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ABSTRACT

A solution for the Two Dimensional-Two Region electromagnetic ground response has
been developed which relates the surface components of the electric field to the surface
components of the magnetic field. This has been accomplished by deriving a universal functional
form for a dimensionless Green's Function. The Green's Function provides increasingly more
accurate approximations to the response for each successive reflection from the second layer.
This result would appear to provide simplification and reduced computer running time in the
numerical modelling of the HABEMP when the ground response is coupled to finite-difference
methods for solving the atmospheric part of the problem.
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1. INTRODUCTION

In 2 previous study(!) we showed that for an N-Layer earth model it is possible
to express the three components of the electric field and the vertical component of the
magnetic field on the surface of the earth as a space-time integration of the two horizontal
components of the magnetic field. In particular, it was shown that if #; is a point on the
surface (z,y plane), and if Y; is a member of the set:

Y,-(r';, t) = {Hz'rE:s Ey’Ez}’ (1'1)

then every member of the set Y; on the surface of a finite-conducting earth can be related
to the horizontal components of the surface magnetic field through the equations:

t
i (r:,t) = /[Giz (r_; - r-ﬁ,t - t’)Hz(f_i,t’)dﬂ:’dy'dt'
0 7

¢
+/[G“-y(r','—rz,t—t')Hy(r-ﬁ,t')da:'dy'dt' (1.2)
-

'
r‘

The functions G; and G,y are Green’s Functions which are determined from the solution
of the N-Region ground model shown in Figure 1.

~ The result given by Eq. (1.2} can possibly provide considerable simplification in the nu-
merical modelling of the HABEMP when the ground response is coupled to finite-difference
methods for solving the atmospheric part of the problem. When this approach can be used
it obviates the necessity of developing a numerical representation of the ground, which then
reduces the number of variables in the problem and hence the computer running time (and
cost). On the other hand, the reduction of machine variables must be weighed against the
speed of the numerical computation for the integral boundary conditions arising from the
Green’s Function formalism. This question is as yet unresolved; in any event it will depend
on the number of ground layers being considered, the values of the electrical parameters,
and the time range of interest.

Eq. (1.2) is derived by solving the N-Region three dimensional problem in the Fourier
(space) and Laplace (time) domains and ultimately performing inverse Fourier/Laplace
transforms. (The reader is referred to reference 1 for details.) Although the formalism and
mathematical procedure are general, the analytical Fourier/Laplace transform inversion
may not always be possible. For the purposes of assessing the feasibility of using the theory
of reference 1 four special-case solutions were developed. These included the following
models:

(a) One Layer/One Dimension
(b) One Layer/Two Dimensions

(c) One Layer/Three Dimensions
(d) Two Layers/One Dimension
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FIG 1. (N + 1)-Region Model



In this study we extend the number of solutions to now include the Two Layer/Two
Dimensional case. The geometry for this case is shown in Figure 2. Following the analysis
of reference 1 we consider the case where the displacement current in the ground is less than
the conduction current. We assume that spatial variations in the y-direction are neglected.
Our principal concern is to establish the space-time relationships between E;:,E, and the
driving functions, Hz, Hy.

2. MATHEMATICAL NOTATION

As will become evident in Sections (3) and (4) of this report there are several math-
ematical operations which are performed on the four surface values of the fields used in
this analysis; namely E:(z,t), Ey(z,t), Hz(z,t), Hy(z,t). The purpose of this section is to
define these operations and develop a shorthand notation for dealing with them. If F(z,t)
represents any one of the aformentioned four functions the Fourier and Laplace transforms
are defined by the following operations:

oo
Flk,t) = MF(z,8) = - / e=ik2 P, t)dz (2.1)
oo :
F(z,5) = LF(z,t) = [ et F(z, t)dt (2:2)
0
M = Fourier Transform operator (2.3)
L = Laplace Transform operator (2.4)

The double transformed function, F(k, s), is given by: .

F(k,s) = M LF(z,t) = LMF(z,1)
. - o0 e ] . % . - -

1

T or

e~ ot / e P(z, t)dzdt (2.5)
o —oo

As indicated in Eq. (2.5), the order in which the transforms are taken is immaterial.
The inverse Fourier and Laplace operators are defined by operations:

- | |
M~ F(k,t) = f €2 Pk, ) dk = F(z,t) (2.6)
—_00
c+ioco
L' Flz,s) = 5 / et F(z, 5)ds = F(z,t) (2.7)
oo
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It also follows that:

M~ F(k,s) = F(z,s) : (2.8)

L7 F(k,s) = Plk,t) | (2.9

Using the Faltung Theorem we can write for any functions f1(k,s) and f2(k,s)

M7 (fi(k,s) fa(k, ) = ziw f filz — 2, s) fa(z', s)dz’

= _21? f fg(ﬂ: - z’,s)fl(:z:',s)dx' (2.10)

The shorthand notation for the operation of Eq. (2.10) is

_M_-l (fl(kss)fZ’(k’ S)) = fl(zas) ®f2(za3)s (2'11)
where the “®” stands for the space integration of Eq. (2.10). It also readily follows l}h'eit
M~ (Fule,t)falk,t)) = fi(22) ® fa(z,2) (2.12)

The Convolution Theorem for the Laplace Transform yields the following resuls:

A~

L (fl(kss)ﬁ(k"s)) = 1(k,t—t')fé(k,t')dt'

o, O,

falke,t - ') FiLG,t)dt’ {2:13) -

The shorthand notation for the convolution integration in Eq. (2.13) is

L (fulk, ) falk,5)) = fulk,t) * Fa(k,) (2.14)

where “x” denotes the convolution operation. We also have

L7 (filz9)fal2,9)) = filz,) * fal=:1) (2.15)

The mathematical formalism and notation developed through Eq. (2.15) provides a
compact way of identifying the Green’s Function which relates the surface values of the
electric field to the magnetic field components. For example, as shown in Section (3) we
have the relationship



Ey(k,s) = G(k,s)H,(k,s) (2.16)
Using Eqgs. (2.8) and (2.9) we can write:

ML 'E,(k,s) = M7 E(k,t) = Ey(z,1) (2.17)
If we identify G(k,s) as fi(k,s) and H,(k,s) as f2(k,s) we deduce the relationship:

M= L E,(k,s) = M~ L™ (G(k,s)H,(k,s))
E,(z,t) = G(z,t) ® *Hz(z,t)

[ o]

Ey(z,t) f /G(a: -zt —t"H (2, t)da:'dt (2.18)

—-00 0

where

G(z,t) = M 'L 'G(k,s) = L' M™'G(k, )
= Green’s Function ' (2.19)

Employing the techniques of reference 1 we are able to derive an expression for G(k,s).

The thrust of this investigation is to develop techniques for determining G(z,t) from the
inverse Fourier /Laplace transforms.

3. EQUATIONS AT SURFACE OF EARTH

It is shown in Eq. (3. 21) of reference 1 that for the nth region of an N-Region ground
model the equations for Bz n(z, kz,ky,s) and Ey n(z,kz,ky,s) in terms of the magnetlc
field components, H; (2, kz, ky, s), Hy, n(z kz,ky,s) are givem.by: . —

Bon=(2) [—H + () GubeBon + 28 ) (3.1)

Eyn= (z_:) [E,,n — (%) (k2H, p + koky H )] (3.2)

where

0, = conductivity (a)

An = £An(+ used for upward wave; - used for downward wave) (b)

An = \/tnon + K2+ k2 (c) (3.3)




We immediately note from Egs. (3.1) and (3.2) that if either ky or k. is equal to
zero(this corresponds to neglecting spatial variations in the y and z respectively) the
equations are decoupled into two independent pairs. For example, setting k, = O gives;

Ez,n = - ("f_n) ﬂy,n . (3.4)
= In kﬁ 5
Bun=(32) (1-5) fom &)

Yo = £/ SUn0n + kg : (3.6)

When Egs. (3.4) - (3.6) are used in the solution of the two-region problem of Figure
(2) it can be shown that the surface field equations are given by:

with v, now being given by

E.=r [I?y +2 f: \irff?y] (3.7)
n=1
(o o) -
E, = —w; [I?,, +2y WA, (3.8)
n=1
where
n=t@n=220)
w, =-§—‘: (c),wy = % (d)

AL =V spoy + k% (e}, A = Vsuoz + kq: (f)

g, = (”2 - ”) exp(~2A1l) (g)

T2+ 71

T, = (u) exp(—2A10) (k) (3.9)

wo + wy

For brevity we have replaced k; by k, it being understood that we only considering
spatial variations in the = direction.

Egs. (3.7) and (3.8) reduce to the One Layer-Two Dimensional case considered in
reference 1 when o, = 0. In this situation ¥, and ¥,, are both equal to zero, and we
obtain the solution:

Ez'o = rlI_fy (3.10)

S



Eyo=—-wH, (3.11)
The space-time behavior of Ey,0(z,t) is given by(V):

Eyo = —%j 7 G _1' o) exp [_%] (%Hz(z',t')) dz'dt’  (3.12)

For the One Layer-Two Dimensional case Eq. (3.12) represents a means of establishing
the boundary condition on top of the earth. This equation can be written in finite-difference
form and thus can be used in conjunction with the respective HABEMP equations above
the earth’s surface to provide a self consistent representation of the overall physical model.
The key question is “Under what conditions is the method more effecient than representing
the ground in a finite-difference approximation ?” The answer to this will be forthcoming
in the near future.

In the case of the Two Layer-Two Dimensional case being considered here the deduc-
tion of Ey(z,t) in terms of H.(z,t) is more complicated than that of Eq. (3.12) because of
the complexity of ¥,,(k,s). A similar statement can be made for the E,, H, pair; however,
for brevity this is not being considered since the analysis is similar to the Ey, H, case.

It is possible to express the solution of Eq. (3.8) in several different ways, leading
in turn to different algorithms for completing the calculation of Ey(z,t). For example,
performing the L~! M ~! operation directly on Eq. (3.8) leads to the result:

o0
E,=Eyo+2) Eyn, . (3.13)
n=1 A
where
Eyn=Gn(z,t) @ *Hz(z,t) :n >% 13.14) -
Gun(z,t) = L' M (-T3w,) (3.15)

An alternate, and mathematically equivalent formalism is based on the utilization of
the knowledge of Ey o deduced from Eq. (3.12). We can write Eq. (3.8) in the form:

)
Ey = E’y,o +2 Z ‘i’-.,any,O-.- (3.16)

which then leads to the relationship

o0

n=1

10

e



Ey . is expressed as:

Eyn = Gp(z,t) ® *Ey o(z,t), (3.18)

with Gp(z,t) now given by:
Gp(z,t) =L M~ (T7) (3.19)
The analysis of this investigation is concerned with the determination of G (z,t) from Eq.

(3.19).
There is however, one additional method which can be used, which is related to Eq.
(3.19). We include this for completeness. Consider, for example, the sequence of functions

Ey,l = q’w ,0
Eyz= ‘i'szy,O = ‘I’wa.O (6)
Eyn=TuEyn-1 () (320)
Using Eq. (3.20) we can write:
o0
Ey=Ey0+2)> Eyn, (3.21)
n=1
E, » is now given by:
Eyn=G1®%Eyn_y - (3.22)
with
Gilz,t) = Tu(z,t) = LT M1 (Tu(kys)) (3.23)

It is also observed by comparing Egs. (3.19) and (3.23) that G,(z,t) is the (n — 1)
space-time convolution of ¥,,(z,t). That is,

Ge=L "M ' (%) =0,0*¥, (a)
Gs =T, ®+¥, ®*¥, (b)

{(n—1)convolutions
Go=Vy —m——— T, (o) (3.24)

In summary, it is clear that the determination of ¥,,(z,t), as given by Eq. (3.23) is the
basic building block of the calculation. This is the focus of the effort of the next section.

11



4 MATHEMATICAL STRUCTURE OF Gp(z.t)

From Eq. (3.9) we can write
&2, = (g(k,s)o(k,5))" = Gnn (41)
where

gn(k, s) = (u)n | (4.2)

we + Wy

Un(k,s) = exp(—2nAl) (4.3)

Examination of Eq. (3.16) shows that the electric field at the surface can be considered
as a sum of terms involving multiple round-trip reflections from the second layer. This can

be seen for example by first examining the inverse Laplace Transform of o, (k,s).
We have '

D (kyt) = L™ 0n(k,s)
=L! (exp(—2nh/ suoy + k2))
= _I_,__l (exp(—2nl\/po1Vs + a1)) (4.4)
where
kz
= 4.5
1 (“0_1) ( )
" Using the formula
CLT'f(sH ) = e~ L1 f(s) & (4.8)
we obtain
O (kyt) = e~ %10, (t) (4.7)
where
_n Ig —n?Tx
an (t) - 2\/7? t% exXp ( 4t (4'8)
and
Tg = L?uo, = two-way diffusion time to second layer (a)
L = 2] = round-trip distance (b) (4.9)

12



As observed from Eq. (4.8), for

T . .
(—t’i) >1 (4.10)
the damping will become severe and perhaps only one term in the expansion will be

necessary. Moreover, 8, is in general a rapidly decreasing function of n as can be seen by
examining its maximum value, f,, maz. This is determined by soving the equation

do,
“—"_0 .
" (4.11)
for the time at which the maximum occurs; this time is given by:
2T
b = P (4.12)
6
and the corresponding value of 4, is
67 1 1 _s
On, maz = mﬁ;ﬁe 2 (4.13)

The foregoing equation supports the conjecture that higher-order terms provide diminish-
ing contributions to the overall solution.
The main difficulty in determining

Gn(z,t) = L' M™ION = M 1L71T] (4.14)

is attributed to performing the inverse Laplace Transform of gn(k,s). Using Egs. (3.9¢)
and (3.94d) in Eq. (4.2) yields:

A —Az\" )
gn(k,s) = (ﬁ) = g7 (4:15)

where

e () 619

A1+ Az

and )A;, \p are given by Eqgs. (3.9¢) and (3.9f) respectively. Let us first consider some of
the mathematical properties of g'. We write g; in the form:

N )tl—)\z) (Al—“)\z) (Al—/\z)2
p— = 4.17
91 ()\1 T2/ \ 1 = Az (A2 = \2) (4.17)

Using Egs. (3.9¢) and (3.9f) we have:

AZ — A2 =sp(oy —02) (4.18)

Substituting Egs. {4.17) and (4.18) into Eq. (4.15), and subsequently using the binomial
expansion for (A1 — Az)*" gives:

13



n 2n
gn = (Sﬂ.(—l—) Z: b2n,mk%n_m(—)\2)m . (4.19)

91— 02) m=0
where b3y, is the binomial coefficient . .

(2n)!

(2n — m)!m! (4.20)

b2n,m =

. Let us now consider the structure of the terms Eq. (4.19). For the even terms, char-
acterized by

m=2m'; (0<m <n) (4.21)
we have
A2 (20,)*™ = (spoy + k2T (spoz + k)™ - (422)
For the odd numbered terms, characterized by
m=2m +1; 0<m <n-—1 , ' (4.23)

we can write

n " H

MR (=A)™ = —(spoy + k)T T (spoa + k7)™ (sT)

where

Vsuoy + k2\/suoq + k2
s

T'= (4.25)
By expressing (spo1 + k2)" ", (suoz + k)™, (suoy + k%)™, and(suoe + k%)™
as a binomial expansion, and substituting the results into Eq. (4.19) it can be shown by

combining the summations that g, is of the form: ey ' ——

gn = gn1 + gn2

where

r=0

n2 = 5 (ﬂ'(o'l — 0_2) (ZB s"k'a’Q) sl") (4.27)

r=0

In the foregoing expressions A, and B, are constants which depend o oy , o2 and the
index r, and the integers p and ¢ are positive linear functions of the suumation index, r.

14



It is not necessary to go into the tedious details to establish the implications of Eqs. (4.26)

and (4.27) regarding the computation of Gn(z,t) from Eq. (4.14).
Using Egs. (4.1) and (4.3) in Egs. (4.26) and (4.27) we have:

where

From Eq. (4.14) we deduce

Gn(z,t) = Gni1(2,t) + Gna(z,1)

where
1 n
Gnl (ﬂv(o'l _ 02))10. zr: ArYr(zy t)
1 n—1 .
an = m Z B,-Z,-(Z, t)
2p
Yo(z,t) =M™ L7! (sﬁ_ vn(k,s,))

If we now let

va(z,t) = M1 L7 0, (K, s)

and

Bn(z,t) = M~ L™ (9, (k, s)sT (k, 5))
it then follows Egs. (2.6) and (2.7) that

32 b4
Yi(z,t) = /-.-fdtldtz---dtn_,(—ga:—z) vn(Z,t1)

8% \?
Z,-(:B,t)A=/'“/dtldtz'--dtn_r(—%—i) @n(z,t].)

15
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(4.29)

(4.30)

(4:31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



In summary, we have shown that if one can determine v, (z,t) and &, (z,t) it is possible
to determine the Green’s Function G,(z,t) by space derivates on v, and @, followed by
repeated time integrations. The utility of this approach depends on the simplicity and
speed of performing the time integration.

In Eq. (4.7) we showed

Bn(k,t) = L™ 0, (k,s) = exp (— (ﬁ-) t) 0.(t) (4.39)

2051
We now have

vp(z,t) = M~ L7'5,(k,s) = 8,(t)R(z,t), (4.40)
where
o o]
. 2.
R(z,t) = [ ke s dk
—o0
_ /Tuo; _zzual

=" exp yrs (4.41)

It is observed that v,(z,t) can be expressed in closed-form which facilitates the compﬁta—
tion of Eq. (4.37).
Now let us consider the deduction of ®,(z,t). We have

C B(z,t) = ML (s0a(k, 8)T(k, )
a

= 5; (M7 L7 Po(k,s)), (4.42)

where

Pu(k,s) = 5a(k,s)C(k,8) o _(4.43)

By examining Egs. (4.7), (4.8) and (4.25), which are the constitutents of Eq. (4.43),
we notice that the only difference between P, and P;(k,s) is the replacement of Tr by
n2Tg. Thus, if we can determine

- Py(z,t) = M"Y L7 Py (k, $) | (4.44)

we can determine P,(z,t) by substituting n2Tg for Tg in the resultant expression.
For the purposes of this investigation we are limiting the calculation to the evaluation

of
Gi(z,t) = M~ L™ (g1 (k, s) 71 (%, s)) (4.45)

This provides the contribution to the surface value of the electric field from the first round
trip reflection. In addition, it will be seen in Section (5) that the calculation of G1(z,?)
includes as one of its components, the computation of P{z,?).

16



5. CALCULATION OF Gi(z.t)
Starting from Eq. (4.45) we have:

Gi(z,t) = M~ L7 (qa(k, s)v1 (K, 5))
t

=M fal(k, )0, (k,t —t')dt’
[8)

e*= | Gi(k,t")b1(k,t — t")dt' dk

Il
é'\.g
o\h»

Using Eq. (4.17) we can write:

1
g1 = | ———— ) (A2 + 23 -2
9 (su(m - 02)) (A3 +2z - 24 2)

su(oy + og) + 2k? — 2u,/6102+/5 + a1\/s + a2

9= 3#('-'71 - 02)
where
k2
m=im
kz
ag=— (b
2= (6)

We also have:

G1(kyt) = (."‘.+ ""’) 5(t) + ___“‘(0?1\:_2 e (t) - é—l TZ:) L9

gy — 02

where

~ [(Vstoastazy _ 1 &
o e G
6(t) = Delta Function (b)

H(t) = Step Function (¢)
From Eq. (5.5) we can write

Gi(k,t) = g11 + G12 + G13,

where

17
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(5.4)
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- _ [Oo1+02
gn = (0'1 — 02) 6(t) (a)
2k?

J12 = mﬂ(t) (b)
d13 = (02 ' alazQ(k t) (o)
O(k,t) = L™ (‘/S ha “‘8‘/5 * “2) (d) (5.8)

As shown in Appendix A, Q(k,t) is given by:

Q(k,t) = e~ [BI1(B2) + alo(Bt)]

+ (a2 — %) / eI (Bu)du + §(t) (5.9)

0

where

(L e
a-2“ (0 +02)k (a)
(L1
B = ™ (a 02) k* (b) (5.10)
Using Eqs. (4.7) and (4.8) we can write:
_ (VTR Ty
b =B (0 o (<) A5

If we insert Egs. (5.7) - (5.11) into Eq. (5.1), and note that we can combine the 6(t)
of Eq. (5.9) with that of Eq. (5.8) we can write:

G1(z,t) =G1,1 + G1,2 + G 3 (5.12)
where
Gi,j = / e""/{&,-(k,t’)ﬁl(k,t—t’)dt’dk; ij=1,2,3 (5.13)
- _ \/_ \/0'_2 .
p1(k,t) = (\/_+ \/0_2) 5() (5.14)

18



2k?

bo(k,t) = mH(t) (5.15)

Ba(k,t) = (021‘/_";") [£1(k,0) + Lalk,t) + La(k,)] (5.16)
Ly(k,t) = Be~>t 1, (B2) (5.17)

La(k,t) = ae™t1,(Bt) (5.18)

La(k,t) = (o® — B7) f e~ I, (Bu)du (5.19)

It should be noted that although o; —o2 appears in the denominator of Egs. (5.15) and
(5. 16) the sum of ¢2 + ¢3 must equal zero in the limit of o; = o2 {note that ¢; is already
zero in this case). This follows from the observation that there can be no reflections in
this situation. This is easily seen by using approximations to L1,L,,and Ly in the limit of
B — 0.

In the next subsections we shall perform the calculations of Gy,;.

5.1 CALCULATION OF G :1(z,t)
From Egs. (5.13) and (5.14) we have:’

j (k,t v; t—_t’)dt’= (\/‘/:+\/‘/Z:Z)j5( t)o1(k,t —t")dt'

(\/\/:+ \/‘/Z::) TR f(t) (5.20)
where . o | &
f(e) = 2\\;_2.&1) (—4—?) . (5.21)
Performing the integration over k space yields: '
o= (BF22) 1o [ et
o (L5525 v 22) 7
ou-(BTR) G) B[ (0 5)] oo
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5.2 CALCULATION OF G
From Egs. (5.13) and (5.15) we have:

©o t

; 2k? K3
Gra= [ e [ oo s (5.23)
—o0 o]
Replacing k% by — 4=y we obtain
o0
G2 = 2 tar [ e*=er di 5.24
1,2 — [-‘-(01 _ 0_2 azz f e ro1 ( . )

The integral in Eq. (5.24) is the same as that in Eq. (5.22), so that we can write

t 2
2 Te(l +
Gram -t 2 [1 Ik 5exp_(1_n(_n=_)) @ (525

Making the substitution

1 TR :1:2 r '
L i —
AT (1 _L,z) =¥ (5.26)

permits the integration to be performed th_rough the relationship:

du' = ——=dt’ | 5.27
@ 20
We obtain:
4 1 a2

Gi2(z,t) = —— :
alet) =7 (52 ) 507 @) (5.29)

where ‘ o : : oy _ -

1 (1+=5)
Ulz,t) = ; e“F‘—eE— (5.29)
1+ %5 :

Using Eq. (3.18), the contribution from the first reflection will be given by:

Ey1 = Gi(z,1) ® *Ey,0(z,1), (5.30)

and in particular the contribution from G2 is:

oo t
- I} _ !
Eyi12= - L(O']_—O'g) ff(a =U(z' t)) Eyo{z—/,t —t')dz'dt (5.31)
—oo 0
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Based on application of the Faltung theorem discussed in Appendix B the foregoing
integration can be converted to the form:

co t
—4 1 v o [(0%Eyo(z,t —t') s
= ,1 J : 5.
Byaa= s [ [ve )( ., G
—0c0 O

It may turn out that for computational purposes that the form given by Eq. (5.32) is easier
to evaluate.

5.3 CALCULATION OF G 3
Inserting Eq. (5.16) into Eq. (5.13) and rearranging gives the following expression for

Gi,3:
) ¢ .
\/O10
G1,3(z,t) = _ﬁ dt'f(t —t') (N1(z,t') + Na(z,t') + Na(z,t")), (5.33)
0
where
. . 2 '
Ny = / Betkze=at' [ (Bt e wer "k (5.34)
. ' 2 '
N, = / cetkEe—t Io(ﬂt']e_;Tl(t_t )dk (5.35)
—-m ’
o t .
N3 = f(a2 —ﬁz)eik’/e_Q"Io(ﬂu)du e—;Tx(t_t’)dk (5.36) -
oo ' 0 = I
Egs. (5.34) — (5.36) can be simplified using the formulas
I(z) = = / ¢* <088 gg (5.37)
0
™
I(2) = %/ez %0 c0s0d0, (5.38)
0

and writing « and 8 in the form:

a= ( ! )kz (5.39)



8= (ﬂ_:;—b) k2, (5.40)

where
1 1/1 1 2(0102)
[ i - = — 2 5.41
Oa 2(01+02)’0“ (62 + 01) (541)
1 1 1 1 2(0’10’2)
e — — t— M I e e— 5.42
oy 2 (0'1 02) . (02 — 01) (5.42)
Using Egs. (5.37) — (5.42) in Egs. (5.34) and (5.35) yields:
32
Ny = 8:1:2 (n‘l) (a')
Ny = —@(nz) (b) (5.43)
where
) T
s () v [ e cieon
UOpT
0
T o0
ng = ( 1 ) / o f o~ GR!0 ~ B () g (5.45)
WO, T .

The expression for N3 is simplified by first performing the integration over u in Eq.
(5.36). We have

i . . - e .

—cxucﬁu cosd du

2.
<
13

1 1 — g (=8 coad)t’ )
=~ [ do ORI (5.46)
Inserting Eq. (5.46) into Eq.(5.36) yields
a2
N3 = —a—(na) (547)

where
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T oo
. k3 (t—¢! 1 coed 24
ng = ( - )fdﬂs(ﬁ) / ke he (1—e‘(»«a‘ﬁ?°)’° ‘)dk
RO T
o —00 .

1—(2a)?
5(0) = (1 - (gﬂ)bcosﬂ)

Using the general formula

o0
. 2
/ pikz —AK? gp v exp (_i) = F(A)

VA 4A
—o0
with
1 Oa , ,
Ay = 1— —cosf )t + —(t—1)
HOq Op
Y
Ay = t—t
1o
we deduce:
1 ‘ 1 r
= C'F(A,) — des (6
" (Waﬂ) (42) (uaaﬂr)/ (6)F (A1)
0
where
™
C' = fS(ﬂ)dO
Noting that
Jal _|227%1) o4
Op o2 + 01
gives
/’r dg o
J (1 — (22)cost) 1 — %:)2
and
2
¢ = — (%=
m/1-(2)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)



By comparing Eq. (5.51) with the exponential terms of Egs. (5.44) and (5.45) we

obtain

cosf dOF(A,)

( 1 )
ny =
HOpT

Ot~

T

ny = (u :M) Of d0F(Az)

From Egs. (5.53), (5.58), and (5.59) we have:

n=n;+ng+ng

n = (_I%ﬁ) F(Ag) + (Wlaw) j W (8) F(Ay)d8

where

w(6) = (—:) cosd +1 — S(0) ((‘f_j‘
(22)?sin20
w (o) 1 —b(ﬁ)cosﬁ (5)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

Combining Eqs. (5.43), (5.47), (5.60), (5.61) and inserting the latter into (5.33) gives:

a2
G] 3 = @ [ABI]_ + ACIz]

where
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A= N7,

01—'02)
_ Vi~ ?;: \/1~p
%o 2 2

C = (”") P (¢)

(1o, 7r) HOLT
¢

/dt'f (t—)F(As) (d)

I = / d'f(t - £)(F(A1)) (o)

P = [ 2l r ) ()
0
_(oa\ _ (02 —01) '
o= (2) “ ooy @ (5.64)

It is easy to see that I; reduces to the same integral as that of Eq. (5.25); that is

2
I = ZU(z,t) | (5.65)

" where U(z,t) is given by Eq. (5.29).
UsingEgs. (5.41) and (5.42) we deduce

o

3*(ABI). . 4
ozx? [.LL(O'l - 0'2) 8 2 (U(

z,1)) = 3G, 4(z,t) ~(5.66)

We observe that the foregoing contribution provides an exact cancellation to G1,2. -

Thus, the significant contribution to G1,3 comes from the term ACI;. Unfortunately, -
this does not appear to be easily integrated, and numerical techniques must be used.
For simplicity in presentation we shall render the results in dimensionless form. We first
compute the constant AC; we have

1 (on] —0'2) K
AC = = 5.67
(.u\/0'10'2) (01 + 02 uoq ( )

where

K=, (u) (5.68)

o2 \01+ 02
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Let us now introduce the variable

-0 e

in Eq. (5.64d). We can write Iz in terms of y in the following form:

I, = (_ZIL) Ho(td,¢d) (5.70)
where
1 1
= — 4ty l—y d

Bda0) = f(npadao)\/{r— P(-3) ©

'7°=1'+(12,- JECEENT

3
$q = T (d)
ta=7— (9
za=% (f)
r=22 (0
b= E’r':r 3 (%) ., (5.71)

Using the dimensionless variables introduced in Eq. (5.71) weSwrite for the Green’s Func- -

tion,
Gy =G+ 522 (ACI;) T (5.72)
o7 (mr) () oo |- (7))
“r o (7e) 3 613

The first term in Eq. (5.73) is that of G1,; (cf. Eq. (5.22¢)), expressed in terms of Tg, L,

and the dimensionless variables r,t4, and z4.
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The contribution to the electric field from G; is given from Eq. (5.30) where the

required integrations can be performed in either % or % space. It is also evident from

Egs. (5.31) and (5.32) that the term involving —8355"- can be converted to an integration of

II, combined with the second partial derivative of Eyo.

Since Il, cannot be expressed in closed-form, it must be provided in tabular form,
either as a function of ¢4, 4 or tg4, ¢4. This consideration should be reserved when the actual
implementation of this result is incorporated in the HABEMP finite-difference model.

Tabular values of II,(t4, ¢4) for selected values of {4 and ¢4 are rendered in Table I.
Plots of II, as a function of ¢4 with t; as a parameter for r = 0.5 are shown in Figure
3, while plots of I, as a function of t; with ¢4 as a parameter for r = 0.5 are shown in
Figure 4.
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TABLE 1
Values Of II,(tq, ¢q4) For
r = 0.3,0.5,0.7,2.0,5.0

THE AFOREMENTIONED INFORMATION IS
PROVIDED IN THE NEXT FIVE PAGES
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tau-d

.00

.10
.30
.50
.75
1.00
1.50
2.00
3.00
4.00
5.00

.4189
1.7276
2.0805
2.1579
2.1258
1.9976
1.8634
1.6254
1.4368
1.2952

values of piO(tau-d,phi-d) for r

.25

.3450
1.4584
1.7740
1.8532
1.8340
1.7334
1.6227
1.4212
1.2592
1.1370

.50

.2847
1.2341
1.5166
1.5957
1.5865
1.5081
1.4169
1.2459
1.1065
1.0006

.75

.2354
1.0469
1.2999
1.3776
1.3760
1.3156
1.2403
1.0951

.9747

. 8828

phi-d
1.00 1.50
.1949 .1345
.8902 .6485
1.1171  .8312
1.1925 .9003
1.1965 .9117
1.1506 .8867
1.0886 .8447
.9649 .7545
.8607 .6760°
.7808 .6151

29

.0935
4771
.6247
.6865
.7015
.6899
.6616
.5954
.5356
.4888

= .30

.0463
.2657
.3630
.4104
.4268
.4288
.4165
.3801
.3446

.3le6l

.0237
.1533
.2184
.253#
.2682
.2750
.2702
.2497
.2280
.2102

.0126
.0915
.1355
.1615
.1734
.1810
.1798
.1681
..1544
.1430



tau-d

.10
.30
.50
.75
1.00
1.50
2.00
3.00
4.00
5.00

.00

.4091
1.7094
2.0696
2.1547
2.1278
2.0055
1.8744
1.6385
1.4502
1.3084

values of piO(tau-d,phi-d) for r

.25

.3340
1.4274
1.7447
1.8288
1.8140
1.7193
1.6125
1.4151
1.2553

1.1343

.50

.2730
1.1942
1.4738
1.5556
1.5498
1.4772
1.3902
1.2249
1.0890

.9856

.75

.2235
1.0010
1.2476
1.3260
1.3270
1.2720
1.2012
1.0625

.9467

.8582

phi-d
1.00 1.50
.1832 .1236
.8407 .5965
1.0584 .7664
1.1328 .8319
1.1387 .8438
1.0977 .8226
1.0401 .7848
.9236 .7022
.8248 .6298
.7488 .5735

30

I

.0839
.4266
.5595
.6160
.6305
.6215
.5969
.5381
.4846
.4426

.0393
.2233
.3054
.3459
.3603
.3650
.3531
.3229
.2931
.2692

.0189
.1205
.1718
.2000
.2119
.2179
.2146
.1989
.1818

.1679

5.00

.0093
.0669
.0993
.1187
.1278
.1340
.1335

.1253

.1153

.10€7 -



values of piO(tau-d,phi-d) for r = .70
tau-d | phi-d
.00 .25 .50 .75 1.00 1.50 2.00 3.00  4.00 5.00

.10 .4063 .3301 .2685 .2187 .1783 .1l189 .0797 .0363 .0169 .0080

.30 1.7093 1.4189 1.1797 .9824 .8195 .5732 .4036 .2042 .1061 .0565

.50 2.0754 1.7385 1.4590 1.2266 1.0331 .7368 .5292 .2789 .1509 .0837

.75 2.1651 1.8257 1.5423 1.3054 1.1069 .8004 .5829 .3158 .1757 .1l001
1.00 2.1409 1.8130 1.5382 1.3075 1.1136 .8123 .5968 .3290 .1862 .1078
1.50 2.0213 1.7210 1.4682 1.2549 1.0746 .7925 .5887 .3316 .1915 .1l131
2.00 1.8911 1.6155 1.3828 1.1859 1.0190 .7565 .5657 .3227 .1887 .1127
3.00 1.6550 i.4193 1.2196 1.0500 .9056 .6774 .5103 .2953 .1750 .105%
4.00 1.4658 1.2598 1.0849 .9360 .8091 .6078 .4597 .2682 .1601 .0975
5.00 1.3231 1.1389 .9823 .8488 .7348 .5536 .4200 .2463 .1478 .0905
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values of pi0(tau-d,phi-d) for r = 2.00

tau-d phi-d

.00 .25 .50 .75 1.00 1.50 2.00 . 3.00 . 4.00 5.00
.10 .4258 .3428 .2762 .2227 .1797 .1172 .0767 .0331 .0145 .0064

.30 1.8148 1.4885 1.2223 1.0047 .8268 .5618 .3835 .1811 .0871 .0427
.50 2.2159 1.8324 1.5171 1.2577 1.0439 .7218 ,5015 .2457 .1227 .0624
.75 2.3210 1.9308 1.6083 1.3413 1.1202 .7842 .5519 .2774 .1421 .0741
1.00 2.3011 1.9217 1.6070 1.3456 1.1282 .7962 .5649 .2886 .1502 .0796
1.50 2.1798 1.8295 1.5376 1.2940 1.0905 L7775 .5572 .2905 .1543 .0833
2.00 2.0436 1.7205 1.4505 1.2245 1.0351 .7426 .5355 .2826 .1519 .0830
3.00 | 1.7928 1.5147 1.2816 1.0858 .9211 .6655 .4833 .2585 .1408 .0779

4.00 1.5900 1.3461 1.1412 .9688 .8236 .5974 .4355 .2348 .1288 '.0717

5.00 1.4365 1.2180 1.0341 .8791 .7484 .5444 .3980 .2157 .1189 .066% .
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values of piO(tau-d,phi-d) for r = 5.00
tau-d phi;d
.00 .25 .50 .75 1.00 1.50 2.00 3.00 - 4.00 5.00

.10 .4777 .3835 .3080 .2476 .1991  .1289 .0837 .0356 .0153 .0066
.30 2.0449 1.6705 1.3660 1.1179 .9158 .6163 .4162 .1920 .0899 .0427
.50 2.5014 2.0595 1.6974 1.4003 1.1565 .7912 .5435 .2596 .1259 .0620
.75 2.6237 2.1725 1.8008 1.4944 1.2414 .8595 .5975 .2924 .1454 .0734
1.00 2.6034 2.1638 1.8004 1.4997 1.2506 .8725 .6114 .3039 .1535 .0786
1.50 2.4690 2.0620 1.7240 1.4431 1.2093 .8520 .6029 .3056 .1573 .0821
2.00 2.3163 1.9403 1.6272 1.3661 1.1482 .8139 .5793 .2971 .1547 .0817
3.00 2.0336 1.7094 1.4385 1.2119 1.0221 .7295 .5228 .2717 .1433 .0766
4.00 1.8043 1.5197 1.2814 1.0817 .9141 .6548 .4711 .2466 .1310 .0705
.00 1.6307 1.3754 1.1613 .9817 .8307 .5968 .4304 .2265 .1209 .0654
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6. CONCLUSION

A solution for the Two Region-Two Dimensional electromagnetic ground response has
been developed which relates the surface components of the electric field to the surface
components of the magnetic field. This has been accomplished by deriving a universal
functional form for a dimensionless Green’s Function. The Green’s Function provides
increasingly more accurate approximations to the response for each successive reflection
from the second layer. This result would appear to provide simplification and reduced
computer running time in the numerical modelling of the HABEMP when the ground
response is coupled to finite-difference methods for solving the atmospheric part of the
problem.
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APPENDIX A: CALCULATION OF Q(k.t)
The basic building block for the calculation of

Q(k,t) — L—l (\/§+ alsm 0!2) —_ L_l (Q(k,&))

is the formula

-1(5 —1 1(3‘1'0‘—.3)% >
LU (R(s)) = Lt |23 2P0 = Rt
O e i R

= [e-ﬂtf.,(ﬁt) + (a—B) f e'“"Io(ﬂu)du} H(t)
0

(A.1)

(A.2)

In the foregoing expxression I, is the modified Bessel Function of zero order, and H(t) is

the step function. If we make the identification

_mten 1 (1 1),
a=—7 _2.11'( + )k (a)

g1 (el
= = — ===k b
p= 2 2“(a1 02) 0

we can write (suppressing the k dependence):

Q(s) = (s + e1) R(s)
We then ha.ve: . '

o -
L7'Q(s) =L ((s + a1} B(s)) = Q(t) (a)

&) = aaklt) + ZRE

Substituting Eq. (A.2) into Eq. (A.5) yields

Q(t) = e~ [BI(Bt) + al,(Bt)]

‘+ (a? - B3 / e **I,(Bu)du + 6(t)

0
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APPENDIX B: APPLICATION OF FALTUNG THEOREM

In the main body of the report we are concerned with calculations of the form

fule) = () [ file-nna  ®y
where fa(y) is given by:

f2(y) = (g(y)) | (B.2)

For computational purposes it may be desn'eable to organize the computation of f12(z)
so that only the function g(y) appears in the integration, and none of it’s derivatives. This
is accomplished in the following way: We let

9'(y) = (g—z) (B.3)

so that we can write

f2l0) = 5-8'®) | (B.4)

Substituting Eq. (B.4) in Eq. (B.1) gives:

fu=(5) [ file -9 W)y (8:5)

We now integrate Eq. (B.5) by parts to give

‘f“=z*1;[é'(y)f; @-= - [ 252 f“"’” Yy y] -

— o0

1 T . .8
g'(y ——fl(z_y)dy

Letting
z=z—y (B.7)
we have
8 _0foz af1
— = - B.8
dy 8z dy ( Bz) (B8
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There results:

o = & [ #6)(% o) (B9)

—0Co

By executing the same procedure once more we obtain the desired result

fra(2) = % /’ oly )(azﬁ(Z))z:x_ydy (B.10)

—Q0
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