y . For example, for air (see
Eq's (4) and (5)) we find:

¥ Y r
51 Kev 1.1 0.262
255 Kev 1.5 0.266
511 Kev 2.0 0.269
1.02 Mev 3.0 - 0.270
1.53 Mev 4.0 0.271

Clearly, for our purposes, T can be taken as constant. We shall use the

values,
r = 0.269 in air s
(21)
r = 0.259 in aluminum .

With the approximation of constant T , Eq. (19) can be integrated
directly, with the result,

- (Yo-1) (y+1)
n = 1+zrznfh-(¥_l—) . (22)

Here vy is the value of vy for the initial energy of the electrons in
the beam.

On using Eq. (22) in Eq. (15), one can integrate (numerically) to
find the mean range including the effect of multiple scattering. We have
done this for aluminum, and also have calculated the extreme range, which
is obtained by omitting the factor n in Eq. (15). In Fig. (1) we compare
our results with data of Marshall and Ward (Ref. 4) on the transmission of

electrons through foils of aluminum. In the figure, the solid curves
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represent Marshall's and Ward's measurements of. the fraction of initial
electrons transmitted as a function of thickness of the foil, for various
starting energies (Hp = 1705/?;7:I gauss-cm) . The squares placed on
the abscissa are at the extreme ranges computed by us using the Bethe
formula directly; the agreement with the end points of the experimental
curves is very good. The circles placed on the experimental curves are at
the mean ranges computed by us using Eq's (15) and (22). Our theory would
be well verified if the circles also represented the mean abscissae of the
experimental curves. We consider the agreement between theory and data to

be quite adequate for our purposes.

In Sec. 5 we shall combine this treatment of energy loss and multiple
scattering with equations of motion for the electrons in the presence of
fields. Before turning to that task, we record in Table I the mean and
extreme ranges of electrons in air, as computed from the above theory,

since these results are of general interest.

Table I
Ranges of Electrons in Air

Kinetic Energy Mean Range Fit to Extreme Range

W, Mev Ry» gm/cm? Mean Range Rgs gm/cm?
0.05 0.0030 0.0029 0.0045

0.1 0.0096 0.0100 0.0157

0.2 0.030 ©0.032 0.050

0.5 0.120 0.125 0.198

1.0 0.304 0.308 0.489

2.0 0.711 0.695 1.085

5.0 2.01 1.89 2.78

It may be useful to note that the mean range can be fitted, over the

energy range in the table, by the simple formula

2
Rplgn/en®) = S0 (23)

Table I also contains values computed from this formula.



5. Equations of Motion in Presence of Electromagnetic Fields

We shall now write equations of motion for the Compton recoil electrons,
in the presence of electric and magnetic fields E and B » and taking

account of energy loss and multiple scattering.

If no account were taken of multiple scattering, but energy loss were

included, the equations of motion would be

-> - >
£ e [L%xﬁ']-g(mﬁ;-r , (24)
-

dr _ -+

Here g(W) is the energy loss function defined by Eq. (17), T is the
position of the electron, t is the time, and ; is the electron momentum.

. -> >
The relations between p and v and W are

> > :
Yy - _—_p . W = pcimic” -me2 . (26)
¢ /pZimZc?

Integration of Eq's (24) and (25) would lead to precise trajectories, with
the electrons being deflected by the fields and slowed by the energy loss

term.

Now consider the multiple scattering. Since we have already accounted
for energy loss, it is necessary only to account for the fluctuations in
the angles of ; » Wwithout additional changes in the magnitude of ; .
The result of the many small and random changes 63 (with 63 L ;) will
be to make a probability distribution in ; . The value of ; calculated
from Eq. (24), without scattering, will be the central 3 of this distribu-
tion, and the distribution will tend to be over momenta having the same
magnitude, as in Fig. (2a), although the electric field E can lead to
situations as illustrated in Fig. (2b).
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Figure 2. Relation of central momentum [
to distribution at a given time.

Therefore, we retain Eq's (24) and (26) for the central momentum.
The average velocity of the distribution, however, is less than the value
appropriate to ; » by the mean obliquity factor n . Therefore, we
replace Eq. (25) by

3|<¢

dr

T = {27)
+

where v is calculated from Eq. (26) from the central momentum. The equa-

tion for N is taken over from Eq. (14),
dn _
It = v £f(W) . (28)

Repeating, we take the equations of motion to be Eq's (24), (26), (27)
and (28). The Compton current contributed by an electron (really a distribu-

tion of electrons) is taken as

> le] dr le] ¥
: = - el ar = - iel v
J B ¢ dt c 1 (29)

The time rate of production of ion pairs by the electron is taken as

10



g%. = v gW)/w, . . (30)

where w, 1is the energy expended per ion pair.

Notice that the equations of motion chosen above reduce to Eq's (14)
and (15) in the absence of fields. For in that case the central momentum
will remain in the x direction if initially pointed in it, and from Eq.
(27) we find,

v
dx = = dt . 31
n » (31)

Thus Eq. (28) immediately reduces to Eq. (14). Further, since

dw

ved o, (32)
Eq. (24) reduces to Eq. (15).

In some cases, it is convenient to use the retarded time (r = distance

from burst point),
= - I
t = t-3 , (33)

rather than t in the equations of motion. The change to retarded time is

accomplished through the relation

dr

dtr = dt - h—c . (34)
V:Il'
= ( - n—c-') dt . (34)

Here V. is the radial component of the velocity computed from Eq. (26).

11



6.. Change in n Due to Fields

Eq. (28) shows how N increases with time due to the multiple scatter-
ing. We shall see now that additional changes in n occur if the electric

field has a component E; parallel to the central ; .

First, it is clear that the magnetic field, and the component E}] of
the electric field perpendicular to ; cause no direct change in n . 1In

Figure 3 let the solid vectors represent central and extreme momenta

(a) (b)

Figure (3) Change in momenta induced by a force, (a) perpendi-
cular to p, and (b) antiparallel to p.

initially, and the dashed vectors represent the same after action of a
perpendicular force in (a) and an antiparallel force in (b). In case (a)
the entire bundle of momenta is deflected, but the angular spread is not
changed in first order. But in case (b} the angular spread obviously
increases. If the force were parallel to 3 » the angular spread would
decrease. |

For a given momentum in the bundle of momenta, let p;; be the com-
ponent parallel to the central momentum, and P the perpendicular com-
ponent. The angle 6 this momentum makes with the central momentum is

given by

tan 6 = ?L/pu . (35)

12



From Eq. (10) one can find, by trigonometry,
tan® =  v/ni-1 . ' ‘ (36)
Therefore,

(37)

Let there be an electric field E, parallel to the central ; . Then the

equations of motion are

dp
]
it = 'lel Ey ’
(38)
dQL ) 0
dt
Then, differentiating Eq. (37) with respect to time yields
273
e _Emy By ||ﬂ2'1EE
dt n dt n P“
- 2_11E - B
le] (n*-1) = . (39)

where, in the last line, 3 is the central ; .

Therefore, to include the effects of both multiple scattering and E, >
Eq. (28) must be replaced by

dn
dt

v EW) + |e] (nz-l)g-i;—:,_R . (40)

7. Spatial Spreading of a Beam

As a result of the angular spread in velocity induced by multiple

scattering, an initially collimated beam will also spread in space, around

13



the central point determined from the equations of motion derived above.
We shall discuss this spreading in an approximate way, valid when the
angular spread is small, and in the absence of fields. We shall use the
Boltzmann equation, which determines the evolution of the distribution

. > .
function ¢(§,v) in phase space,

%¥-+ v o Vi = collision terms (41)
The collision terms have two effects. First, the magnitude of the
velocity v of a given particle is gradually decreased with time. The
average decrease in v corresponds to the energy loss given by Eq. (1).
There are also fluctuations in the energy loss, which give rise to a spread
in the magnitude of v at a given time; this in turn gives rise to a
spread in position of the particle at a given time. However, this spread
in position is less important than that induced by fluctuations in the
direction of v » which we discuss below. Therefore we shall assume that
the magnitude v decreases smoothly with time, and ignore the spread in
v . However, we shall give below an estimate of the effect of the spread

in v .

The other effect of the collision terms is to cause fluctuations in the
direction of V . Because the scattering angle per collision is predominantly
very small, the spreading in direction of Vv can be treated in the diffusion

approximation, with

collision terms = g Ve2 ¥ . 42)

Here Ve2 is the angular part of the Laplacian operator in velocity (rather
than coordinate) space, and a is (one fourth of) the mean square scattering
angle per unit time. This quantity has already been used in Sec.'s (3) and

(4) above, and in fact we have (as will be verified below)

a(sec™!) = %-f(W) . (43)

14



We now choose a Cartesian coordinate s&stem in which the x-axis is
parallel to the initial velocity of the collimated beam. We introduce

two-dimensional vectors for the two othogonal directions, defining

-
r

-
<]
!

©,2) (%) - e

For the velocity, 6 will denote the angle between v and the x-axis.
When 6 is small, it can be thought of as. being composed of a deflection
ey in the y-direction and a deflection 8 in the z-direction. (Two num-
bers are required to spec1fy the dlrectlon of the velocity.) Thus we may

regard 6 as a vector,

2 92 32
[} 8,8,) , A i~ 39 ) (45)

.

The velocity then has components, to first order

<
1]

2
v'(l - g—) parallel to x-axis
(46)
v§ parallel to yz plane

<¥
"

> . . . . .
(Note that v here is two dimensional, and will be until further notice.)

In this notation, the Boltzmann equation becomes

2
—g? vx,7.8,t) + v (1 - -g-—) g-% v = g Vo2 ¥ 47)
In this equafion, v 1is understood to decrease smoothly with time: o also
changes with time, from Eq. (43). We shall normalize the initial Y to
unity,

ﬁ;(x,?,é‘,md-r S , dt = dxdydzdd do, . (48)

By integrating Eq. (47) over phase space, it follows that ¢ is so normal-

ized at all times,

15



%Eﬁ)(x,?,g,t)d'r - 0 . (49)

We have assumed here that § and its derivatives vanish for large values

of its arguments.

The average value of x at time t is

xw) = fxewar . (50)
Multiplying Eq. (47) by x and integrating over phase space, we find

vf(-%z—)wdr' . v(1--g_f) . (51)

Similarly, multiplying Eq. (47) by 62 and integrating, we find

d 5
dt

8z = 4q (Veze2 = 4) . (52)

e

Comparing this result with Eq. (28), we see that Eq. (43) is verified.

Let us now calculate the spread in x . Note that

AxZ = (x-x)2 = X2 -%° . (53)

Thus we need to calculate XxZ . Multiplying Eq. (47) by x2 and integrating,

we find

—_ — xB2
%E-x = 2v xil - %—) = 2v |x - 5%—] . (54)

Thus we need to find x62 . In the usual way, we find

x8%

B
It
<
<
N
—
)
|
+
S
g

£l
:

g_ + dox ) (55)
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Now we need Bt', which is determined by

%

= 16 o 62 . ' (56)

&=

These relations may be condensed a bit by noting that

]Q-

e = X E = v[xe-Xe? ] . (57)

)l

The quantities on the right here have to be found from Eq's (51), (52),
(55), and (56). All of these equations have to be integrated taking into
account the dependence of v and a on t . It is instructive, however,
to obtain an approximate answer by regarding v and o ' as constants.

One then finds

® = 4t (58)
x = vt(l-ot) , (59)
B = 32(at)? s C(60)
X7 = Vt[4at - £ (at)zl , (61)
=T = % wt)? (ot)2 = % vt - X2 ) (62)

From Eq. (62) we see that the spread in x is comparable with the amount
by which X falls behind vt , the position the particle would have if
there were no scattering. This result is in substantial agreement with

the curves of Fig, (1).

We are also interested in the lateral spread of the beam. To this

end, one calculates from Eq. (47),

2 v Ber , (63)

&>

|

¥
=y
1l
<
D

(64)

e
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In the approximation that v and o are constants, these equations
integrate to

87 = 2(wt)(at) , (65)
rZ = 2(vt) 2 (at) s (66)
2 = 7T = %}‘T = Wt)2(at) . (67)

One sees that the lateral spread builds up more rapidly than the spread in
the x-direction.

If we had considered the fluctuations in the magnitude of v , there
would have been an additional term in AxZ2

§(ax%) = wt)? (8Y) , (68)

where B is the mean square (fractional) fluctuation in v per unit time,

g?avr = 2v2gt . (69)

The rate B is smaller than the rate o by the ratio

B . 1
a

vzl (70)

Here [2] is given by Eq. (9). The factor vy? enters because, when

v = ¢ , substantial changes in energy lead to only small changes in the
velocity. The factor Z occurs because energy loss is due to collisions
with electrons, while angular scattering is due mainly to collisions with
the nuclei. The factor [2] occurs because the average of 62 involves a _
logorithmic integral in Rutherford scattering while the average of

(6v)? ~ 8% does not. In air, B is only a few percent of o . Thus

18



while the contribution to Ax? in Eq. (68) Tises as a lower power of time
than that from Eq. (62), by the time at which the multiple scattering

becomes important, the terms in Eq. (62) are dominant.

‘As a numerical example, consider an électron beam that starts with
1 Mev (Yo = 3) , and let us examine the distribution when the energy has
fallen to 0.5 Mev (y = 2) . According to Eq. (22), we will then have
n =179, for air. Then from Eq. (20), 62 =1, so that from Eq. (58),
at = 1/4 . From Eq's (59), (62) and (67) we then find

x %-vt ,

Vix?

1
E‘Vt

R
[}
R

vt » ViyZ

22%

Thus the lateral spread in position of the particle is about 2/3 of the

mean distance the particles have traveled at this time.

We see that the spread in position ‘is appreciable, and could have
noticeable effects if included in EMP calculations. We do not propose
that the spatial spread be included in all EMP calculations, but believe
that the method of Sections'(S) and (6), using the average position, is

adequate for most purposes.

However, occasionally we may want to make a calculation including the
full effects of multiple scattering. We believe that the best way to do
this is to add random velocity changes &V as the equations of motion of
the Compton electrons are being solved. Then, of course, the factors n
should be removed from the equations of motion. The drag force, which
gives the mean energy loss, should probably be left in the equations of
motion. Then to first order, the fluctuations 63 should be such as to
leave the magnitude v wunaltered; however, fluctuations in 63 could

also be included, provided the average dv is kept equal to zero.

19



It is not necessary to make the probability distribution of 6v
-5
match the Rutherford scattering law. As long as |8V| << v , it is
necessary only to make 682 and BvZ have the correct mean rates of

increase (see, e.g., Eq's (52) and 413)).

8. The Ionization

We now turn to another effect of the Compton electrons, namely the
ionization they produce in the air. This is important because it deter-

mines the electrical conductivity of the air.

It is well known that fast electrons, in moving through air, produce
one ion pair for (about) each 34 ev of energy lost by the fast electrons.
Not all of this ionization, however, is produced directly by the fast
electron. Rather, some of the electrons dislodged by the fast electron
have enough energy to produce further ionization. Ionization produced
directly by the fast electron is called the primary ‘ionization, and
further ionization is called the secondary ionization. The secondary
ionization builds up gradually in time after production of the primary
ionization. The time lag in formation of the secondary ionization is

important for EMP at high altitudes.

The cross section for ionization of atoms by fast electrons was also
computed by Bethe (Reference 5). The cross section has also been measured
for some gases, including N, and O, , by Schram and collaborators
(Reference 6). Using the experimental data to evaluate uncertain parameters
in Bethe's formula, we have deduced the following formula for the ioniza-

tion cross section per atom of air:

2. 2
o, (air atom) 2ma, Ee /20) 2 [3] ’ (71)
1 mv I
where a; is the Bohr radius and
2
31 - mv - 1
[3] g+ 2ny -1+ 2 (72)

20



with

MI2 = 4,05, .V = 16 ev for air. ' _ (73)

The number of ion pairs I produced per unit length by the fast electron is

dr _ No

where N 1is the density of air atoms, as before. Comparing this equation

with Eq. (1), we can compute the energy lost per ion pair of primary ioniza-

tion,
aw _ e Z 1]
Tdl T &, ﬁ;f [3] (75)

We have evaluated this result for several electron energies, and obtain the
numbers in Table 2.

- Table 2
Y = 1.1 1.5 2.0 3.0 4.0
ev _
Ton pair = 80.0 84.5 85.4 86.4 86.9

It is seen that g%- does not change much over the range of interest; we

shall use the constant value 86 ev/ion pair.

Thus we find that the total ionization is a factor 86/34 = 2.52 larger
than the primary ionization, i.e., each secondary electron must produce,
directly and indirectly, 1.52 additional electrons, on the average. We

need to find out how this residual ionization builds up in time.

First, it may occur to the reader that the Auger effect, following ejec-
tion of a K-shell electron, should result in a practically instantaneous
increase of a few per cent in the number of free electrons. However, mul-

tiple ionization, including Auger effect, was already included in the

21



experiments of Schram et al, since they measured electric current rather

than counting ionization events.

To estimate the time to form the residual ionization, we must know some-
thing about the spectrum of energy w of the secondary electrons (i.e.,
primary ionization). There appears to be no experimental data on this spec-
trum. Theoretically, it is expected to be approximately of the form dw/w?,
as in Rutherford scattering. Atomic binding will provide a cutoff of the
divergence at w*0. We shall therefore assume that the number dn of secon-

dary electrons having energy in dw is:

A dw
w°2+ w2

dn = (76)

To normalize this form to unity, we integrate from w=0 to w=W/2, where W

is the energy of the primary electron; we define the secondary electron to

be that one of the two outgoing electrons which has the smaller energy:
W/2

A W, 7 A
1 = dn = W arcFan(-ZW—o)— 7 ﬁ . (77

[s)

In the last form here, we have taken advantage of the fact that W/Z% is
(usually) a very large number.

From Equations (76)and (77), we can calculate the mean energy of the

secondary electrons:
W/2

= . 2w, wdw _ Wo w2 .
v T wiotw? T Rn(l‘ﬁo"f) (78)
(o] .

This result can be used to determine an approximate value for the constant
Wo. We have seen above that for each free electron produced, the primary
electron loses, on the average, 86 ev. Of this, we estimate 20 ev is
expended for the ionization potential and another 10 ev left in excitation
of atoms. (or molecules). Thus the mean kinetic energy w of the secondary
electrons should be about 56 ev. Taking W = 10% ev in Equation (78),

one then finds:

22



W, = 8.0 ev. ) , (79)

This result seems reasonable, and is probably not in error by more than
20%.

Most of the secondary electrons in the distribution (76) have low

energy. The fraction n(w,)} of electrons having w < w, is
g 1 g W 1

n(w,) = -%arctan(:: ), ' .(80)

which leads to numbers in Table 3

Table 3
(wilwo) = 1 2 3 4 o
n(wl) = 0.50 0.71 0.80 0.85 1

- On the other hand, the energy in the secondary electrons is spread
over a large range. The fraction F(w,) of the secondary energy contained

by electrons of energy w < w, is

(o)
nfl + ;lrﬂ '
Fw) = — 0 /7 (81)

(1+ B2,
2,n1+—-—2—
4wb

With W = 10° ev and W, = 8.0 ev, this formula yields the numbers in
Table 4,

Table 4
w
w‘ = 1 10 102 0% 10* 105
: _
Fw ) = 0.03 0.21 0.42 0.62 0.83 1.00
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We see that equal amounts of secondary energy are contained in
each decade. Since the amount of secondary ionization is approximately
proportional to the kinetic energy available, the secondary ionization

also will come equally from each decade.

Figure (4) is a graph of o5V for electrons on air atoms. In
plotting this graph we have used experimental data directly, rather than

Eq. (71), which is not very accurate for energies less than about 10° ev.

The initial rate R, of production of ionization by secondary elec-

trons, per secondary electron, is

' 2 OivWg
R, =N [ovd=n [-2 w:‘z":;;’ d0n w) . (82)

A numerical evaluation of this integral leads to the result

Ry, = (1.04 x 10"°% cm®/sec.) . (83)

This rate of production of ionization will not be maintained very
long. Fig. (5) is a graph of the integrand in Eq. (82), i.e. the factors
multiplying d(fn w). One sees that most of the integral (5/6 of it, in
fact) comes from electrons in the energy decades below about 250 ev.
According to Eq. (81}, or the table following it, only about 30% of the
total secondary ionization arises from secondary electrons in this energy
range. The initial ionization rate therefore cannot persist for a time

longer than

7
7 - 0.3x1.52 _ 53x107 _ (84)

-g- 1.04x1078N N

In fact, the rate should have fallen by a factor 4 or 5 by this time,
since the secondaries with energy less than 250 ev will have been
exhausted.
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These considerations suggest a way of estimating the ionization
rate at later times. From Fig. (5) we see that the higher energy part of
the differential ionization rate can be fitted quite well by the straight

dashed line, which represents the formula

dR, = N [3.2x10_6e-1'3u. du, (85)
where

u = nw (base ¢€) .- (86)

On the other hand, from Eq. (81) we see that the fractional amount of

secondary energy per unit u is
df = 0.091 du. (87)

The amount of secondary ionization that will be eventually produced by

dF is therefore

di, = 1.52 dF = 0.138du. (88)

We estimate the lifetime T{(u) for producing this ionization to be

. dI, _ 10° ;.3u
TW = 3/ = 73m © . (89)

Thus at time T after production of the secondaries, all of those

secondaries will be exhausted which had initial u less than

uT = 1 tn[2.32007%NT]. (90)

The surviving secondaries (of higher energy) are at this time creating

ionization at the rate
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umax
( R(T) = N U/P (3.2x10-%e"1" %) gy, - ' (91)
- u(T)

or, from Eq. (90)

N 1.3 2.32x10°5 (52

1 1
0.106 [—m—- - —N—T——:]
ma

Here NTmax could be found from Eq. (89) using the maximum u; however, we

R(T) . 3.2x10"° 1 [} 1 ]

max

R

shall not evaluate Tmax yet.

First, we shall increase R(T), over the result (92), by 50% on the
grounds that some of the tertiary electrons made will also produce ioniza-
tion, thus assisting the secondaries; thus we raise the factor 0.106 to
0.160. Second, we write R(T) in a form which also agrees with the result
(83) at T=0. Thus we write

an

-
o e—

(Lovo-eszt)
R(T) = 1.04x10-°sec /N for T < Tma

= < (93)
1+ 1saxa07
= 0forT>T .
max
T can now be found by setting
max
Tmax dt NTmax
1.52 =f (R(T) = 0.160 Anil + m—, ’
0
which yields
- NT = 2.0x10'! sec/cm® . ' (94)

max

The amount of secondary ionization I,(T) produced by time T,

per secondary electron, is
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NT
I,(M = 0.160 enf{1+ — N __} = -
2(T) "( " T.5ax10 ) (9%

Thus I,(T) increases only slowly with time, and reaches half its final
value at

o -2 o b} 3
NTI/2 10 NTmax 2x10° sec/cm® (96)

In EMP, one is often interested in the amount of ionization pro-
duced in a time of 10~® second after loss of a given amount of energy by
the primary (Compton recoil electron). Per 34 ev lost by the primary,
the number of ion pairs formed by this time is

34 N
N. = 2=11+0.160 anf1 + i
ip 86 [ ¥ “( 1.54x10”)] 47

This number is given in Table 5 as a function of altitude. One sees
that the effect of the time lag in formation of the secondary ionization
is an important effect at altitudes above 40 km or so. '

Table 5

0 10 20 30 40 50
1.00 0.98 0.90 0.79 0.69 0.61

altitude, km

N.
1p

9, Electron Equilibration

Once the secondary, tertiary, etc., electrons have fallen below
about 15 ev, they can no longer produce additional ionization. However,
they still lose energy in collisions with air molecules. If an electric
field E is present, the electrons gain energy from it. After some time,
the electrons reach an equilibrium distribution in energy, in which energy
lost to air molecules is balanced by energy gained from the electric field.
This equilibrium distribution depends only on the ratio E/p, where p 1s the

air pressure, if the air temperature is assumed constant.
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In EMP calculations, it is usually assumed that the electrons
acquire the equilibrium distribution immediately after birth, and also
follow changes in E (or E/p) without time lag. Under this assumption,
such important quantities as the electron attachment rate (to 0,), the
electron drift velocity or mobility, and the cascading rate or Townsend
coefficient, depend only on the instantaneous value of E/p. Conveniently,
experimental data for these quantities is usually obtained as functions
of E/p. Thus, in this approximation, it is not necessary to know the
details of the electron energy distribution.

If we now wish to take into account the deviations from equili-
brium, including time lags, we shall have to introduce parameters which
characterize the electron energy distribution. The simplest such charac-
terization is to use only the mean energy of the distribution. Actually,
the parameter Ue of electron swarm theory is 2/3 of the mean energy,
in analogy to temperature, although the energy distribution is not Max-
wellian if an electric field is present.

We have seen in Sec. 8 that about 70% of the electrons have energy
less than 16 ev at birth. Most of the other 30% drop rapidly (in a
time given by Eq. (84) below 16 ev by producing further ionization. There-
fore, it seems reasonable to start the electrons off, in equilibration

calculations, with a mean energy of about 8 ev, or U, about 5 ev.

Baum (Ref. 7) has studied the relaxation of Ue’ using data on
momentum and energy transfer collision frequencies provided by A.V.Phelps.
We may use Baum's results to appraise the importance of the finite relax-
ation time for EMP calculations. We take as a typical electric field
1 esu = 3x10* volt/meter. Table 6 then shows, for various altitudes,
the equilibrium value of Ue and the time to reach equilibrium, starting
from Ue = 5 ev. One sees that, for the electric field assumed, the times
are all less than 10°° second. It therefore appears that the finite

relaxation time cannot have a drastic effect (by altering the effective
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electron mobility) on the peak electric field, unless the computed elec-
tric field changes appreciably in 10™° seconds.

‘Table 6
altitude, km = 0 10 20 30 40
Ue’ ey = 0,17 0.35 1.0 1.6 b
time, sec = 7x1071° 9x]0~10 3x10710 3x10710 10710

Note that at 40 km, the equilibrium Ue is high enough that, for a
Maxwell distribution of electron energies, cascading would occur rapidly.
However, for high Ue’ the deviations from the Maxwellian distribution
are large. To compute the cascading rate correctly, one would need more
information (than Ue) concerning the electron distribution. However, there
does not appear to be enough basic cross-section data available (currently)
to permit an adequate treatment of the detailed distribution. Thus the
cascading rate can be computed only for the equilibrium case, where it is
known from the Townsend coefficient, which has been determined experi-
mentally as a function of E/p. The determination of the cascading rate

from the data on the Townsend coefficient is discussed in Ref. 8.

At low altitude, where cascading normally is not important, one
could devise a non-equilibrium correction by using Baum's relaxation times.

It would be important to do this only if rise times of the electric field
are as short as 10™° second.
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