
CMPE 415 Programmable Logic Devices Fall 2005

Page 1 of 7

Final CMPE 415

Name:

This exam has 23 questions

You must show all of your work -- partial credit may be given to partially correct
answers, while answers with no justification may not receive full points. Use the back of
the exam sheets if you need extra space.

WARNING: KEEP YOUR EYES ON YOUR OWN PAPER. CHEATING OF ANY SORT
WILL CAUSE YOU TO FAIL THIS COURSE.

CMPE 415 Programmable Logic Devices Fall 2005

Page 2 of 7

1) (4 pts) List four of the five major markets that FPGAs are having an impact on, i.e., are
eating into.

2) (4 pts) Briefly describe how mask-programmable devices are “customized” for a par-
ticular application.

3) (4 pts) Identify an important advantage of EPROM/EEPROM/FLASH technologies
over fusible link technologies.

4) (4 pts) Why is it necessary to include two transistors per cell in EEPROM technolo-
gies?

CMPE 415 Programmable Logic Devices Fall 2005

Page 3 of 7

5) (4 pts) Identify one distinguishing feature in each of PROM, PLA and PALs, i.e., how
are they different from each other?

6) (4 pts) Identify which one of the following is more sensible: embedding an FPGA in an
ASIC or embedding an ASIC in an FPGA.

7) (4 pts) Briefly distinguish (one sentence) between MUX-based and LUT-based logic
blocks, i.e., how are they used to implement logic?

8) (4 pts) Name the structure used inside the FPGA to allow the FPGA to be pro-
grammed.

9) (4 pts) Name the attractive feature of “parallel load with FPGA as master” configura-
tion mode over “serial load with FPGA as master”.

CMPE 415 Programmable Logic Devices Fall 2005

Page 4 of 7

10) (4 pts) Name, do NOT describe, four differences in the design philosophy of ASIC
and FPGAs.

11) (4 pts) Of the 10 differences in design philosophy between ASIC and FPGAs dis-
cussed in class, identify 2 that are “free” for the FPGA designer, i.e., he/she does NOT
need to worry about, that are NOT free for the ASIC designer.

12) (4 pts) Briefly describe the two additional steps required in FPGA schematic-level
flows over those required for ASICs at this level.

13) (4 pts) Name the additional step required in ASIC or FPGA flows that is required
when using an HDL-based design flow.

14) (4 pts) Briefly describe two characteristics of gain-based SVP with respect to path
delay and gate size characteristics of the generated netlist.

15) (4 pts) Name the problem that FPGA-based SVPs are designed to handle, i.e., what
would designers like to avoid when making a small change to their design?

CMPE 415 Programmable Logic Devices Fall 2005

Page 5 of 7

16) (5 pts) Structural Verilog code can be explicit or implicit. What keyword does Verilog
use to define implicit structural code and what is its name?

17) (5 pts) Identify the following code as RTL or algorithmic behavioral code.

18) (5 pts) Give a brief description of the meaning of x and z as defined in simulation
within Verilog?

module compare_2_algo (A_lt_B, A_gt_B, A_eq_B, A, B);
input [1:0] A,B;

endmodule

output A_lt_B, A_gt_B, A_eq_B;

always @ (A or B)
begin
A_lt_B = 0; A_gt_B = 0; A_eq_B = 0;

reg A_lt_B, A_gt_B, A_eq_B;

if (A == B) A_eq_B = 1;
else if (A > B) A_gt_B = 1;
else A_lt_B = 1;

end

CMPE 415 Programmable Logic Devices Fall 2005

Page 6 of 7

19) (5 pts) In the following explicit style of FSM, are the outputs synchronous or asyn-
chronous?

20) (5 pts) Give 2 of the 6 “rules of thumb” associated with synthesis of combinational
logic.

21) (5 pts) What variables need to be in the event control expression in order for the fol-
lowing always block to be synthesized as combinational logic.

module FSM_style2 (...)
input ...;
output ...;
parameter size = ...;
reg [size-1 : 0] state, next_state;

assign the_outputs = ... // a function of state and inputs
always @ (state or the_inputs)

always @ (negedge reset or posedge clk)
if (reset == 1’b0) state <= start_state;
else state <= next_state;

endmodule

// decode next_state with case or if stmt

module or_nand_2 (enable, x1, x2, x3, x4, y);
input enable, x1, x2, x3, x4;
output y;

always @(...)

endmodule

y = ~(enable & (x1 | x2) & (x3 | x4));
begin

end

reg y;

CMPE 415 Programmable Logic Devices Fall 2005

Page 7 of 7

22) (5 pts) Is the following code synthesized as combinational or sequential logic? Why?

23) (5 pts) In order to avoid priority structure, the case items in a case structure must be
mutually exclusive. Is this true for the following code?

module mux_latch(y_out, sel_a, sel_b, data_a, data_b);
input sel_a, sel_b, data_a, data_b;
output y_out;
reg y_out;

always @(sel_a or sel_b or data_a or data_b)
case ({sel_a, sel_b})

2’b10: y_out = data_a;
2’b01: y_out = data_b;

endcase
endmodule

module example(Data, Code);
input [7:0] Data;
output [2:0] Code;
reg [2:0] Code;

always @(Data)
begin

if (Data[7]) Code = 7; else
if (Data[6]) Code = 6; else
if (Data[5]) Code = 5; else
if (Data[4]) Code = 4; else
if (Data[3]) Code = 3; else
if (Data[2]) Code = 2; else
if (Data[1]) Code = 1 else
if (Data[0]) Code = 0; else

end
endmodule

Code = 3’bx;

