
Comp. Organization ISA ECE 337

1 (11/9/11)

Protected Mode Memory Addressing

Segments are interpreted differently in Protected Mode vs. Real Mode:

• Segment register contains a selector that selects a descriptor from the descriptor

table.

• The descriptor contains information about the segment, e.g., it’s base address,

length and access rights.

• The offset can be 32-bits.

Descriptor Table

FFFFFFFF

00000000

DS

0008

Memory System

Data
Segment

...

...

+

EBX

... 0000FF00

0000FF00

0000FF88

Selector
00000088

Offset

Base

Comp. Organization ISA ECE 337

2 (11/9/11)

Segment Descriptors in Protected Mode

• Base address:

Starting location of the memory segment.

• Limit:

Length of the segment minus 1.

20-bits allows segments up to 1 MB.

This value is shifted by 12 bits to the left when the G (Granularity bit) is set to 1.

Limit

01539 1640

Base

(L15-L0)(B23-B0)

Access
Rights

4748

(L19-

5556

Base
(B31-B24) L16)

01234567

G D X U

515263

byte

P DPL S ATYPE

Comp. Organization ISA ECE 337

3 (11/9/11)

Segment Descriptors in Protected Mode

Segment Descriptors: Bits 52-55

• G bit:

When G=0, segments can be 1 byte to 1MB in length.

When G=1, segments can be 4KB to 4GB in length.

• U bit:

User (OS) defined bit.

• D bit:

Indicates how the instructions (80386 and up) access register and memory data

in protected mode.

• When D=0, instructions are 16-bit instructions, with 16-bit offsets and 16-bit

registers. Stacks are assumed 16-bit wide and SP is used.

• When D=1, 32-bits are assumed.

Allows 8086-80286 programs to run.

• X bit:

Reserved by Intel

Comp. Organization ISA ECE 337

4 (11/9/11)

Segment Descriptors in Protected Mode

Segment Descriptors: Access Rights (Byte 5):

The Access Rights (AR) byte controls access to a protected mode segment and

how the segment functions in the system.

P DPL S A

A=0, Segment not accessed

A=1, Segment has been accessed

000 Data, read-only
001 Data, read/write

010 Stack, read-only

S = 0, System descriptor

S = 1, Code, data or stack

Sets the desc. privilege level.

P = 0, descriptor is undefined.

P = 1, descriptor contains a valid
base and limit.

011 Stack, read/write

100 Code, execute-only
101 Code, execute/read

110 Code, execute-only, conforming
111 Code, execute/read, conforming

TYPE

Comp. Organization ISA ECE 337

5 (11/9/11)

Segment Descriptors in Protected Mode

Details:

The A (accessed) bit is set automatically by the microprocessor and is never

cleared.

This allows OS code to track frequency of usage.

The P (present) bit should be interpreted as “descriptor-is-valid”.

If this bit is 0, the microprocessor will refuse any attempts to use this

descriptor in an instruction.

Although the AR must always be valid, when P=0, the rest of the descriptor

can be used in any way the OS likes.

The S (system) bit indicates how the descriptor is to be interpreted.

S=1 indicates a system descriptor (more on this later).

S=0 indicates a code, data or stack descriptor.

03940

Access
Rights

47

Available

63

Available

Comp. Organization ISA ECE 337

6 (11/9/11)

Segment Descriptors in Protected Mode

Details:

Non-system (S=0) segments:

• Type=0: The data segment is basically a ROM.

• Type=1: Both read and write operations allowed.

Code can NOT be fetched and executed from either of these segment types.

• Type=2 or 3: A stack segment is defined analogously to Types 0 and 1.

However, the interpretation of the limit field is different.

In this case, all offsets must be greater than the limit.

The upper limit is set to base address + FFFF (with D=0) or base address +

FFFFFFFF (with D=1).

This means the stack segment ends 1 byte below the base address.

Expanding of the stack segment simply involves decreasing the limit.

Comp. Organization ISA ECE 337

7 (11/9/11)

Segment Descriptors in Protected Mode

Details:

• Type=4: A code segment with no read permission.

This means no constants are allowed, since they cannot be read out.

• Type=5: A code segment in which constants may be embedded.

In either case, no writing (self-modifying code) is permitted.

• Type=6 and 7: Analogous to Types 4 and 5 without privilege protection.

We’ll discuss the meaning of “conforming” soon.

4GB

0

Base + FFFFFFFF

Base + limit Stack segment area

bottom

top

Growth direction

Base

Comp. Organization ISA ECE 337

8 (11/9/11)

Segment Registers in Protected Mode

Interpretation:

Descriptor Index and Table Index (TI):

The 13 bit descriptor index selects one of up to 8K descriptors in either the GDT

and LDT, as specified by the TI bit.

Therefore, these 14 bits allows access to 16K 8-byte descriptors.

RPL:

The desired privilege level of the program.

Access is granted if the RPL value is lower (higher in privilege) than the AR of

the segment. Otherwise, a privilege violation is issued.

012315
Selector

TI RPL

RPL = Requested privilege
level. 00 is highest and 11
is lowest.

TI = 0, Global Descriptor Table.
TI = 1, Local Descriptor Table.

13-bits

Selects one of the 8192
descriptors.

Descriptor Index

Comp. Organization ISA ECE 337

9 (11/9/11)

Segmentation Address Translation

So instead of left shifting by 4 bits in Real Mode to form the segment address, we

right shift by 3 bits and use the value as a table index.

Global Descriptor Table

0

100 00 92 10 00 00 00 FF

FFFFFF

000000

100000

DS

0 0 0 8

Memory System

1000FF

Data
Segment

LimitBase

Access rights

Note: Descriptor 0
is called the NULL

descriptor and may
not be used to access
memory.

2...

...

Note: there is no
meaning
associated the
relative position
of the segment
descriptors in the
table -- unlike
page tables as
we will see.

+

ESI

000000FF

Comp. Organization ISA ECE 337

10 (11/9/11)

Segmentation Address Translation

There are actually three different descriptor tables, GDT, LDT and IDT.

Exactly one GDT and IDT must be defined for Protected Mode operation.

• Global Descriptor Table (GDT).

The GDT is used by all programs.

• Local Descriptor Table (LDT).

An LDT can optionally be defined on a per-task basis and is used to expand

the addressable range of the task.

• Interrupt Descriptor Table (IDT).

The IDT is a direct replacement to the interrupt vector table used in 8086

systems.

Note that references to IDT are done through the hardware interrupt mechanism, and

not from a program via a selector.

Comp. Organization ISA ECE 337

11 (11/9/11)

Segmentation Address Translation

Programmer invisible registers:

The GDT and IDT (and LDT) are located in the memory system.

The addresses of the GDT and IDT and their limits (up to 64K bytes) are loaded in

special registers, GDTR and IDTR, before switching to Protected Mode is possible.

CS

DS

ES

SS

FS

GS

Segment registers Descriptor Cache

Base Address Limit Access

TR

LDTR

Base Address Limit Access

Base Address Limit

Descriptor Table Addresses

GDTR

IDTR 16-bits32-bits

Selector

Selector

Selector

Comp. Organization ISA ECE 337

12 (11/9/11)

Segmentation Address Translation

Programmer invisible registers:

The other registers enclosed by the red-dotted line are part of the descriptor

cache.

The cache is used to reduce the number of actual memory references needed

to construct the physical address.

There is one cache register for each of the 6 segment registers, CS, DS, etc. and

the LDTR (Local Descriptor Table Register) and TR (Task Register) selectors.

The base address, limit and access rights of the descriptor are loaded from

memory every time the corresponding selector changes.

The LDTR and TR selectors refer to special system descriptors in the GDT.

These registers provide hardware acceleration support for task switching.

Let’s first consider how LDTs are used to extend the address space of individual

tasks.

Comp. Organization ISA ECE 337

13 (11/9/11)

Local Descriptor Tables

The LDTR selector indexes a GDT system descriptor describing the segment con-

taining the LDT while the cache stores the actual LDT descriptor.

The LDTR selector can be loaded with a new value when another task is run.

FFFFFF

000000

DS 1

GDTR

LDTR

Descriptor

LDT Descriptor

Descriptor

Data Descriptor

ESI

D
at

a
L

D
T

G
D

T

LDT
cache

32-bit Offset

