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ABSTRACT

This dissertation presents a general theory for the solution of electromagnetic boundary
value problems for regions which are not homogeneous. The theory begins with the wave equa-
tion in Fourier frequency domain for the electric field in the interior of a closed volume; the
electromagnetic property parameters, specifically conductivity and dielectric constant, are
written as functions of position. The wave equation, which holds throughout the interior of the
closed volume, is then converted to an integral equation by use of a Green's function for the same
volume containing a homogeneous medium. Boundary conditions between homogeneous regions
inside the closed volume appear as sources in the integral equation, The same theory applies to
a closed region in which the parameters vary smoothly, rather than discontinuously, as a func-

tion of position.

The theoretical development is first presented, and the remainder of the paper illustrates
the theory in the solution of a problem arising from the study of internal electromagnetic pulse
phenomena., The problem consists of determining the electric field in the interior of a two-
dimensional rectangular cavity excited by a source current density specified throughout the
cavity, The walls of the cavity are assumed to be perfectly conducting., The cavity contains a
single rectangular inhomogeneity, or object. The example problem is worked in rectangular
coordinates for clarity of presentation, Although the object treated in the presentation is rec-
tangular, any other object of regular shape could be treated just as well in this coordinate sys-

tem. The choice of coordinate system is determined by the homogeneous cavity walls.

In rectangular coordinates, the integral equation for each component of the electric field
reduces to an algebraic equation, In this paper, the algebraic eguations are solved by an itera-
tive process which requires that the parameter changes in the inhomogeneity be small. Results
are presented for the cavity containing a conductive inhomogeneity and for the cavity containing

a dielectric inhomogeneity with a higher dielectric constant than the rest of the cavity.

Further applications of the theory are suggested.

*This research supported by the Atomic Energy Commission.
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CHAPTER I. INTRODUCTION

Solutions to electromagnetic boundary value pz‘oblemsl.5 provide the values of electromag-
netic fields and associated charge and current densities within a given region, finite or infinite.
Maxwell's equations, which govern the fields, are usually applied first without reference to bound-
aries to determine the nature of the solution. 5 The solutions are obtained by separating the partial
differential eguiations to give ordinary second order differential equations which can be solved.

Whnen boundaries are introduced, unique sclutions can be picked out of the infinite number of solu-
tions to the differential equations by selecting only those solutions which satisfy the boundary con-
ditions. The dependence of the solutions on the electromagnetic sources and on the values of the

fields at the boundaries is demonsirated by Helmholtz's tho:—:orem7 in which the scalar potential and

rectangular components of the vector potentials and the field intensities satisfy
2
VY + kY=g (1)
where g is the specified source distribution and the equation is the inhomogeneous Helmholtz wave

equation which applies throughout a homogeneous volume V bounded by the surface S. Then the solu-

tion for ¥ can be written in general as

jkR kR KR
o0 ey 1 ge 1 Y e .9 [e
Ly .z )'41rj‘; B Yt SE: ¥5n s . ()

The first integral in Equation 2 accounts for the fields arising from the source distribution g,
and the second integral accounts for the effects of the boundaries, i.e., reflections, etc. The

terms inside the surface integral give the boundary conditions at the surfaces.

Examples of problems which can be treated by this approach are (1) scattering problems, in
which a source a great distance away produces waves which are reflected by a conducting or dielec-
tric object, or (2) cavity problems, in which a source produces waves inside a closed homogeneous
cavity with conducting boundaries and the presence of the boundary greatly affects the fields. Prob-
lems involving inhomogeneous media cannot be adequately treated by use of the Helmholtz theorem,
because Equation 1 applies only to a region in which the medium is homogeneous. The theory pre-
sented in this study is analogous to that of Helmholtz but includes the capability to treat inhomo-

geneous media,

This dissertation presents a general theory for the solution of electromagnetic boundary

value problems for regions which are not homogeneous. The theory begins with the wave equation



in the Fourier frequency domain for the electric field in the interior of a closed region; the electro-
magnetic property parameters, specifically conductivity and dielectric constant, are written as
functions of position., The wave equation, which holds throughout the interior of the closed volume,
is then converted to an integral equation by use of a Green's function for the same volume contain-
ing a homogeneous medium. Boundary conditions at boundaries between homogeneous regions in-
side the closed volume appzar as sources in the integral equation. The same theory applies to a
closed region in which the parameters vary smoothly, rather than discontinuously, as a function of
position. The theory is illustrated in the solution of an internal electromagnetic pulse (EMP)

problem,

When a guided missile is exposed inflight to a transient radiation pulse produced by the det-
onation of a nearby nuclear device, spatially distributed electron current densities are generated
inside the missile as a result of the interaction of the radiation with materials in the missile. These
current densities generate electromagnetic fields which then couple electrical energy into elec-
tronic circuits in the missile system. In Reference 8, an estimate of the generated current densities
is presented, and estimates of the energy contained in the fields produced by these current densities
in various shapes of cavities are presented, The problem posed by this phenomenon led to the anal-
ysis presented in this study, which was performed to devise an analytical method for investigating

the effects of this elecirical energy on the circuitry.

Electronic circuits in a missile system are generally compartmentalized into small regions
bounded by conductive surfaces to provide electrical isolation. In the mathematical modeling used
in this analysis, these regions are considered to be cavities and the circuit components inhomogene-
ities in the cavities. The work in Reference 9 modeled these regions as homogeneous cavities,

This study investigates an electromagnetic boundary value problem for a cavity filled with an in-
homogeneous medium. Electromagnetic fields in the cavity are excited by a source current densi-

ty which is specified throughout the interior of the cavity,

In Chapter II, the theory which provides the basis for the technique described in this study
is developed. In Chapter III, a specific problem is defined and the Green's function for that prob-
lem is derived. Chapter IV presents the mathematical solution of the problem. The results of this

study are presented in Chapter V and the conclusions in Chapter VI.

Related Work

This type of problem is normally treated by solving a wave equation for each region in which
the parameters are constant and the fields are matched at the boundaries where the parameters
change values. This technique can be used when the boundaries correspond to constant values of
coordinates in coordinate systems in which the wave equation is separable. However, if this is not
the case, some other technique must be used. The wave equation {in the frequency domain} for the
time-varying electromagnetic fields is the vector Helmholtz wave equation; there are only six co-

ordinate systems in which this equation is separable.10



A technique which has been used for problems in which boundaries do not correspond to con-

o . . 11
stant values in one of the six coordinate systems is that of numerical finite difference computations,

Several examples of techniques, used in solving for both static and dynamic fields, are pre-
sented in Reference 12; in these techniques, integral equations are solved by numerical methods.
These are primarily external problems, i.e., scattering problems; rather than interior problems

such as those related to the cavities in this study.

Another technique is used to solve the problem of a wavezuide having periodic discontinuities
and of a resonant cavity containing a solid dielectric disc in the center of the cavity. This tech-

. 13, 14
nique

is similar to that described in this study in that the parameters are treated as functions
of position; however, the solution is obtained by numerical solution of differential equations as com-

pared to the solution of an integral equation used in this study.



CHAPTER II. DERIVATION OF INTEGRAL EQUATIONS

The analysis in this study applies to sinusoidally time-varying fields in that it is done in the
Fourier frequency domain, From the results of the analysis, transient problems can be treated by

use of the inverse Fourier transform. The form of the Fourier transform used in the analysis is

F(w) = f f(tye 19t at (3)

The Fourier transforms of Maxwell's equations are

VxH=J+(o+ jue)E (4)
Vv x E = -jupH (5)
v.D=p (6)
v.B=0 (7)

—_

The current density in Equation 4 is written in three parts: the source current density, J,
which is specified throughout the region of interest; the conduction or induced current density, O’E;

and the displacement current density, jwe_é.

The wave equation for the electric field is derived by taking the curl of Equation 5 and then
substituting Equation 4 for V x H. If the magnetic permeability, g, is a function of position, it
must be differentiated when the curl of the right-hand side of Equation 5 is taken. However, in
many problems of practical interest, the magnetic permeability is constant. This restriction will
apply here: conductivity 7 and electric permittivity € can vary with position, but the permeability

must remain constant, With this restriction, the wave equation for the electric field is
—_— 2 —_ ) —_
VxVxE-kI(rE = -jupd (8)
where

K2 = el - omo@® ©



Application of the vector identity
YxVxh=vv.A-vA (10)

to Eguation 8 results in

7%E + ktz(F)E - jopd +V(V - B) - (11)

In order to obtain a solution to Equation 11, define
2, - 2 2,
kt(r) =k + kl(r) (12)

2, . . P -
where k~ is constant and the variation of the material parameters is included in k?(r). In the ex-
ample problem which is presented in this report, it is assumed that k? is of the same order of mag-
nitude as kz; however, some additional methods of solution will be described in which this assump-

tion could possibly be removed. Equation 12 is next substituted into Equation 11 fo give

V%E + K°E = jupJ + V(V . E) - k";i:' =B(r) . (13)

If the right-hand side of Equation 13 is considered simply as a source (even though it depends
on the unknown E), the left side is an operator for which a Green's function can be found. This

Green's function, which must be a dyadic for a vector wave equation,15 satisfies
9= 9= 4 - -

v G(r, ro) + k" Gl(r, ro) =-6r -r ) (14)
where 0 is the three-dimensional Dirac delta function, and 1is the identity tensor or dyadic. Be-
cause dot products involving dyadics are not commutative, the order of multiplication, left or right,
is important. Subtracting the left dot product of E and the terms of Equation 14 from the right dot

product of G and the terms of Equation 13, integrating the resulting equation over the volume of the

cavity, and making use of the properties of the delta function, results in
B -- [ By Geiya,+ [ [ERy - BE5) - BEy - vEED)]av, - a9
v o o' o v To ‘To Tl Far eV, -

The second volume integral in Equation 15 can be changed to a surface integral by use of a

vector Green's theorem:16
—_ 2= 2— = - - o - =
f (BE- VG-V E. G)dv=f Ii(nn EXV - G} - (V. E)}n - Q)
Vv S
+(HxE)-(vXE)-(VxE)-(Hxé)]ds (16)

where the surface is that of the volume V, and n is the outward-pointing normal to the surface. When

this substitution is made in Equation 15, the resulting equation




E(F)=-f B(E) - Gr.r ) dv -f[E-E)(v.E)—(v-E)(H-é)
v (8] Q (o] S

+(Hx§)-(vXé)-(vXﬁ)-(Exé)]ds (17)

expresses E as an integral of the source function P and the Green's function :é integrated throughout
the volume of the sources and various products of the Green's function and the fields evaluated on the
surface and integrated over the surface, i.e., boundary values. This is the normal application of
the Green's function to the solution of a boundary value problem. However, it is somewhat differ-
ent in that the source function _15 includes both the electric field E and derivatives of E; therefore,

Equation 15 is really an integro-differential equation for E

An interesting observation can now be made: the ruse of writing the parameters as a function
of position, using the Green's function to derive an integral equation, ete., has converted the bound-
ary conditions at any boundaries between different media (for example, conducting objects) inside
the cavity into the integral on the right side which is a source integral, In other words, the boundary
conditions can be thought of as sources for the fields.l'ir

The Green's function é is that for a homogeneous cavity; and, if the walls of the cavity corre-
spond to one of the six coordinate systems in which the vector wave equation is separable, the de-
termination of G is a standard boundary value problem which can be solved by separauon of vari-
ables, 18 The surface integral in Equation 17 determines the boundary conditions which G must

satisfy; these are chosen so that the evaluation of the surface integral is as simple as possible.

The remainder of this study is concerned with the solution of a specific problem in order to

further explain and demonstrate the technique of solution.



T CHAPTER III. DERIVATION OF A GREEN'S FUNCTION FOR A SPECIFIC PROBLEM

° ' Definition of Problem

In this chapter, an application of the theory developed in Chapter II is presented. The develop-
ment there applies to general three-dimensional coordinate systems; however, in order to demon-
strate the theory, it is desirable to avoid as much mathematical complexity as possible, Therefore,
the problem to be investigated is defined in rectangular coordinates to avoid the complexity of tensor
mathematics and is restricted to two dimensions in order to reduce the number of manipulations. In
summary then, the problem to be investigated is a rectangular "cavity” in two dimensions infinite in
the z direction, and the source current density is defined to be in the x direction {Figure 1), Finally,
a very important restriction is that the walls are assumed to be perfectly conducting. This problem
simulates a wave guide containing an inhomogeneous dielectric with source current density passing
through the guide perpendicular to its axis, The inhomogeneities which can be treated will be dis-

cussed in the next chapter.

g =-m
b
J
g = ® ——————— (¢ -]
0
0 a X
g = @

Figure 1, Geometric Definition of Sample Problem

Green's Function

The use of rectangular coordinates means that the wave equation (Equation 13) can be written
in component form. Because the Green's function for each component of the electric field is a scalar,
the use of tensor mathematics is not required. In that the derivation of the Green's function for the
' x component will be presented in some detail, the y component of the Green's function can be written

by a simple interchange of variables, This derivation follows closely that given in Reference 19,




‘ Because the cavity is infinite in the z direction and the source current density is defined to be
independent of z, as well as confined to the x-y plane, all functions are independent of z, derivatives
with respect to z are zero, and the z component of the electric field is zero. Thus when the gradient

or curl operators are written, they are understood to include only derivatives with respect to x and y.

The wave equation which the x component of the Green's function must satisfy is
VG (FF) + kPG (T T) = -6(x - x )oly - y.) (18)
x "o x ‘"o o' Y T Y, }

The boundary conditions which Gx must satisfy are chosen so that the surface integral in Equation

17 in which Gx appears is simplified:

L. RE(r) _ 3G, (r,r )

_/s- [Gx(r, ro) T - Ex(ro) T]dso . (19)
Because the walls are assumed perfectly conducting and because the boundary condition is that the
tangential component vanishes at a perfectly conducting surface, Ex is zero on the two walls de-
scribed by y = 0 and y = b. When Gx is chosen to be zero on these two walls, the surface integral
over these two walls vanishes, On the other two walls, Ex is a normal component, and the boundary
condition on the normal component of the electric field at a perfectly conducting surface can be ex-

. pressed in terms of the normal derivative of the electric field (this will be shown later). Thus, the

normal derivative of Ex is known, and if the normal derivative of the Green's function is set equal

to zero, the surface integral can be evaluated, In summary,
G =0 - =0 . (20)

Note that the manner in which these boundary conditions have been applied implies that the boundary
condition is the same all over a given surface, e,g., the wall described by x = 0. This leads to the

restriction that the inhomogeneities {which will be discussed in Chapter IV) cannot be located against
the wall; otherwise, the boundary condition would not be constant for the whole surface. Therefore,
the inhomogeneities can exist only in the interior of the cavity and not against the walls, i.e., in the

region defined by
0<x<a; 0<y<b

A function which satisfies the boundary conditions at y = 0 and y = b is

Gx = Z h(x) sin a y {21)
m=1




where

= 7
@ b . (22)

Substitution of Equation 21 into the wave equation for Gx (Equation 18) gives

~ {a°n 2 2 _
Z {E + (‘a’m + k }h} sin amy = -6(x - xo)ﬁ(y - yo) N (23)
m=1

The validity of interchange of the order of differentiation and summation will be discussed later,

Let
2 2 2
B =k - a (24)

multiply both sides of Equation 23 by sin @ Y, and integrate from y = O toy = b, In that the sine
functions are orthogonal on this interval, the only term in the series which is non-zero is the term
for which n = m. Again, the validity of the interchange of the order of integration and summation

will be examined later., The result is

a%h(x)

2

” + Br2n hix) = - 2 sin amyoﬁ(x - xo) . (25)

b

Equation 25 is an ordinary second-order differential equation, which can be solved according
to the classical theory of ordinary differential equ:a.tions.20 The solution to the homogeneous equa-

tion (i.e., Equation 25 with the right-hand side equal to zero) is

hl(x) = A1 cos Bmx + B, sin Bmx X <X (26)

1

hz(x) = A2 cos Bmx + B, sin Bmx X sx 27

The boundary conditions which h must satisfy (Equation 20) require that

hlfx) = A1 cos Bmx X £x (28)

and

B2 cos Bm(a - x)

h2(x) B sinf3_a Xo 5 X (29)
m




The Wronskian W is given by

dh2 dh1
Wix) = hl(x) palie hz(x) &% AIBIBm R (30)
and the solution to
2
2
dh }21+B h = g(x) (31)
m
dx

is given by

h,(x)h, (x") ~ h_ (x)h (x)
h{x) =f 21 12 gix’)dx’ (32)

Wi(x')
So the solution to Equation 25 is

-2 sin @ Yo
h{x) = ————— X
me sin Bma

%
f cos Bm(a - X} cos Bmx 6(x - xo) dx

31

X
[ cos f_x cos B_(a - x)6(x” - x,) dx’ (33)
2

If the limits 3 and x, are chosen carefully, the solution can be made to fit the boundary conditions

without the addition of solutions of the homogeneous equation. If x1 < xo and x2 > x  are chosen, the
first integral is zero, unless x > X and the second integral is zero unless x < X In applying this
choice, i.e., X, = 0 and X, = a, and by making use of the properties of the delta function, the result

for h(x) is

Zsine_y cos Bm(a - X) cos Bmxo Xz X
m”’ o
h(x) = m (34)
m m
cos B _xcos B _(a-x) X €X
m m [¢) o

This solution satisfies the boundary conditions and the inhomogeneous Equation 25, Therefore, the

Green's function is given by substituting Equation 34 into Equation 21,

cos a - xj cos X X=X
Bo@ - x) cos B_x_

N -0 sine y sina_y
Z B_sinfB b
m=1 m cos B _xcosfB (a-x) X <x
m m o

(35)

10



The derivation of the y component of the Green's function, which follows the same pattern as
that for the x component, can now be written by simply substituting x for y and y for x, with the

proper modification of the constants:

N 5 O Siny x_siny x cos ﬁm(b - ¥)cos 6myo Yo=Y
G(rr)==2 m o m (36)
y ‘o a 6m sin ﬁma
= 6 - ;
m=1 cos 6my cos m(b yo) y=sy,
with
mf 2 2 2
= — i) = -

Ym a ’ m k Ym - (37

I |k2| < l}'fnl, then 6m is imaginary and the trigonometric functions become hyperbolic functions.

The same thing happens in Equation 35.

This completes the derivation of the Green's function for the problem described in the early

part of this chapter. The solution of the integral equation (Equation 17) for this problem will be pre-

sented in the next chapter,

-11



CHAPTER IV. SOLUTION OF THE INTEGRAL EQUATION FOR
A TWO DIMENSIONAL RECTANGULAR CAVITY

It was noted in Chapter II that in rectangular coordinates the vector wave equation could be
separated into component scalar equations. Also, the integral equation for E, Equation 17, can be

written as component equations, The equation for Ex is
= dE 3G
- , 3(V - E) 2 X X
E (r) = f [}prx t 5% - kiEx]Gx v +f G s "~ Egsn (95, - (38)
\ o S [o] [e]

The equation for Ey (Jy is set equal to zero) is

= 3E 3G
E(r)=-f [—B(—g-'—E)-kailG dv0+f - E |98, (39)
y vi % Y'Y s | yon, yong

It should be observed here that there is no mathematical difficulty in allowing Jy to be non-

zero; it is simply set to zero to simplify the presentation.

When the Green's functions derived in Chapter II are substituted into the above integral equa-
tions, and the order of summation is interchanged with integration and with differentiation (this oper-
ation again will be examined later), it can be seen that, because of the separability of the Green's
functions, part of the functional dependence on ; can be brought outside the integrals., For example,
in Equation 38, the conly part of the integrand which depends on y is the factor in Gx‘ sin @ Y- This
factor is constant with respect to the integration which is over X, and Yo and can therefore be brought
out of the integral. The remaining integral is of course then constant with respect to y, and the form

of Ex c¢an be written

@

EX(F) =z u_(x) sin a_y (40)
m=1
and E ,
y
E () =n; v () siny_x (41)

These expressions are then substituted into the integral equations (38 and 39) in order to de-
termine the unknown functions u. and Vone In each equation, part of the integrations can now be
performed; the resulting equation depends on one variable only, rather than two, as Equations 38

and 39 do. These equations, taken term by term, are

12



vy A cos ypx du du

__E p mp m S ). M
um(x) = 3 3 * ax cos Bm(a X) I cos Bmx

P m x=0 x=a
al, d2um 2
+f J k) 3 - up(xo)npm(xo) K (x,x ) dx (42)
o dx
o p=1
where
2 b dvp
Amp = E/ T sine y dy . (43)
o o
5 o =uul®) [y s d (44)
m™ = JMH(F) . X XYy Sy, Vo
2 b 2
npm(x) =5 '/; k|(x,y ) sina_y_ sin Yo dy_ (45)
and
. cos Bm(a - X) cos ﬁmxo X=X
Kx(x, xo) = m (46)
m m osfB xcosB (a-x) Xsx
¢ m m o o
© 2 @
amep cos apy b|ld Vi
Vm(y) - 2 2 +_[ 2 Vp(yo)gpm(yo) Ky{y' yo) dy, “n
6 -« o dy
p=1 m p o p=l
where
g a du
B =—f —Psiny x dx , (48)
mp a dx mo o
[e] (o)
2 2 2
gpm(y) = ;—[ kl(xo’ y} sin Y ¥ Sin ypxo dxo ' (49)
and
& -
. cos rn(b y) cos Gmyo Y 5Y
K03 = s a 50)
m m cos O cos 6 (b-y) <
m m Yo y=3,

The surface integral for Ey is zero because there is no y component of the current density. Note

that Equations 42 and 47 are dependent because of the constants Amp and Bmp'

13



. Next, the two integral equations are differentiated by using the following formula:

if
- N a
' h(x) =_£ ex JK (x,x )ax (51)
. ’ then
-‘-Ulix—) = —B h(x) + @(x) (52)
dx
The resulting equations are
— 1 2
um(x) = Bz Jm(x) +Z (-ypAmp cos ypx up(x)npm(x)) (53)
m p=1
and
1
vm(y) = —62— (amep cos apy - vp(y).‘;pm(y)) . (54)
@ r
Equations 43 and 48 can each be integrated by parts once to give
2afm b
Amp - A vp(yo) cos a_y_ dyo , (55)
27m a
B =-——-f uix )eosy x dx_, (56)
mp a J p o m’o o
and then Equations 53 and 54 can be substituted into Equations 55 and 56 to give
u"1;1 _m pm
= - 7
) Amp 2 + bﬁ Z f v (yo)gqp(yo) cos a v dy (57)
P
- and
7anpm 2'ym s -
Bmp - _ —Bz - —-_a32 ./0‘ Jp(xo) -Z uq(xo)nqp(x Y| cos Y%, %y (58)
P p q=1




. The subscripts in Equation 57, i.e., m and p, can be interchanged to give Apm which can then be
substituted into Equation 58; Brnp can then be found in terms of integrals of urn and Vm' The same

thing can be done for Amp' The results are

. . 2
amBm 2)’pam af, @
A = -
mp 22 _ 2 2| L2 j; I n®o) Z u(x m, () eos v x, dx,
. P m m’'p m i=1
2 = b
+ 5 f vi(yo)Eip(yo) cos a_y_dy (59)
i=1"°
and
2
-'ymﬁm 2a '}’m
Bmp= 575 55 E j v(y)g (y)cosay dy
BO -V e
pm m p
2 [* -
+ Ej(; Jp(xo) - E ui(xo)nip(xo) cos ¥ X dxo (60)
i=1
. Up to this point, the development has been entirely general for the problem being discussed;

no restrictions have been placed on the source current density J or on the 1nhomogene1t1es (other
than that they be in the interior and not touching the walls), descrlbed by k (x,¥y) in n and gpm
Several computational methods could probably be used to solve Equations 53 and 54, For example,
the functions u and v can be expanded in Fourier series with arbitrary coefficients, When these
series (truncated) are substituted into the equations, a matrix equation for the Fourier coefficients
can be derived. When this matrix is inverted, the solutions are obtained by summing the Fourier

series.

The method which will be used in this study is an iterative perturbation scheme which, for
the parameters within a certain range, converges to an exact solution, Because it is a perturbation

scheme, the change of parameters in the inhomogeneities must be small, i.e.,

—_—_ <1 . (61)

Next, forms for the source current density Jx and then for the description of the inhomogenei-
2 cps . .
. ties k1 are specified for the example problem. The current density is assumed to be expanded in a
series of eigenfunctions for the cavity:

. I x, ¥) =E 2 Jij cos ¥, sin ay (62)

izl j=1




Many functions can be approximated with this expansion by simply specifying values for Jij; here

Jij is assumed to be specified.

In Chapter III, it was stated that the boundary condition for the normal component of the elec-
tric field could be stated in terms of its normal derivative. To show this, the continuity equation
is needed. Because inhomogeneities cannot be against the walls and because the boundary conditions
apply only near the walls, derivatives of the parameters of conductivity and dielectric constant can
be ignored in deriving the boundary conditions, Therefore, to derive the continuity equation, the

divergence of Equation 4 gives
v.(vXﬁ)=v.(3+(a+jm)§)=o . (63)

This expression is equal to zero because the divergence of the curl of any vector is zero, an identity

from vector calculus. Therefore, the continuity equation near the walls is

—_

v.E-—Y.J3 (64)
g+ JwE

The tangential component of Eata perfectly conducting wall is zero; and, because it is zero at
every point on the wall, its derivative is zero too. Therefore, the only remaining non-zero term
on the left side of Equation 63 is the derivative of the normal component; therefore, the boundary

condition may be stated

3E _ -v.J

E ST (65)

The current density specified in Equation 62 leads to the boundary condition that the normal

derivative is zero, because the divergence of Jx has a sine dependence in both x and y:

sin 7x sin ajy =0

x=0 or a or
y=Oorhb

The form of the description of the parameters is

2 r2
kl(x, y) = klux(:c)uy(y) (66)

82 . . N . .
where kl is a constant, and ux(x) is a combination of unit step functions:

u (x) = ulx - a) - ulx - a,) . (67)

Thus the inhomogeneity described is a rectangular object with its electrical parameters given by

I'E:i (Figure 2).
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Figure 2. Definition of Inhomogeneity

It is not necessary to choose such a simple form for ki(x, y); the theory holds for much more
general functions. To keep the mathematical manipulations as simple as possible, this form was

chosen,

With these definitions of Jx and k?, several integrals can be evaluated:

Jm(x) = jui E Jim cos ¥,x , (68)
i=1
. n_ (x) = K°K__u_(x) (69)
pm 17"pm x '
and
) = K°L__u (y) (70)
gpm T 17 pm yy
where
b
2 2
= — i i 71
Kpm 5 f sin ey sinay, dy (71)
b
1
and
- 2 az
me =< f sin y_x_ sin ypxo dxo . (72)
a
_ 1
Note that K and L are symmetric, i.e., K =K
pm pm pm mp

The equations to be solved are Equations 53 and 54. By expanding u and Vi in Fourier
series and substituting these expansions into Equations 53 and 54, two dependent equations for the

' Fourier coefficients can be obtained. Express uand v as

17



Upp(x) = Z Pim €08 %X (73)
i=1

WOE Z b, CO8 4y (74)
i=1

It is to be noted that Amp and Bmp are proportional to the Fourier coefficients for u and v

because of the way they were defined (Equations 55 and 56). Therefore,

B " TP (75)
Amp " %m¥mp (76)

and when the expansions for um and vm (Equations 73 and 74) are substituted into Equations 59 and
60), coupled equations which involve only ¢ and § and known constants are obtained. More integrals

similar to K and L (Equations 71 and 72} can be defined:
pm pm

a
2 2
M =—f cos ¥ x_cos y_x_dx (17)
pm aJ p o mo o
1
and
2 b2
N =—f cos oy cos ay 4y . (78)
pm bb m-o p’o Yo
1

The two coupled equations for ¢ and ¥ which result are

JoBd o 6122’ 82 ﬁp =\ "5%m
m: 22 22 N FT2 53 KomMip®iq ™~ ~2 Loplim¥iq) (7
P B -7 e 6°R° - Y a - 1 P 19 3}
pm ‘pm pPm  ‘pm gl i=1 P
and
2
-jupd o v B LI 2
- mp p'm 42 p E E mp
= +k K M, o -L N ¥ |- (80
"me Bz 62 _ a272 1 62 62 ~ a272 Hz qp 1m¢1q qm 1pw1q (80)
pm P m p m p'mg=1 i=1 P
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To this point, there has been no reason for the restriction given in Equation 61, but it will be
given now in order to solve Equations 79 and 80. These make up a matrix equation which could pos-
. sibly be solved by matrix inversion for all values of ﬁ?, however, now ﬁ? will be assumed to be

small (Equation 61) in order to solve Equations 79 and 80 by an iteration method. Once ¢ and ¢ are

. determined, the fields can be found by simply evaluating Equations 40 and 41.

Method of Iteration

a
Because k

= N

is assumed small, the predominant terms for ¢ and ¢ in Equations 79 and 80 are
the first terms. This suggests substituting the first term into the summations, then adding the cor-
rection term inside the summations to get a further correction. This can be continued indefinitely

to give more accurate values. The procedure will be carried out in detail for ‘Ppm' and the question

as to whether the iteration converges and under what conditions will be answered.

Let

@ = Ju“meﬁp (81)
pm 6282 . 22 :
® Fn
o T mp’p'm (82)
Yom 2. 22
m p j'ma'p
and
r - L (83)
pm 2.2 22
6p'6m ypam
Then Equations 79 and 80 become
- o @ Y
i, 55 e
= - K. M o, - . N .. 84
“om ~ ¥pm klﬁprpm jm’ipYij 52 IP 1mw13 (84)
- i=1 j=1 p
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and

o A2 2 m p
= K. M, .- L, . .
v btk BT . 2 32 pMim®s; LJmNip"biJ (85)

Now the iteration process is begun by taking Equations 84 and 85 with <p° and u:o in the place

of ¢ and ¢ on the right side as approximations for @pm and u’pm and substituting them into Equations

84 and 85 again and again to obtain an infinite series of :p% and wz].:

0 2.2 0
Pom ™ Cpm K10 T D D KMy el

k262 5% x v
"M lrlJ E E rj qltpqr B 62 ri"qj qr
q r i
Y. Y.,
pm o a2 2 z : E : ji
- LT, . - IN L
52 L;ipNim lbij + k1 Bl ji 2 KriMwaqr Lr,]quwqr
P @ \F

4 2 2 yiaj
; M .o -—JL N,
1% Tom Z Z % Ti1% imMip Z Z K Maifar 52 i ai¥ar
J q r

Y am 9 ‘)’.ai
+ P2 s 1 N E E LIk M o -L N .y , ete. (86)
62 17ji jp im BZ ri qjqr ri qi'qr
P q r i
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In the same way, an expression for wpm can be derived:

Y «
; - 2 : E : m p o o
pprn wpm * k Bp mp BZ ijMirnwij ijNip‘bij

. i p
Y% o0 71% o
DL (et i
p mp 2 1 1J JP im Tj q1 qr §2 riaigr
p i
Y.,
2 ji (o] (]
. T. L. N, —= M. - .
* B ATjm 1PE Z ﬁ2 KriMai¥qr L'lt‘JI\Iqi"bqr
q r i
1852 Ym%
Pmpzz 2 1 1J JP 1mEZ qf' I'J q1
P
o 7’qa’r 0
. XZ E Ktrqu@st - 2 I"tql\Isr‘bst
s t q
Y o 'Y.D'
mp ‘i Z o ()
+ 2 2 Bq rq r1 q;| Z 2 tq srwst Ltrquwst
B Y Py

% 2 (o} yqar (o]
ﬁq rquriquZ Z Ktrqu‘pst B 52 Lthsrwst
S t

q

+ 8.2 I L. N,
i "jiTjm 1pZ Z
q r

2 7 a [} [s]
A ¥ 6q I‘qr rj q1 Z Et 2 tq sr(‘pst LT:rl\]scﬁpst Foee (88)
s
q
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In order to show that the series converges, an upper bound on Kmn is obtained:

b
K =3 2sinar sin ¢ y d
mn b b my ny ¥
1

nbzlb
f sin mx sin nx dx
ﬂbl/b

[
aw

5 fwszb 2(b,, - b))
< — dx s ——p——
m b /b

2(b, - b,)
< —2 . (89)

‘Kmn| b

The same thing can be done for L, M__ , and N to give
mn mil mn

2(a2 - al) 2(a2 - al) 2(b, - b.)

ILmnI == IMrnnl == |Nmn| T v (90)

To investigate convergence of the series in Equations 87 and 88, the upper bounds for K, L,
qopm or

M, and N are factored out of each term. The last factor in each term then is either ZZ

m
ZE yﬁ:m. The constants tpo and wo are defined in Equations 81 and 82. There it can be seen that
P m

convergence of the series above depends on the definition of me {Equation 62). In order for the
series for .Ix to converge, Jmp must be proportional to 1/pm (or higher powers of p and m) for
large values of m and p. Therefore, zp?np is proportional to p/(m(p2 + mz)), and wgm is propor-
tional to 1/(p2 + mz) for large values of p and m. The series involving !IJO converges absolutely.22
However, the situation for <p° is different and must be examined in more detail. For large values

of p >m, a better upper bound on Kpm (and L, M, and N) is obtained. The integral (Equation 71)

is easily evaluated:

< 1 sin (am - ap) b2 - sin (am - ap)bl ) sin (am + a/p)b2 - sin (am + czfp)b1 (91)
pm b @ - ap @t ap

Then, the trigonometric functions are expanded, a common denominator is found, and correspond-
ing terms are added. Because p is much greater than m, the terms which are multiplied by a

are neglected:
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2a sine b.cosa b, - sina_b, cos a b
p m P

2 p 2 m 1
K:pm = b 2 2 (92)
o -
m p
Again, by neglecting @ in the denominator, the result for large values of p >> m is
4
I LA S (93)

pm[< ﬁ p

A similar result is obtained for L, M, and N. With this upper bound on K, (p(r)np is then proportional

to 1/(m(p2 + m2)) for large values of p, and the series involving ¢° also converges absolutely.

The remaining factors in each term in the series are of the form EZ rqr‘ and, because
. 2 r
rqr is inversely proportional to q and to r2, this series converges absolutely. Thus, the general

nth term of the series in Equations 87 and 88 is of the form

_ n
k? (iz—ai) E Z Tyr Z Z rp‘i’j . (94)
qQ r i j

A series whose terms are of this form, i.e., 3, d , is a geometric series which converges abso-

lutely if [d] < 1. n

The preceding argument is not a mathematically rigorous proof that the series converge- how-
ever, it indicates that the series should converge more rapidly for smaller values of k and also for

smaller dimensions of the inhomogeneity.

In earlier chapters, the operations of interchanging the order of summation, integration, and
differentiation were performed on series which are now seen to be Fourier series, A Fourier
series for f(x) converges uniformly where f(x) is continuous,23 and a series which converges uni-
formly can be integrated term by term; and, if the series for the derivative converges, it con-

verges uniformly and can be differentiated term by 'uarm.24

Now that ¢ and § are determined, the solution is complete. The final form of the electric

field compenents is

o bl
Ex(x, y) = Pom cos y X sina_y (95)
p=1 m=1
and
ed -]
Ey(x,y) = wpm siny_xcosay . (96)
p=1 m~=1

Chapter V presents the results of a computer calculation for this problem.
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CHAPTER V. CALCULATIONAL RESULTS

Calculations were performed with a computer program called FIELD to evaluate the equations
for a particular problem described in Chapters IIl and IV, The results obtained by these calcula-

tions are discussed in this chapter,

The program, written in Fortran, has been adapted to run on both the Sandia Lahoratories
CDC 6600 and DEC PDP-10 computers. The program listing for the PDP-10 is presented in the
Appendix. The method of solution was to substitute the values for f.o;m and wgm’ given in Equations
81 and 82, into Equations 84 and 85 to give m?w values for ‘ppm and wpm’ which were again substi-
tuted into Equations 84 and 85 to again give new values for ‘me and qbpm. This iterative process was
continued until the new values for (ppm and "bpm differed from the last values by less than a specified

percentage,

In the example given in this chapter, the size and shape of the cavity and inhomogeneity are
shown in Figure 3. The dielectric was assumed to be vacuum and the inhomogeneity to have a con-
ductivity of 5 x 1073 mhos /meter and dielectric constant the same as the rest of the cavity, The
frequency at which the calculations were made was 1 x lCiB Hz, well below the lowest cutoff fre-

quency for the cavity. The value of If{ﬂ/'kzl for the problem presented here was 0.9.

=0.1
¥ b =012
0. 12 X =‘0. 034 a; = 0.025
| a, = 0.050
: b, = 0.03
0.06 - : by = 0.06
)
o osk=lp=dg ————{v-o0.034
i x
0 0,025 0.05 0.1

Figure 3. Cavity and Inhomogeneity Dimensions (in meters)



The source for the problem was a constant current source, described as a function of position
by Jx(x,y) (Equation 62), The program was set up to include all terms of the series as given in
Equation 62; however, only one term of the series was used in the calculations: the term fori =1,
j = 2. The physical situation can be described as analogous to an electrical circuit in which the
energy source is a constant current source applied across a long resistor which represents the
impedance of the cavity and the conductivity of the inhomogeneity in the cavity is a shunt resistor
across part of the long resistor (Figure 4). The voltage per length (electric field) along the re-
sistor is unchanged except along the length where the shunt resistor is added; here it will decrease

according to the ratio of resistances.

Figure 4. Circuit Analog

Behavior analogous to that of the circuit analog can be observed in Figures 5, 6, 7, and
8, where the magnitudes of the x and y components of the electric field were plotted as functions of
x and y for homogeneous and inhomogeneous cavities. The value of y was chosen so that the plots
were through the inhomogeneity (Figure 3). The magnitudes of the field components, which were
about the same as those for the homogeneous cavity outside of the inhomogeneity, differed consid-
erably inside the object. Thus, the fields were essentially unchanged away from the inhomogeneity

and decreased inside the inhomogeneity, as expected,

The number of terms which were taken in the Fourier series was 400, 20 in the sum over x
and 20 in the sum over y. The approximate computer time for 20 iterations on ¢ and ¢ was one hour
on the PDP-10. The 6600 run time was approximately 1/15th of that for the PDP-10, i.e., about
four minutes for evaluation of ¢ and §. The summing of the series to evaluate the fields as a func-

tion of position required about two minutes for 50 field points on the PDP-10,

In Figures 9 through 12, plots similar to those in Figure 5 through 8 are presented, In Fig-
ures 9 through 12, the inhomogeneity is a dielectric rather than a conductor; the cavity dimensions,
frequency, etc. are the same. The value of If{fl/llg' for this problem was 0. 7; this corresponds to
a relative dielectric constant for the inhomogeneity of 1. 7. Although the eifects of the dielectric ob-

ject were not so pronounced as those for the conductive object, they were similar.

The curves in Figures 5 through 12 present the magnitudes of the components of the electric
fields. The phase information is of course included in the complex values of the field components
and is necessary for the inverse Fourier transform required to give functions of time. However,

the magnitude plots show the effects of the inhomogeneity simply and clearly.
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CHAPTER VI. CONCLUSIONS

A general theory for the solution of electromagnetic boundary value problems for regions
which are not homogeneous was presented in Chapter II, In this theory, the boundary conditions
between homogeneous regions inside the cavity appear as sources in an integral equation. The
same theory applies to regions for which the parameters vary smoothly rather than discontinuously

as in the example problem presented in this study.

The remainder of the paper is devoted to the solution of an example problem illustrating the
theory in Chapter II, An important result is the derivation of Equations 51 and 52 which are simply
algebraic equations rather than differential or integral equations, As mentioned in Chapter IV,
these equations could be solved by several mathematical techniques. An interesting extension of
this study would be to solve the matrix equation made up of Equations 84 and 85 to give a more gen-

. . . s 2
eral solution, i.e., wider variation of kl,

than presented here,

The technique can be extended in a straightforward way to three dimensions, Instead of two
equations, such as Equations 51 and 52, there will be three equations; instead of single series ex-
pansions, there will be double series; instead of three field components, there will be six, etc.
The difficulties encountered would be primarily practical computational ones, such as the large

amounts of both computer storage and computer time required, These problems, however, are

always encountered in the solution of three-dimensional problems.

For simplicity, the example problem was worked in rectangular coordinates for a rectangular
cavity containing a rectangular inhomogeneity, but the theory holds for any shape of inhomogeneity
or for multiple inhomogeneities inside the cavity, The only place where the shape of the inhomoge-
neities enters in the theory is in 7 and £ (Equations 45 and 49) and in the constants K, L, M, and N
{Equations 71, 72, 77, and 78). The coordinate system in which a given problem must be treated is
determined by the shape of the outer cavity walls and not by the shape of the inhomogeneities., Equa-
tion 17 is general for any coordinate system; therefore, the theory applies to any coordinate system

for which the Green's function for the electric field for the homogeneous cavity can be found.
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APPENDIX

PROGRAM FIELD
COMMON/A/A9B>A13A2+R1,B2
COMMON/B/AKSQsK1SQs THMUyNF1
COMMON/C/PIAWPIB
COMMON/D/ALPHI20)yGAMA (201 yBETA2(20)4DELT2( 20n)
COMMON/E/PHION(20320)9PHI1{20420) sPSTI0(20+20)+PSI1{20+20)
1PHI(20s20) yPS1(20+20n)
COMMON/FLD/EXSEYsEXHyFYH
COMMON/G/AK{20920)9AL(20520) 3AMI20220)3AN{20420}
DIMENSION AJ{20,20)sDEN(20s29)
COMPLEX PHIOsPHI1sPHISPSIOsPSI19P31+K1SQsItUsIWMU
COMPLEX EXsEYIEXHSEYH

REAL LAMMP,LAMPM,MU

INTEGER P

X0=0,40

YO=,034

DELTX=2¢E=3

DFLTY=4016

NX=50

NY=2

A=e1l

B=s12

Al=,025

A2=405

B1=403

82=,06

MSUM=5

Ml=4

M2=4

M3=2

M&4=4

P1=3414159265

PIA=P1/A

PIB=PI/B

TU=(Oerla)

F=1.0EB

W=2#PT%*F

MU=4 ,E=~7%P1

E=le/(364FO%#P1)

El=0,

S51G1=54F~-3

IWMU=[UXW*MU

AKSQ=WHWRMU*E
K1S5Q=WHWH*MU*E1=TWMU*SIG1

TYPE 2+AKSQ3K150351G1

FORMAT (= KSQT=9E12eb49~ K15Q0==32FE1244s= SIGl==3E12e4)
NF1=10

NTYPE=0

NOUT=0

CALL ALPHA{MSUM)
IF(NTYPELEQ41)GO TO 52

TYPE 5

5 FORMAT(— I-98Xy=~ALPH{I)~s8X9=GAMA{I}~sBXs=BETA2(1)=yp8Xs

1-DFLTZ2(1}=}
DO 11 J=lyMl
TYPE 99JsALPH{J}9GAMA{ J) 9BETA2 (J) +DELT2(J}

9 FORMATU(I32Xe4(F12s393X))
11 CONTINUE
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52 CALL COFF1({(MSUM}
IF{NTYPFeFQa1)GO TO 53
TYPF 20
20 FORMAT{/- I=93Xs=J ~96Xs=AKI{IsJ)=p6Xs=-AL{IsJS)—9p6Xp~AM{IsJ ]}~
1s6Xs=AN(T4U)=)
DO 27 I=1yM2
DO 2?27 J=1yM2
TYPE 28919 JsAK({T9sJYsALIT o) sAMIT 30} pANIT,J}
27 CONTINUE
28 FORMAT(2143Xs4(E124893X}}
53 CALL SORSJ{AJ¢MSUM}
IF{NTYPELEQe1)}GO TO 54
TYPE 32
32 FORMAT (/92X om=T=33Xs=JmsaXs=AJ(IyJt}=]
NO 35 I=1yM3
DO 3% J=1yM3
TYPE 309lsJsAJ{I»))
30 FORMAT(21492XsE12.5)
35 CONTINUF
54 CONTINUF
INTTIALIZATION OF PHIO AND Ps510
TYPE 6
6 FORMAT{/-~ PHIO AND PSI0-)
DO 4 M=1,MS5UM
DO 4 P=13MSUM
DEN{PsM)=1e/(AKSQ#{AKSQ=ALPH (P} 2ALPH{P)=GAMA (M} *GAMA (M} )}
DO 10 M=1,MSUM
DO 10 P=1,MSUM
PHIO(P sM)=TIWMU*AJ(PyM)*DELT2(P)%DEN(M,P}
PSIN(PyM)==~TWMUXALPH(P ) #GAMA (M) *AJ(MsP)XDEN{P 1)
PHI{PsM)=PHIO{P M)}
PST{PsM)=PSTO(P M}
TF(MasGT#2)GO TO 10
IF(P4GTa2)GO TO 10
TYPE 140,PsMsPHIO(P,M)sPSTO(PsM)
140 FORMAT(1X921392Xe4(E1245+2X)}
10 CONTINUE
DO 350 N=1sNF1
TYPE 2254N
225 FORMAT{/= N==,13})
CALL CHEK(MSUMyN}
DO 300 I=1yMSUM
PO 300 J=1sMSUM
PHI(IsJ)2PHIL(1,J}
PSI(I+J}aPSIL(TI4J}
300 CONTINUE
350 CONTINUE
DO 220 I=1sNX
DO 220 J=1sNY
X=(I~1)*DELTX+X0
Y=(J=1)*DELTY+Y0
CALL FIELD{XsYsMSUMyAJ)
TYPE 1603XsYIEXHEY
160 FORMAT(1XsF5e392XsF54334(2XsE1246))
TYPE 1703EXHsEYH
170 FORMAT({15X94(F124692X%X))
220 CONTINUE
FND

IS
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. . CH IR T I FE KW TR E R IR H ALPHA ¥ 56 960 KR IR KKK
SUBROUTINE ALPHA (M)
COMMON/B/AKSQsK15Qs IWMUSNF1
COMMON/C/PIAsPIB
- COMMON/D/ALPH{20}»GAMA{20) sRFTA2(20)4sDELT21{20)
DO 50 I=1yM
ALPH({I)=I%*PIR
GAMA(T)=T#PIA
BETA2{1)=AKSQ=ALPH{1}*ALPH{T)
DELT2(I)=AKSQ-GAMA(T}*GAMA(T)
50 CONTINUE
RETURN
END

C 3333 X K I KNI AR COEF1 L2 22T 2T SIS LSS Y
SUBROUTINE COEF1 (M)
COMMON/A/A»BsAlsA21B15R2
COMMON/D/ALPH(20) sGAMA (20) »BETA2 (201 DELT2(20)
- COMMON /G/AK (205201 »AL{20520) sAM(20520) yAN(20520)
PO 50 T=1sM
. DO 50 J=1sM
1F(14EQsd)GO TO 40
¢ P=1yM=J
ALPH1=ALPH(1)=ALPH(J)
ALPH2=ALPH(T)+ALPH(J)
TEMP1=(SIN(ALPH1%B2}~SIN(ALPH1*81}) /ALPH]I
TEMP2=(SIN(ALPH2*B2)~SIN(ALPH2¥B1) ) /ALPH2
AK{1yJ)={TEMP1-TEMP2) /B
AN(TsJ)=(TEMP1+TEMP2)/8
GAM1=GAMA(1)=GAMA(J)
GAM2=GAMA( T)+GAMA LU}
TEMP1={SIN(GAMI*A2)~SIN(GAM1¥A1) } /GAM]
TEMP2=(SIN(GAM2¥A2)~SIN(GAM2¥A1) ) /GAM2
ALLT»J)={TEMP1~TEMP2) /A
AM(T+J)=(TEMP1+TEMP2) /A
GO TO 45
¢ 1=J OR P=M
40 ALPHM=24*ALPH(T)
AC(TsJ)=(1¢/B)*({B2-B1}~(SIN(ALPHM*RZ)~SIN(ALPHM
1%B1))/ (ALPHM))
. - AN(T9J}=(1e/B)*{(B2=B1)+(SIN(ALPHM¥B2)=SIN(ALPHM
1%81) )/ (ALPHM) }
. GAMN=2 4 XGAMA (1)
AL{TpJ)m{1a/A)#({A2~A1)=(STN{GAMN®A2) ~SIN(GAMN*AL))
. 1/ (GAMNY)
. AMUTsJ)m(2e/A)*((A2=A1 }+(SIN(GAMNXA2)~SIN(GAMN*A1))
1/(GAMN}Y )
45 CONTINUE
50 CONTINUE
RETURN
END
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’ CRENFEEXEHRAEELEEEHENHENEEE SORSJ LIS ST ST EN 2
SUBROUTINE SORSJ{AJIM)
DIMENSION AJ(20,20)
. PO 10 I=14M
" DO 10 J=1yM
10 AJ(1sJ)=060
AJl{2y1)=1,
RETURN
END

c******************************* F IELD ELZIT IS FT TN YT YN Y
SUBROUTINE FIELD (XsYeMsAJ)
COMMON/A/A3BsAlsA2sB14R2
COMMON /B/AKSO+K150s I WMU 5 NF 1

. COMMON/D/ALPH (20 sGAMA (20) s8ETA2 (20) sDELT2 (20}

COMMON/E/PHI0(20+20) yPHI1{20520) sPST0(20+20 ) sPSI1{200+20) s
. 1PHI(20+20)sPST1(20520)

COMMON /FLD/EX sEY s EXHs EYH

COMMON/G/AK (205201 sAL (205201 yAM(20520) s AN{20+20 )

DIMENSTON AJ(20420)

COMPLEX PHIOsPHI1sPHI+PSI0pPSITsPST »K1SQ 1My

COMPLEX EXsEYsEXHsEYH

EX=(0sp04)

EY=(0a90,)

EXH={0s90¢)

EYH=(0ss04}

DO 100 I=1yM

DO 100 J=1,4M

FXX=COS(GAMAL T)#X) *SINCALPH(J) *Y)

FXY=SIN(GAMA[J)%X) %COS (ALPH( ) *Y )

EX=EX+PHT { 19J)#FXX

EY=EY+PST(1sJ) ¥EXY

80 EXH=EXH4+PHIO (T sJ ) ¥FXX
EYH=EYH+PSI0(1sJ)%FXY
100 CONTINUE
RETURN
END
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CREXFXRELERERRERIEFENKR CHEK FEUFEREFEEFET XL EXER

10

50

60

100
110
200

SURRQUTINF CHEK {MSUMyN}
COMMON/B/AKSQsK150s IWMUsNMF1
COMMON/E/PHIO(20»2019PHIL1{2C»20)9PSI0(20520)9PST1(20+20}s

1PHTI (20520} sPST{20420}

COMMON/D/ALPH{20) sGAMA{2C) sBETA2({20)sDELT2(20)
COMMON/G/AK{20920)sAL{20520)sAM{ 20320} 2AN(20+20}
COMPLFX IWMUsK1SQsTP(10}

COMPLEX PHIsPSI+PHINIPSINSPHIL4PST]

REAL LAMMPyLAMPM

INTFGFR P

NO 200 P=1sMSUM

DO 200 M=1,MSUM

DO 10 L=1410

TPILI={0as0s)

CONTINUF

NO 60 J=1y3MSUM

NO 50 1=1,4MSUM

TPI3)=TP(3)+AMITsP)¥PHI(T+J)

TPL4Y=TP4)Y+AN{ T yM)*PST ([ sJ}
TP{S}=TP(5}+AM{ I sM)®¥PHI(TsJ)
TP{6)=TP{6}+AN{TsPI*¥PST(TsJ)

CONTINUF

TP{TI=TP{7)+TP {3 Y%AK{JsM}
TPIB)=TPIB)+TPI4 Y *AL{JsP}
TP{)=TP(9)+TP(5)*¥AK{JsP}
TP{10)=TP{10)}+TP{6) AL {J,M}

CONTINUE
LAMPM=1,0/(AKSQ* { AKSQ-ALPH (M) *ALPH (M) ~GAMA(P ) *GAMA(P)))
LAMMP=1,0/{AKSQ¥* (AKSQ-ALPH{PI*ALPH{P)-GAMA (M) ¥GAMA (M) }}
PHI1(PsM)=PHIO(P sM)=K1SQ*LAMPMX( TP{7)=TP(8) *ALPH{M)*GAMA(P) /
IDFLT2(P} }*DELT2(P}
PST1{PyM)=PSIO(PsM)+K1SQXLAMMP*{ TP ({9} % {GAMA (M)*ALPH{P)/
1BETA2(P}}~TP(10) )%BETAZ(P}

IF(P.GTe&)GO TO 200

IF(MeGTe4)GO TO 200

IF{NsLE«3)1GO TO 200

PHIM=CABS(PHI(PsM})

PHIIM=CABS{PHI1(P M)}

PSIM=CABS{PSI(P4M))

PST1M=CABSIPST1{PyM))

DPHI={PHIM=PHI1M)/PHIM

PDPSI=(PSIM~PSTIIM)/PSIM

IF{P.GTs3)GO TO 200

IF{M,GTs3)GO TO 200

TYPE 100sPpMyDPHIsPHIMyPHIIM

TYPE 1103NPSTSPSIM,PSTIIM
FORMAT{21442X33(E124552X)}
FORMAT({10Xs3(F124592X)}

CONTINUE

RETURN

END
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