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Introductory Comments
Perhaps the most difficult part for most students who begin writing behav-
ioral code is to stop thinking about programming and start thinking about
hardware.

In other words, for every piece of behavioral code that you write, you should
have a combinational or sequential circuit in mind that it should synthesize
to.

Do NOT think of an always block as an escape mechanism that allows you to
just write code as you would in C++ to implement an algorithm.

Start by drawing the hardware system that you want to realize FIRST, and
then start the coding process.

This may require some experimentation with smaller circuits.

I know what you are thinking! What’s the point -- why not just write struc-
tural code directly.

You can, of course, but you will be limited in what you can do.
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Introductory Comments
The synthesis tools will enable you to synthesize MUCH more complex sys-
tems, but you’ll need to learn what to expect from them.

Once you’ve practiced with smaller circuits and understand what to expect,
you will gain confidence and learn to appreciate the power of synthesis.

If you follow the coding style you learned in CMSC 201 for C, then you will
certainly become frustrated and eventually give up or end up implementing
a system that doesn’t quite get it right.

The most important exercise that you can do as a novice is write code frag-
ments, synthesize and look at the structural schematic that is generated.

The examples that I have provided below are a starting point.
It is impossible to provide examples for everything that you will end up
doing.

So you should be prepared to use this strategy to analyze your own code
and fragments therein as needed.
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Combinational Logic Synthesis
As we discussed in class, the always statement can be used to specify combi-
national or sequential logic.

If you intend to use it to specify combinational logic, here are some points to
remember.

As you remember from C, when you write conditional statements using, e.g.,
the if stmt, in some cases, you didn’t need to include an else because you
didn’t want anything to happen to the variable under certain conditions.

For combinational logic, there are no storage elements to remember the value
of the variable under those conditions.

Therefore, if you want the synthesis engine to generate combinational logic
then you need to specify explicitly all alternatives in your code.

Otherwise, the synthesis engine will NOT generate what you expect.
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Combinational Logic Synthesis
Here’s a good example: The following code is a behavioral description of a 4-
input AND gate.

This is what we expected.

module and4_comb(y, x_in)
parameter word_length = 4;
input [word_length - 1: 0] x_in;
output y;
reg y;
integer k;

always @ x_in
begin

y = 1;
for (k = 0; k <= word_length -1; k = k + 1)

if ( x_in[k] == 0 )
y = 0;

end
endmodule

Using ISE 9.2, we get
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Combinational Logic Synthesis
However, failing to define both output states causes the following.

The synthesis engine issues a warning indicating that the output y evaluates
to a constant value 0.

This is easy to catch stand alone, but in a larger context, it may be missed.

module and4_comb(y, x_in)
parameter word_length = 4;
input [word_length - 1: 0] x_in;
output y;
reg y;
integer k;

always @ x_in
begin

// COMMENTED OUT y = 1;
for (k = 0; k <= word_length -1; k = k + 1)

if ( x_in[k] == 0 )
begin

y = 0;
end

end
endmodule
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Combinational Logic Synthesis
The golden rule is combinational logic must specify the value of the output
for all values of the input.

Failing to do so, in other cases, can cause the synthesis engine to infer a latch.

module mux_comb( y_out, sel_a, sel_b, data_a, data_b);
input sel_a, sel_b, data_a, data_b;
output y_out;
reg y_out;

always @(sel_a or sel_b or data_a or data_b)
case ({sel_a, sel_b})

2’b10: y_out = data_a;
2’b01: y_out = data_b;

endcase
endmodule

default: y_out = 0; // Correct way for a comb. circuit
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Combinational Logic Synthesis
With the default statement removed, the output is undefined for input combi-
nations 00 and 11.

module mux_latch( y_out, sel_a, sel_b, data_a, data_b);
input sel_a, sel_b, data_a, data_b;
output y_out;
reg y_out;

always @(sel_a or sel_b or data_a or data_b)
case ({sel_a, sel_b})

2’b10: y_out = data_a;
2’b01: y_out = data_b;

endcase
endmodule

// Incorrect, infers a latch with clk driven
// by the inputs (warning is issued)
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Combinational Logic Synthesis
Another important point to remember is that operands that appear on the
righthand side of an assignment MUST NOT appear on the lefthand side.

Combination feedback is not allowed.

For datapath operations, the synthesis tool should be able to recognize when
it is possible to share resources.

module res_share( y_out, sel, data_a, data_b, accum);
input sel, data_a, data_b, accum;
output y_out;
reg y_out;

assign y_out = sel ? data_a + accum: data_a + data_b;
endmodule
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Sequential Logic Synthesis
For sequential logic, there are certain hard fast rules that must always be fol-
lowed in order to guarantee its synthesis.

For example, the event control expression of a cyclic behavior for a sequential
circuit MUST be synchronized to a single edge (posedge or negedge but not
both) of a single clock.

You are allowed to have multiple behaviors with different synchronizing sig-
nals, but all must have the same period (be apart of a single clock domain).

Latch Synthesis
Level-sensitive behavior is characterized by an output that is affected by the
input only while a control signal is asserted.

Otherwise, the input is ignored and the output remains constant.

The synthesis tools infers a latch when it detects a level-sensitive behavior, i.e.,
NO edge constructs, in which a register variable is assigned value in some
threads of activity but not others, e.g., an incomplete if stmt.
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Sequential Logic Synthesis
The synthesis tool identifies a control signal as a signal whose value controls
the branching of the activity flow, e.g., case and if stmts.

A latch is inferred if a path assigns a variable its own value, i.e., if it has self-
feedback, even if a register is assigned value in all activity flows.

A simple way to create a latch:
module latch( data_out, data_in, enable);

input data_in, enable;
output data_out;
reg data_out;

assign data_out = enable ? data_in: data_out;
endmodule
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Sequential Logic Synthesis
A latch with asynchronous set/reset latch, use:
module latch( latch_out, latch_in, set, clear, enable);

input latch_in, set, clear, enable;
output latch_out;
reg latch_out;

always @(enable or set or clear or latch_in)

endmodule

if ( set == 1 )
latch_out = 1’b1;

else if ( clear == 1 )
latch_out = 1’b0;

else if ( enable == 0 )
latch_out = latch_in; // Latch is in transparent mode

else
latch_out = latch_out; // Self-feedback
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Sequential Logic Synthesis
The synthesis engine is not able to recognize the same from the following:

module latch1(latch_out, latch_in, set, clear, enable);
input latch_in, enable, set, clear;
output latch_out;
reg latch_out;
always @(enable or set or clear or latch_in)  // latch_in in activity list.

case ({enable, set, clear})
3’b000: latch_out = latch_in;
3’b110: latch_out = 1’b1;
3’b010: latch_out = 1’b1;
3’b101: latch_out = 1’b0;
3’b001: latch_out = 1’b0;
default: latch_out = latch_out;

endcase
endmodule

// Explicit assignment of residual value.
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Sequential Logic Synthesis
Both of these are equivalent in terms of functionality, but the latter is much
less efficient.

So, you’ll need to pay attention to how you write your code if you want a
minimal or reader-friendly realization.

Registers/Flip-Flops
Any of the following conditions will cause a register variable to synthesize to
a FF (a memory element):

• The register variable is referenced outside the scope of the behavior
• It is referenced within a behavior before it is assigned value
• It is assigned value in only some branches of the activity

A register variable will be synthesized as the output of a FF when its value is
assigned synchronously with the edge of a signal.

Decode control signals first. Last condition in, e.g. an if stmt, are synchro-
nized to the rising edge of clk.
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Sequential Logic Synthesis
A simple example:

module reg1(data_out, data_in, clk, reset);
input data_in, clk, reset;
output data_out;
reg data_out;
always @(posedge clk or posedge reset)

if ( reset == 1’b1 ) data_out <= 1’b0;

endmodule
else data_out <= data_in;
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Sequential Logic Synthesis
A more complex example involving several control signals:

module reg_swap(data_a, data_b, set1, set2, clk);
input set1, set2, clk;
output data_a, data_b;
reg data_a, data_b;
always @(posedge clk)

else

endmodule

begin

if (set1) begin data_a <= 1; data_b <= 0; end
else if (set2) begin data_a <= 0; data_b <= 1; end

end

data_b <= data_a;
data_a <= data_b;
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Sequential Logic Synthesis
Registering Combinational Logic:

If you want to enable the output of combinational logic to be captured in
FFs, make the behavior associated with the combinational logic sensi-
tive to clk.

module reg_and(a, b, c, clk, y);
input a, b, c, clk;
output y;
reg y;

always @(posedge clk)

endmodule

begin

end
y <= a & b & c;
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Sequential Logic Synthesis
Shift Registers and Counters:

Note values of vars on RHS are those before the clk edge while those on
the LHS are the values after the clk edge.

module shift_reg(data_in, data_out, clk, reset);
input data_in, clk, reset;
output data_out;
reg [3:0] data_reg;

always @(negedge reset or posedge clk)
begin

if (reset == 1’b0) data_reg <= 4’b0;

end
endmodule

assign data_out = data_reg[0];

else data_reg <= {data_in, data_reg[3:1]}; //Referenced before
// it is assigned to.

Thicker lines are
4-bit buses

4 copies of register
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Sequential Logic Synthesis
Shift Registers and Counters:
module rip_cnter(clk, toggle, reset, cnt);

input clk, toggle, reset;
output [3:0] cnt;
reg [3:0] cnt;

always @(posedge reset or posedge clk)
if (reset == 1’b1) cnt[0] <= 1’b0;

endmodule

assign c0 = cnt[0];

else if (toggle == 1’b1) cnt[0] <= ~cnt[0];

wire c0, c1, c2;
assign c2 = cnt[2];

always @(posedge reset or negedge c0)
if (reset == 1’b1) cnt[1] <= 1’b0;
else if (toggle == 1’b1) cnt[1] <= ~cnt[1];

... // see text for rest of code.

// Ripple effect to cnt[1]

// Synthesis tool requires a simple variable in
// event control expression -- no bit-select.

assign c1 = cnt[1];

Schematic shows output of FF driving
cnt[0] also drives clk input of FF driving
cnt[1]
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Finite State Machines
Separate behaviors are recommended for defining the state transitions and
next-state logic, b/c it improves readability.

Mealy machines: output can change asynchronously with the clk (depends on
the state AND the input)

Moore machines: output is synchronized with clk (and change in state).

Next state logic

Inputs

Registers

clk

Mealy Moore

Outputs

Output logic

Next state logic

Inputs

Registers

clk

Outputs

Output logic
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Finite State Machines
Separate behaviors are recommended for defining the state transitions and
next-state logic, b/c it improves readability.

Consider a machine designed to synchronously read a serial bit stream of
data and assert an output when it detects 2 successive 0s or 1s.

reset

start_state

0/0 1/0

Output

read_1_zero read_1_one

read_2_zero read_2_one

1/11/0

Input

1/0
0/0

0/00/1

1/0

0/0
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Finite State Machines
The machine is to be active on the rising edge of clk and the input data is syn-
chronized to change on the falling edge of clk.

The output is to assert after two consecutive identical samples of data are
detected and remain asserted as long as the condition is true.

Explicit State Machines
The verilog code enumerates the states and specifies the transitions
between them.

We will implement the state transitions as a cyclic behavior synchro-
nized to clk.

A separate asynchronous behavior will implement the combinational
logic describing next state.

A continuous assignment will be used to generate the output combina-
tionally from the state and input (Mealy).
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Finite State Machines

This machine incorporates an asynchronous reset.

module seq_det_mealy(clk, reset, in_bit, out_bit);
input clk, reset, in_bit;
output out_bit;

reg [2:0] cur_state, next_state;

parameter start_state = 3’b000;
parameter read_1_zero = 3’b001;
parameter read_1_one = 3’b010;
parameter read_2_zero = 3’b011;
parameter read_2_one = 3’b100;

always @(posedge clk or posedge reset)
if (reset == 1) cur_state <= start_state;
else cur_state <= next_state;

// State transition logic
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Finite State Machines

read_1_zero:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_2_zero;

read_2_zero:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_2_zero;

read_1_one:

else if (in_bit == 1) next_state <= read_2_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

read_2_one:

else if (in_bit == 1) next_state <= read_2_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

default: next_state <= start_state;
endcase

always @(cur_state or in_bit)
case (cur_state)

start_state:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

// Asynchronous logic
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Finite State Machines

Synthesized schematic

assign out_bit = ((cur_state == read_2_zero && in_bit == 0) ||
(cur_state == read_2_one && in_bit == 1)) ? 1 : 0;

endmodule
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Finite State Machines
Test bench:

module seq_det_mealy1_tb;

reg clk;

reg reset;

reg in_bit;

wire out_bit;

seq_det_mealy uut

(.clk(clk),.reset(reset),.in_bit(in_bit),.out_bit(out_bit));

initial

   begin

   $monitor($time, "clk = %b reset = %b in_bit = %b out_bit = %b \

      cur_state = % next_state = %h", clk, reset, in_bit, out_bit,

      uut.cur_state[2:0], uut.next_state[2:0]);

   end

always

   #50 clk = ~clk;

initial begin

   clk = 0; reset = 0; in_bit = 0;

// Wait 100 ns for global reset to finish

   #100 reset = 1; #10 reset = 0; #165 in_bit = 1;

end

endmodule
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Finite State Machines
Waveforms from testbench:


