
Comp. Organization DLX Comp. Arch. ECE 337

1 (November 16, 2011 12:22 pm)

Unpipelined DLX Architecture

Each DLX instruction has five phases

Thus, each instruction requires five cycles to execute (Clocks Per Instruc-

tion or CPI is 5)

• Instruction fetch (IF)

Get the next instruction

• Instruction decode & register fetch (ID)

Decode the instruction and get the registers from the register file

• Execution/effective address calculation (EX)

Perform the operation

For load and stores, calculate the memory address (base + immed)

For branches, compare and calculate the branch destination

• Memory access/branch completion (MEM)

For load and stores, perform the memory access

For taken branches, update the program counter

• Writeback (WB)

Write the result to the register file

For stores and branches, do nothing

Comp. Organization DLX Comp. Arch. ECE 337

2 (November 16, 2011 12:22 pm)

Unpipelined DLX Architecture

Datapath:

Red boxes are temporary storage locations.

IF ID EX MEM WB

PC

4

Instr
Mem

IR

NPC

Sign Ex

IMM

A

B

m
u

x
m

u
x

m
u

x

m
u

x

zero ? cond

ALU

output

LMD

Data
Mem

Reg
File

Comp. Organization DLX Comp. Arch. ECE 337

3 (November 16, 2011 12:22 pm)

Simple DLX operation (without pipelining)

The temporary storage locations were added to the datapath of the unpipe-

lined machine to make it easy to pipeline

Instruction classes:

• ALU/Logical (ADD, AND, SUB, OR)

• Load/Stores

• Control (BEQZ, BNEQ, JMP, CALL, RETURN, TRAP)

• Other (System, Floating Point, etc.)

In the above architecture, note that branch and store instructions take only 4

clock cycles (instead of 5)

Assuming branch frequency of 12% and a store frequency of 5%, CPI

ACTUAL CPI is 4.83 (0.17*4 +0.83*5)

Also, several hardware redundancies exist:

• ALU can be shared

• Data and instruction memory can be combined since access occurs on dif-

ferent clock cycles

Comp. Organization DLX Comp. Arch. ECE 337

4 (November 16, 2011 12:22 pm)

Latency vs. Throughput

Latency vs. throughput

• Latency

Each instruction takes a certain time to complete

Instruction latency is the amount of time between when the instruc-

tion is issued and when it completes

• Throughput

The number of instructions that complete in a span of time

Comp. Organization DLX Comp. Arch. ECE 337

5 (November 16, 2011 12:22 pm)

Pipelining

Definition

Pipelining is the ability to overlap execution of different instructions at

the same time

It exploits parallelism among instructions and is NOT visible to the

programmer

This is similar to building a car on an assembly line

While it may take two hours to build a single car, there are hundreds

of cars in the process of being constructed at any time

The throughput of the assembly line is the # of cars completed per hour

The throughput of a CPU pipeline is the # of instructions completed per

second

Pipeline stages

Each step in a pipeline is called a pipe stage

In our assembly line example, a stage corresponds to a work station on

the assembly line

Comp. Organization DLX Comp. Arch. ECE 337

6 (November 16, 2011 12:22 pm)

Pipelining

Cycle time

Everything in a CPU moves in lockstep, synchronized by the clock

(“heartbeat” of the CPU)

A machine cycle: time required to complete a single pipeline stage

A machine cycle is usually one, sometimes two, clock cycles long, but

rarely more

In machines with no pipelining:

• The machine cycle must be long enough to complete a single instruction

• Or each instruction must be divided into smaller chunks (multiple clock

cycles per instruction)

Pipeline cycle time

All pipeline stages must, by design, take the same time

Thus, the machine cycle time is that of the longest pipeline stage

Ideally, all stages should be exactly the same length

Comp. Organization DLX Comp. Arch. ECE 337

7 (November 16, 2011 12:22 pm)

Pipelining

Pipeline speedup

The ideal speedup from a pipeline is equal to the number of stages in the

pipeline

However, this only happens if the pipeline stages are all of equal length

Splitting a 40 ns operation into 5 stages, each 8 ns long, will result in a

5x speedup

Splitting the same operation into 5 stages, 4 of which are 7.5 ns long

and one of which is 10 ns long will result in only a 4x speedup

If your starting point is a multiple clock cycle per instruction machine then

pipelining decreases CPI (clocks per instruction)

If your starting point is a single clock cycle per instruction machine then

pipelining decreases cycle time

We will focus on the first starting point in our analysis

Time per instruction on unpipelined machine

Number of pipe stages
--

Comp. Organization DLX Comp. Arch. ECE 337

8 (November 16, 2011 12:22 pm)

Pipelining DLX

Since there are five separate stages, we can have a pipeline in which one

instruction is in each stage

This will decrease CPI to 1, since one instruction will be issued (or finish)

each cycle

During any cycle, one instruction is present in each stage

Ideally, performance is increased five fold !

However, this is rarely achievable as we will see

Clock Number

1 2 3 4 5 6 7 8 9

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Comp. Organization DLX Comp. Arch. ECE 337

9 (November 16, 2011 12:22 pm)

Pipelining DLX

Data path

Can data path resources, such as the adder, be shared ?

IF/ID

PC

4

Instr
Mem

IR

Sign
m

u
x

m
u

x

m
u

x

m
u

x

zero ?

Data
Mem

Reg
File

ID/EX

 Ex

EX/MEM MEM/WB

pipeline
registers or
latches

What’s the purpose of this wire ?

store

load

Comp. Organization DLX Comp. Arch. ECE 337

10 (November 16, 2011 12:22 pm)

Pipelining DLX

Pipeline Issues:

• Separate instruction caches and data caches eliminates conflicts for mem-

ory access in IF and MEM

Note that the memory system must deliver 5x the bandwidth over the

unpipelined version

• The register file is used in two stages, reading in ID and writing in WB

Two reads and one write required per clock

More importantly, what happens when a read and a write occur to the

same register?

• What about branch instructions and the PC?

Branches change the value of the PC -- but the condition is not evaluated

until MEM!

If the branch is taken, the instructions fetched behind the branch are

invalid

This is clearly a serious problem that needs to be addressed

Comp. Organization DLX Comp. Arch. ECE 337

11 (November 16, 2011 12:22 pm)

Pipelining performance issues

Pipelining decreases execution time but can increase cycle time

Throughput is increased since a single instruction (ideally) finishes every

clock

However, it usually increases the latency of each instruction

Why?

• Imbalance among the pipe stages:

The slowest stage determines the clock cycle time

• Pipeline overhead:

Pipeline register delay. Adding registers, adds logic between each of the

stages (plus constraints on setup and hold times for proper operation --

but we won’t talk about those)

Clock skew. The clock must be routed to possibly widely separated regis-

ters/latches, introducing delay in signal arrival times

In the limit, i.e., if the combination logic delay is zero, clock cycle time is

bound by the sum of the clock skew and latch overhead

Comp. Organization DLX Comp. Arch. ECE 337

12 (November 16, 2011 12:22 pm)

Pipelining performance issues

Instruction regularity:

With a pipeline, differences in instruction CPI can NOT be taken advan-

tage of

In the unpipelined version, a store instruction finishes after MEM, 4

clocks rather than 5

With pipelining, we can not start the next instruction one clock earlier

since it is already in the pipeline

Therefore, CPI may not be decreased by the number of pipeline stages

(ideal case is usually not achievable)

This effect reduces the maximum pipeline depth since the variance in the

of stages required for each instruction grows as stages are added

Pipelining can be thought of as reducing the CPI

This increases throughput even though clk cycle time is increased

Comp. Organization DLX Comp. Arch. ECE 337

13 (November 16, 2011 12:22 pm)

Pipeline hazards

A hazard is a condition that prevents an instruction in the pipe from execut-

ing its next scheduled pipe stage

There are three types of hazards

• Structural hazards

These are conflicts over hardware resources

• Data hazards

These occurs when an instruction needs data that is not yet available

because a previous instruction has not computed or stored it

• Control hazards

These occur for branch instructions since the branch condition (for com-

pare and branch) and the branch PC are not available in time to fetch an

instruction on the next clock

Comp. Organization DLX Comp. Arch. ECE 337

14 (November 16, 2011 12:22 pm)

Pipeline stalls

Hazards in the pipeline may make it necessary to stall the pipeline

Stall definition:

The simplest way to “fix” hazards is to stall the pipeline

This means suspending the pipeline for some instructions by one or more

clk cycles

The stall delays all instructions issued after the instruction that was

stalled

A pipeline stall is also called a pipeline bubble or simply bubble

Comp. Organization DLX Comp. Arch. ECE 337

15 (November 16, 2011 12:22 pm)

Pipeline stalls

Stall location:

Note that a bubble need not occur at the start of an instruction

It can be inserted in the middle

A bubble occurs whenever the pipeline stage must be suspended (for a

given instruction) to allow a previous instruction to proceed

The previous instruction MUST proceed in order for the hazard to

clear

No new instructions are fetched during a stall

To emphasize, all instructions issued later than the stalled instruction are

stalled

Comp. Organization DLX Comp. Arch. ECE 337

16 (November 16, 2011 12:22 pm)

Performance of Pipelines with stalls

Effect on pipeline speedup:

Pipeline stalls decrease performance from the ideal !

Every cycle the pipeline is stalled results in a cycle in which an instruc-

tion is NOT issued

And thus is a cycle in which an instruction is NOT completed

Lets start with the basic formula:

Performance Equation: Instruction Count (IC) * Clocks per Instruction

(CPI) * Clk cycle time

Inserting into above equation:

Speedup from pipelining
Average instruction time unpipelined

Average instuction time pipelined
---=

CPI unpipelined Clock cycle unpipelined×

CPI pipelined Clock cycle pipelined×

---=

CPI unpipelined

CPI pipelined

Clock cycle unpipelined

Clock cycle pipelined
--×

=

Comp. Organization DLX Comp. Arch. ECE 337

17 (November 16, 2011 12:22 pm)

Performance of Pipelines with stalls

Effect on pipeline speedup:

Note that pipelining can be thought of as decreasing CPI or decreasing

clock cycle time - let’s focus on the former.

Assuming the ideal CPI is 1:

Let’s ignore increases in clk cycle time (due to pipeline overhead):

Let’s further assume unpipelined CPI is equal to the depth of the pipe-

line (ignore shorter instruction CPIs).

CPI pipelined Ideal CPI Pipeline stall clk cycles per instuction+=

= 1 Pipeline stall clk cycles per instruction+

Speedup
CPI unpipelined

1 Pipeline stall cycles per instruction+
---=

Speedup
Pipeline depth

1 Pipeline stall cycles per instruction+
---=

Comp. Organization DLX Comp. Arch. ECE 337

18 (November 16, 2011 12:22 pm)

Performance of Pipelines with stalls

Effect on pipeline speedup:

If we include the effect of pipeline overhead, we get:

Speedup
Pipeline depth

1 Pipeline Stall cycles per instruction+

Clock cycle unpipelined

Clock cycle pipelined
--×=

