
Comp. Organization ISA ECE 337

1 11/9/11

Processes and Tasks
What comprises the state of a running program (a process or task)?

If a second process, P2, is to be created and run (not shown), then the state of

P1 must be saved so it can be later resumed with no side-effects.

Since only one copy of the registers exist, they must be saved in memory.

We’ll see there is hardware support for doing this on the Pentium later.

Microprocessor DRAMAddress bus

Data bus

Control

P1 stack

P1 Code

P1 Data

P1’s state

by the register values, OS data structures,
and the process’s data and stack segments.

OS code
and data

The STATE of a task or process is given

EAX
EBX
ECX
EDX

EBP
ESP
EDI
ESI

EIP
EFlags

CS SS

DS
ES
FS
GS

...

code/data cache
special caches

Comp. Organization ISA ECE 337

2 11/9/11

Memory Hierarchy
For now, let’s focus on the organization and management of memory.

Ideally, programmers would like a fast, infinitely large nonvolatile memory.

In reality, computers have a memory hierarchy:

Cache (SRAMS): Small (KBytes), expensive, volatile and very fast (<

5ns).

Main Memory (DRAM): Larger (MBytes), medium-priced, volatile and

medium-speed (<80ns).

Disk: GBytes, low-priced, non-volatile and slow (ms).

Therefore, the OS is charged with managing these limited resources and cre-

ating the illusion of a fast, infinitely large main memory.

The Memory Manager portion of the OS:

• Tracks memory usage.

• Allocates/Deallocates memory.

• Implements virtual memory.

Comp. Organization ISA ECE 337

3 11/9/11

Simple Memory Management
In a multiprogramming environment, a simple memory management scheme

is to divide up memory into n (possibly unequal) fixed-sized partitions.

These partitions are defined at system start-up and can be used to store all

the segments of the process (e.g., code, data and stack).

Advantage: it’s simple to implement.

However, it utilizes memory poorly. Also, in time sharing systems, queueing

up jobs in this manner leads to unacceptable response time for user pro-

cesses.

Partition 4

Partition 3

Partition 2

Partition 1

OS

Multiple
Job Queues

Comp. Organization ISA ECE 337

4 11/9/11

Variable-Sized Partitions
In a variable-sized partition scheme, the number, location and size of memory

partitions vary dynamically:

(1) Initially, process A is in memory.

(2) Then B and C are created.

(3) A terminates.

(4) D is created, B terminates.

A

OS

A

OS

B

OS

D

OS

D

OS

B

C C

B

C C

(1) (2) (3)

X1

X2

Time
(4) (5)

Comp. Organization ISA ECE 337

5 11/9/11

Variable-Sized Partitions
Problem: Dynamic partition size improves memory utilization but compli-

cates allocation and deallocation by creating holes (external fragmentation).

This may prevent a process from running that could otherwise run if the

holes were merged, e.g., combining X1 and X2 in previous slide.

Memory compaction is a solution but is rarely used because of the CPU time

involved.

Also, the size of a process’s data segments can change dynamically, e.g. mal-

loc().

If a process does not have room to grow, it needs to be moved or killed.

code

OS

stack

data

Growth

Processes
Other

Process
A

Comp. Organization ISA ECE 337

6 11/9/11

Implementing Memory on the Hard Drive
The hard disk can be used to allow more processes to run than would nor-

mally fit in main memory.

For example, when a process blocks for I/O (e.g. keyboard input), it can be

swapped out to disk, allowing other processes to run.

The movement of whole processes to and from disk is called swapping.

The disk can be used to implement a second scheme, virtual memory.

Virtual memory allows processes to run even when their total size (code,

data and stack) exceeds the amount of physical memory (installed

DRAM).

This is very common, for example, in microprocessors with 32-bit

address spaces.

If an OS supports virtual memory, it allows for the execution of processes

that are only partially present in main memory.

OS keeps the parts of the process that are currently in use in main mem-

ory and the rest of the process on disk.

Comp. Organization ISA ECE 337

7 11/9/11

Virtual Memory
When a new portion of the process is needed, the OS swaps out older “not

recently used” memory to disk.

Virtual memory also works in a multiprogrammed system.

• Main memory stores bits and pieces of many processes.

• A process blocks whenever it requires a portion of itself that is on disk,

much in the same way it blocks to do I/O.

• The OS schedules another process to run until the referenced portion is

fetched from disk.

But swapping out portions of memory that vary in size is not efficient.

External fragmentation is still a problem (it reduces memory utilization).

Two concepts:

• Segmentation: Allows the OS to “share” code and enforce meaningful con-

straints on the memory used by a process, e.g. no execution of data.

• Paging: Allows the OS to efficiently manage physical memory, and makes

it easier to implement virtual memory.

Comp. Organization ISA ECE 337

8 11/9/11

Paging and Virtual Memory
So how does paging work?

We will refer to addresses which appear on the address bus of main memory

as a physical addresses.

Processes generate virtual addresses, e.g., MOV EAX, [EBX]

Note, the value given in [EBX] can reference memory locations that

exceed the size of physical memory.

(We can also start with linear addresses, which are virtual addresses trans-

lated through the segmentation system, to be discussed).

All virtual (or linear) addresses are sent to the Memory Management Unit

(MMU) for translation to a physical address.

Memory

CPU chipCPU sends

MMU

CPUvirtual address
to MMU

MMU translates
address and sends
physical address to
memory

Comp. Organization ISA ECE 337

9 11/9/11

Paging and Virtual Memory
The virtual (and physical) address space is divided into pages.

Page size is architecture dependent but usually range between 512- 64K.

Corresponding units in physical memory are called page frames.

Pages and page frames are usually the same size.

60K-64K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K

8K-12K
4K-8K
0K-4K

Assume:

Physical mem is 32K.

Therefore, there are
16 virtual pages.
8 page frames.

12K-16K

Virtual address space

0K-4K
4K-8K
8K-12K
12K-16K
16K-20K

24K-28K
20K-24K

28K-32K

Page Frames

Virtual pages

X
X
X
7
X
5
X
X
X
3
4
0
6
1
2

X

Physical
address
space

Assume the process issues
the virtual address 0:

Paging translates it to

20500 is translated to physical
address 12K + 20 = 12308.

Page size is 4K.

Virtual mem is 64K.

physical address 8192
using the layout on right.

Comp. Organization ISA ECE 337

10 11/9/11

Paging and Virtual Memory
Note that 8 virtual pages are not mapped into physical memory (indicated by

an X on the previous slide).

A present/absent bit in the hardware indicates which virtual pages are

mapped into physical RAM and which ones are not (out on disk).

What happens when a process issues an address to an unmapped page?

• MMU notes page is unmapped using present/absent bit.

• MMU causes CPU to trap to OS - page fault.

• OS selects a page frame to replace and saves its current contents to disk.

• OS fetches the page referenced and places it into the freed page frame.

• OS changes the mem map and restarts the instruction that caused the trap.

Paging allows the physical address space of a process to be noncontiguous !

This solves the external fragmentation problem (since any set of pages can

be chosen as the address space of the process).

However, it generally doesn’t allow 100% mem utilization, since the last

page of a process may not be entirely used (internal fragmentation).

Comp. Organization ISA ECE 337

11 11/9/11

Paging and Virtual Memory
Addresses Translation by the MMU

15
14
13
12
11
10
9
8
7
6
5
4

2
1
0

3

000
000
000
111
000
101
000
000
000
011
100
000
110
001
010

000

8196 in binary is

0
0
0
0
1
0
1
0
0
0
1
1
1
1
1
1

Page Table: Maps virtual pages onto

Physical Address

0010 000000000100

110 000000000100

Virtual Address

16 bits = 64K

15 bits = 32K

Virtual Address

Physical Address

Process generates

BUS

Virtual
Page
Number

Offset

Page
Frame
Number

Offset

page frames.

For example:

present/
absent

Comp. Organization ISA ECE 337

12 11/9/11

Paging and Virtual Memory
Two important issues w.r.t the Page Table:

• Size:

The Pentium uses 32-bit virtual addresses.

With a 4K page size, a 32-bit address space has 232/212 = 220 or 1,048,576

virtual page numbers !

If each page table entry occupies 4 bytes, that’s 4MB of memory, just

to store the page table.

For 64-bit machines, there are 252 virtual page numbers !!!

• Performance:

The mapping from virtual-to-physical addresses must be done for

EVERY memory reference.

Every instruction fetch requires a memory reference.

Many instructions have a memory operand.

Therefore, the mapping must be extremely fast, a couple nanoseconds,

otherwise it becomes the bottleneck.

Comp. Organization ISA ECE 337

13 11/9/11

Page Table Design Alternatives
• Single page table stored in an array of fast hardware registers.

OS loads registers from memory when a process is started.

• Advantage: No memory references are needed for the page table.

• Disadvantage: Context switches require the entire page table to be

loaded.

If it is large, this will be expensive.

• Page table kept entirely in main memory.

Single register points to the start of the page table.

• Advantage: Context switches only require updating the register pointer.

• Disadvantage: One or more memory references are needed to read page

table entries for each instruction.

Modern computers keep “frequently used” page table entries on chip in a

cache (similar to first alternative above) and the others in main memory

(similar to the second alternative).

Comp. Organization ISA ECE 337

14 11/9/11

Multilevel Page Tables
Instead of using only one level of indirection, use two.

0
1
2
3
4
5
6

1023

10 10 12

431

Number of Bits

0
1
2
3
4
5
6

1023

0
1
2
3
4
5
6

1023

0x00403004

Pages

Page

Second-level
page tables

Top-level page table

32-bit virtual address

0x00054

Frames

4K

0x00054000
Base Address

0x00312
Base
Address
of desired
page.

Comp. Organization ISA ECE 337

15 11/9/11

Multilevel Page Tables
This addresses page table size problem since many of the second-level page

tables need not be defined (and therefore stored in main memory).

Note that two page faults can occur for a single memory reference.

If the second-level page table is not in memory, a page fault occurs.

If the page that the second-level entry refers to is not in memory, another

page fault occurs.

In general, Page Frames are machine dependent with the following info:

• Page Frame address: Most significant bits of physical memory address.

• Present/Absent bit: If 1, page is in memory, if 0, it is on disk.

• Modified bit: If set, page has been written to, e.g. it is ‘dirty’.

• Referenced bit: Used in the OS page replacement algorithm.

• Protection bits: Specifies if data in page can be read/written/executed.

Page Frame Address

Present/absent bit

Protection bits

Modified

Referenced

Other info

Comp. Organization ISA ECE 337

16 11/9/11

Translation Lookaside Buffers (TLBs)
With two-level paging, one memory reference could require three memory

accesses !

In order to reduce the number of times this occurs, a fast lookup table called a

TLB is added as a hardware cache in the microprocessor.

CPU

virtual address

Page # Offset

TLB

Page # Page frame

140
20
130
129
19
21
860

31
38
22
14
100
56
33

0
1
2
3
4
5
6

1023

Page Table
TLB miss

Offset

TLB
hit

page
frame

physical

address

memory
physical

key value

Page #
compared
to all keys
simultaneously

If found,
- TLB hit -
no memory

If not, TLB miss

 access required

Comp. Organization ISA ECE 337

17 11/9/11

Translation Lookaside Buffers (TLBs)
Number of TLB entries varies from 8 to 2048.

Typically around 64.

When a TLB miss occurs:

• A trap occurs and an OS routine handles the fault. The instruction is then

restarted.

• The OS routine copies one (or more) page frame(s) from the page table in

memory to one (or more) of the TLB entries.

Therefore, if page is referenced again soon, a TLB hit occurs eliminating the

memory reference for the page frame.

