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ABSTRACT

This note discusses exact and approximate scaling laws for the
problem of electrically conducting structures excited by photo-
electrons generated by an incident pulse of X rays.
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1. INTRODUCTION

This note addresses the problem of making equivalent electrical
circuits for simulating the electromagnetic response of conducting struc-
tures to charges moving in space near them. Weé examine the most simple case
of a conducting sphere, representing its surface by six nodes. In Section 2
we treat static problems, and find values for the elastance matrix which
duplicate some results of exact electrostatics. 1In Section 3 we consider
time varying problems, and find values for the inductances connecting
the nodes by requiring that the frequency of the lowest mode have the cor-

rect value.

2. ELECTROSTATICS

We consider a perfectly conducting sphere of radius R centered at
the origin of a Cartesian coordinate system x, y, z. Let a point charge

. . P 4
qo be located in space outside the sphere at vector position a.

We shall replace the sphere by six nodes, located at the points
where the coordinate axes puncture the sphere. We number the nodes as in
Figure 1. We imagine, for the present, that the nodes are disconnected

from each other.

4 2 Node 6 is opposite node 1.

3

Figure 1. Sphere and node points.



If charges q; are placed on the nodes i = 1, .:6, then the po-
tential V, of the ith node with respect to infinity can be expressed by

the linear relation
6
= j);lnijqj + N0 - (1)

Here the matrix n, ij° called the elastance matrix, is independent of the
charges q , and depends only on geometry of the nodes. The terms n;, are
the elastance coefficients from the position of the external charge to the

various nodes.

For simplicity we shall use electrostatic units in this section,
in which the unit of elastance is cm™}; in fact, the elastance between two
points is just the reciprocal of the distance between them. Since our nodes
really represent elements of area of the sphére, our situation is not quite

that simple. We shall give the connection with MKS units below.

The elastance matrix is always symmetric in its indices, a result

which stems from the fact that the electrostatic energy

W=z Yav; an ; 2)

—~ 1 i'ij J :

is independent of the order in which the charges on the various nodes are
brought up to their final values q; Further,_since the elastance matrix
is real and symmetric, it can be dlagonallzed by a 11n23r orthogonal trans-
formation of the q; - Since the energy, being also equal to the volume
integral of the square of the electrostatic field, is positive definite,
all of the eigenvalues Ny in the diagonalized mafrix must be positive.

Therefore the inverse of nij exists.

In the present case, the elastance matrix has further simple

properties because of the symmetry of our model. All of the nodes are

4



obviously equivalent, if we ignore the external charge for the moment.

This means that there will be only three different numbers in the 36 number
array nij’ One of these will be any self elastance, e€.g., Mii. Another
will be the elastance between neighboring nodes, e€.g., Niz2 = Nis = N1y = Nis,
etc. The third will be the elastance between a node and its antipode,

e.g., Nig. By considering a special example, we shall now make a good guess

for these three values.

Example 1

qo = 0 >
(3)

oo

All other qj = same =

This is the case of a uniformly charged sphere, with total charge Q.
Equation 1 gives

6
v, = g 32;1“' . (4)

1]

Because of the symmetry properties of nij’ the value of Vi computed from
this formula will be the same for all i, a desirable result. Since from

exact electrostatics we would have

V=% ©)
it will be good to require that - .
6
&M 3 -
or, for example,
Ni1 + 4n12 + Mg = g—- (7)

Now, it is easier to guess the elastance between different nodes than the

self elastance. Thus we shall guess



1 _0.5 : @

1 0.7 ) (9)

We can now use Equation 7 to determine the self elastance and find

2.7
iy ~ g - : (10)

Thus the equivalent spherical radius of the node 1 is

. R
Ri ~ 5= . (11)

Note then that
2
2 _ R
RI et 7.3 » (12)

whereas the area represented by one node is one sixth of the total area of
the sphere. The difference here, 6 to 7.3, would be reduced if we took
account of the fact that the distances 2R and Y2R used in Equations 8 and 9

are obviously a little too large, making nie and ni2 a little too small.

Thus it is suggested that the self elastance of a node should be
set equal to the inverse of the radius of a sphere having the same surface
area as the area represented by the node. This rule can also be tested

against the known self elastance of (both sides of) a thin circular disc of

radius R, which is =
n=m2R~1.571/R , (13)

the rule above would give .
n =VY2/R ~1.414/R , (14)

which is in error by about 10 percent. The rule does not fare as well for

long, wire-like objects.



Example 2
qo # 0

All Vi = same = V

(15)

This is the case of a point charge and a conducting sphere, which also may

be charged.

Let C.. be the inverse of the elastance matrix,

ki
}i:Ckinij = 85 o (16)
where ij = 0 unless k = j, in which case Gkk =1, Cki is called the

capacitance matrix, and is also symmetric. Multiply Equation 1 by Cki and

sum over i. For the case 15 we find
VI Gy = L8595 * 2 Gy,
i j i
or
Q= - >;Cki”io * Vzi:cki : 17)

Now sum Equation 16 over j, and find

'chi§nij_ =1,

i : . _ — e

or, from Equation 6,
_R
LGt ’ (18)
i
Thus Equation 17 can be written

VR
U = W2 CyyNy, * g (19)
1



This equation gives the distribution of charge over the nodes, representing
various portions of the sphere surface. The first term on the right can be
viewed as the image charge induced by the external charge qo, and the second
term as a uniformly distributed charge or a charge located at the center of

the sphere.

If we sum Equation 19 over k and call
Q= 29, ' (20)
k
we find, with the help of Equation 18,
Q=-qo X3 n. + VR (21)
6 T io ’

Now, exact electrostatics for a conducting sphere and an external point

charge at distance a from the center gives
R
Q:—qoa""VR. (22)

Comparison of Equations 21 and 22 suggest that we should choose the external

elastance coefficients so that
3 _6 :
7 nio T a’ (23)

a relation similar to Equation 6.

If the position of the external charge is moved close to the node

1, then the coefficients N, ought to approach, for any i,

MNio ™ My - (24)

Then, according to Equation 19, the image charges should approach
q, (images) > - qo iZ_Ckinil

(25)
> - qofk; - 8



Thus in the limit, all of the image charge appears on the node 1, a correct

Tesult.

In electrostatic units the capacitance of a sphere to infinity is

Rcm. To go to MKS units, use the relation

1 cm capacitance =~ 1.11 picofarad , (26)

For elastance, the conversion is the reciprocal of Equation 26.

The elastance matrix, since its terms are approximately the
reciprocals of the distances between nodes, tends to have all positive terms.

For our representation of the sphere,

(2.7 0.7 0.7 0.7 0.7 0.5)
0.7 2.7 0.7 0.5 0.7 0.7
0.7 0.7 2.7 0.7 0.5 0.7\ (27)
0.7 0.5 0.7 2.7 0.7 0.7
0.7 0.7 0.5 0.7 2.7 0.7
\ 0.5 0.7 0.7 0.7 0.7 2.7/

3
Q
| b

o

In view of Equation 16, the capacitance matrix must have at least

some negative terms. For our case

( 0.440 -0.065 -0.065 -0.065 -0.065 -0.014 \V'

-0.065 0.440 -0.065 -0.014 -0.065 -0.065
C=R { -0.065 -0.065 0.440 -0.065 -0.014 -0.065
-0.065 -0.014 -0.065 0.440 -0.065 -0.065
-0.065 -0.065 -0.014 -0.065 0.440 -0.065
-0.014 -0.065 -0.065 -0.065 -0.065 -0.440

(28)

.

‘The standard use of the capacitance matrix is in providing the inverse of

Equation 1, namely



Q= 2CVs - Q2 Cyns, - (29)
1 1

3. TIME VARYING FIELDS

To properly handle time varying problems we shall have to add
inductances between the nodes. We shall use the simple model shown in

Figure 2.

Node 6 is opposite node 1.
2 Inductances shown only on
front of sphere.

Figure 2. Node points and inductances.

In this section, we shall not include the external point charge.
When such a charge moves at a velocity that is small compared with the
velocity of light, as in the case of interest to us, it interacts with the
sphere chiefly through its elastance coefficients to the nodes on the
sphere; This coupling is covered by the discussion of Section 2. In the
present section we shall be concerned with the natural modes of the sphere
by itself. Aside from the static mode, the natural modes have fairly high
frequencies, such that 2TR is close to an integfal mulf?ble of the free
space wavelength. Slowly moving electrons will not excite the higher fre-
quency modes very strongly, and our chief interest will be in the time

varying modes of lowest frequency.

Two remarks should be made about the model of Figure 2. First,
in order to keep the circuit equations as simple as possible, we shall
neglect mutual inductances in the present analysis. As a result, we may

not expect the mode frequencies to bear the correct relation to each other,
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although by adjusting the value of the inductance we should be able to get

the frequency of the lowest mode to have the correct value. Second, if we
inciude no resistance, the modes will not be damped. The effect of radiation
damping can be approximated by including some resistances, or replacing

the inductances by a complex impedance. We shall investigate this possibility

briefly.

We write the node equations for the circuit in the form

v, = %:nijqj , (30)
dq.

1 1

bwe- Ty e
di, .

1 13 | .

¢ at - EiyWy - Yy (32)

Here t is the time, ¢ is the velocity of light, Iij is the current flowing
from node i to node j in the branch connecting those nodes. The quantity
gi. is the reciprocal of the inductance in the ij branch, and is zero if no
branch connects nodes i and j. The value assigned to Eii is immaterial,
since it is always multiplied by zero, but we may take Eii = 0 to avoid
confusion. We shall use electromagnetic units (abamps) for the currents.
The units of £ are cm™!, which are convenient for geometrical modeling.

The connection with MKS units will be given below. < _ _—

By taking the time derivative of Equation 31 and using the other

two equations one can eliminate the Vi and Iij’ and obtain

== LAy (33)

where

11



We may look for solutions that have time dependence
q.(t) = q.eiwt . (35)
i i
We then obtain the cigenvalue equation
w2
%Aiqu = (£)a; (36)
which will have non-trivial solutions only for certain values of w.

In the case of our 6 node model of the sphere, it is clear that
all non-zero values of Eij should be the same, which we call §. Also, there

are only three different values of nij’ which we designate as

_ 2.

Mo = N11 = Nzz = etc. = _EZ
- .7

Ny = N2 = N1y = etc. = Qﬁ_ (37)
_ .5

Ny = Nie = N2y = etc. = QE_

It is easy to see also that there are only three different values of Aij

which we call o, B, and v:

Ar1 = (M1 - N21) * E(M11 - Ns1) \

o =
+ £ - Me1) + E( - Ns1) B
= 4E(no - M1) > (38)
B = A2 =£&(2m - no - N2) '
Y = Aig = 45(N2 - ™) )

12



In terms of o, B, and Y, the A matrix is

/OLBBBBY\

B a B Y B8 B
A=<BBOLBYB>- (39)
By B o B B :

B By B a B
\y B B B B a/

For this highly symmetrical case it is easy to see that there are three

types of solutions to Equation 36.
Solution 1: All q; = same = q .
In this case
LA = aLAy =0 | (40}
k k
as may be verified from Equation 38. This is the static mode, w = 0.
Solution 2: q1 = -9s , 92 = 43 = qu = qs = 0. (41)

For this case, Equation 36 becomes

2

= {2
a_Y_.(c) - i
Thus the eigenvalue is
%}'= tyo -y =& V4E(no - n2) - (42)

This is the lowest time-varying mode, in which one pole of the sphere is
positive when the opposite pole is negative, and the equator remains neutral.
. There are three such solutions, corresponding to polarizations along the

three axes.

13



Solution 3: q; = g = -242 , 92 = q3 = qu = Q5 . (43)

For this case, Equation 36 becomes

2

)

olg

o -28+yv = (

and the cigenvalue is

w

2 - +VeE(my - 2m + Ma) - (44)

In this mode, both poles oscillate in opposite phase to the equator. There
appear to be three of these modes, corresponding to polarization along the
three axes, but only two are linearly independent: the sum of two of them

produces the third.

Thus there are six linearly independent modes, including the static

mode, as we should expect.

We shall now compare these frequencies with those from exact

analysis of the sphere problem. Stratton, "Electromagnetic Theory," gives

for the corresponding two modes:

L = [£0.866 + i 0.50]/R ; ' (45)
Y2 - [+1.81 + 1 0.70]/R . (46)
c e ) : - _ -

In order to compare in the case without damping, we need to make an adjust-
ment of these frequencies to correct for the damping effect. For either

of the circuits of Figure 3, the natural fréquency is

w=* Ywi - v2 + iv, ) (47)

where (here R; is resistance, not sphere radius)

14



W = 1— 5
vVLC
R .
v =5- , Figure 3a, (48)
= Figure 3b
JR,c > r8ure 2b .

We may argue that the frequency without damping would be wo. Thus we would

have

~1/R , (49)

n‘E

(&3
1]

2/R . (50)

n[
I

Now, if we let

(51)

oy
1
=l

with k a constant to be determined, and use the values 37 for the n's,

Equation 42 becomes

Wi L yETER . (52)
C R
Weo therefore need
1 ..
= ——— 5
k=gzg=0114, - 3

in order to agree with Equation 49. This implies an inductance, COTYe€spois

ing to &, of

(a) (b)
Figure 3. Simple resonant circuits.
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Tn tresze unite —he inductznce of a wive of radius a and length & 1is

(42 ]
€3]
L

cm . €

3ipce it is hard to imagine that the logarithm in our case 1s larger than
ahout unity, the factor 8.3 in 54 looks surprisingly large. However, this
iarye factor in comnectod with our neglect of mutual inductance. In the

‘rwesr wodz, ths inductance that matters is that between opposite poles

; .ho sphere. Since this inductance is that of a series connection of
vwi sroups of four parallel elementary inductances (1/%), the effective

inductance for this mode is one-half of 54, or

L o..= 4.4R . (56)
errT

formuia is cacily recenciled with Equation 35, if we say that the

Y is apour 2R. Ceonsiderstion of mutual inductance wouid make the

ncactancs of the four parallel paths, acting togsther, be not much less

¢han that of a single path. Neglect of tie mutual inductance has forced

}..-.
aq
=
oA
o
@
ity
o]
[
rt
=y
o
'_h
fe=)
(a9
o
g]
ct
job]
o]
[g]
)]
]
rH
w
o
[¢)
-
w
'_l.
=]
Jq
ot
[q]
e
©
g
s
'..l
o]

anong o Chnese a

oyder te get an right.

“F we choose f 2cconding to Equation 34, then we find for wq,

which is not in wary geood agreement with Equation 50, and is in fac¢™ net

very much higher than wi.

imiuctunce is raviaced by an inductance and a resistance in parallel. 7o
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. W k . W
E+rE+i—-g=grice, (58)

where g is the reciprocal of the parallel resiétance; we have again replaced
the inductive term by the expression 51, where k is again to be determined.
When the replacement 58 is made in Equations 42 and 44 and the resulting

equations are solved for wj and wy, one finds

I}
~—
I+

V8.8k - (4.4g)° + i4.4g]/R , (59)

olg ol

vT10.8% - (5.48)7 + i 5.4g]/R . (60)

1}
—
I+

We choose k and g by fitting the exact result 45 for the lowest mode. The
fit will be perfect if we put

1
8.8

1
8.8

4.4g = 0.5 or g = 0.114 , (61)

8.8k 0.114 . (62)

]}
—
[}
1}

or k

Note that the value of k is the same as before. With these values, w; turns

out to be

%§-= [+ 0.92 + 10.61]/R . (63)
Thus the damping rate for the second mode turns out fairly well, but the
real frequency is low by a factor of about two. The reason for the error

is again the neglect of mutual inductance.
. - t‘. ) e

The connection between the units of inductance and resistance

used here and MKS units is:
Inductance: 1 cm = 1 nanohenry
. (64)
Resistance: 1 unit = 30 ohms

Thus the resistance corresponding to 8.8 units is 264 ohms.

* Qur unit of resistance is dimensiomnless.
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4. CONCLUSIONS

The model used in this report gives a good representation of the
static charges induced on a ‘sphere. For time varying problems, the
elementary inductance between nodes must be chosen artificially high to ob-
tain the correct frequency for the lowest mode, due to neglect of mutual
inductance. The frequency of the second mode then comes out too low, only

slightly higher than the lowest mode instead of about twice it.

The natural modes are not excited ﬁery strongly by a passing slow
(compared with the velocity of light) electron. It is possible that a
single choice of the elementary inductance, not very different from the
value deduced above, would give reasonably good skin currents for practical

problems. Some comparisons of results from our model with those from the

SEMP code would be useful.
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