
Programmable Logic Devices Simulation and TestBenches CMPE 415

1 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event-Driven Simulation
Simulation is used to verify the design.

CAD tools incorporate logic-level simulation to reduce simulation com-
plexity and time.

In Verilog, signals are represented as 0 and 1.

However, in reality, signals can be any value inbetween, so Verilog adds x
and z to handle cases where the signal value is ambiguous.

Signal contention and open circuits can introduce ambiguity.

Event driven simulation exploits the fact that most signals are quiescent at
any given point in time.

In event driven simulation, no computational effort is expended on quie-
scient signals, i.e., their values are not recomputed at each time step.

Rather, the simulator waits for an event to occur, i.e., for a signal to undergo a
change in value, and ONLY the values of those signals are recomputed.

Programmable Logic Devices Simulation and TestBenches CMPE 415

2 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event-Driven Simulation
For example, the simulator monitors input A and B of the AND gate.

The falling transition on E causes the highlighted gates to be evaluated.

A
B

C D
If a change to A occurs, the AND gate is

scheduled for execution.
If its output changes, then an event is

scheduled for C, and so on

C
D

E
G

G1

G2

Level 0 Level 1 Level 2 Level 3 Level 4

F

A
B G4

G5

G7

G6I

G3

H

J

G8

G9

G10

0
0

0
0

1

1

1

1

1

Programmable Logic Devices Simulation and TestBenches CMPE 415

3 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event-Driven Simulation
The simulator creates and manages an ordered list of event-times, times at
which events have been scheduled to occur.

An event queue is associated with each event time, that contains the names and
new values of the signals that are about to change.

The event time that is assigned depends on the timing model.

A functional model excludes timing, i.e., no delay is modeled and therefore
all updates for a given input signal change are immediately reflected at
other nodes.

Unit delay simulators give information on the evolution of events, but are not
able to portray the actual timing behavior of the design.

Verilog enables a more accurate timing model by way of delay statements.
For example, delay can be associated with Verilog primitives and continu-
ous assignment stmts, which the simulator uses to schedule events.

Programmable Logic Devices Simulation and TestBenches CMPE 415

4 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event-Driven Simulation
Gates whose inputs change go on the activity list.

Simulation involves evaluating a gate on the activity list.
If output changes, then gates at fanout added to activity list.

Gate delay models the time it takes to charge or discharge the output node,
often referred to as the inertial delay of the gate.

If an input changes value and then changes back again in time less than the
inertial delay, the output of the gate does NOT change.

1

1
d

1/0
g

2

4

2 2

ea

c

b

0/1
f 0/1

1/0/1

0 2 4 6 8
t

t+max
t+0
t+1
t+2

t+3
t+4

c=0
Activity list

d, e

gates driving
these outputs

d=1

Timing wheel

e=0 f, g

g=0

Programmable Logic Devices Simulation and TestBenches CMPE 415

5 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Delay Control Operator
The delay control operator suspends the activity flow within a behavior by
postponing the execution of a procedural statement.

If the ’# delay_value’ proceeds an assignment statement, the actual assignment
is delayed until after the specified time elapses.

This construct is referred to as a blocking delay.
All stmts following a blocked stmt are also suspended.

This works fine for creating waveforms in test benches (to be discussed) but
care must be taken when using blocking delays to model propagation delay.

initial
begin

#0 IN1 = 0; IN2 = 1;
#100 IN3 = 1;
#100 IN4 = 1, IN5 = 1;
#400 IN5 = 0;

end

// Executes at t_sim = 0
// Executes at t_sim = 100
// Executes at t_sim = 200
// Executes at t_sim = 600

//At tsim = 0, IN3, IN4 and IN5 are ’x’

Programmable Logic Devices Simulation and TestBenches CMPE 415

6 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Delay Control Operator
The #5 appearing before the assignment delays BOTH the sampling of a and
b and the assignment to y:

Therefore, y gets old data, i.e., the values of a and b 5 time units after the acti-
vating event.

 Second problem: the event control expression cannot respond to events on a
and b because the simulator remains at #5 y = a | b.

intra-assignment delay can be used to deal with the first problem.
Here, the timing control is placed on the righthand side (in RHS) in an
assignment stmt.

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

#5 y = a | b;
end

endmodule

Programmable Logic Devices Simulation and TestBenches CMPE 415

7 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Delay Control Operator
In the following example, the RHS is evaluated immediately but the assign-
ment doesn’t take place until the designated time has ellapsed.

In particular, a and b are sampled but y is not assigned a new value for 5 more
time units.

This separates referencing and evaluation from the actual assignment.

However, the second problem remains.
i.e., the assignment is blocking, preventing further events occurring on a
and b to be missed.

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

y = #5 a | b;
end

endmodule

Programmable Logic Devices Simulation and TestBenches CMPE 415

8 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Delay Control Operator
The solution is to use a non-blocking assignment with intra-assignment delay.

The ’<=’ indicates a non-blocking assignment.
If a or b change, they are sampled immediately but the actual assignment
to y is delayed for 5 time units (as before).

Control then passes back to the always statement in the same simulation
time step to allow a and b to be monitored again for change.

Further changes, even if they occur before the 5 time units have passed,
cause the assignment to re-execute, scheduling future assignments to y.

This is the correct way to model the behavior of the actual hardware.

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

y <= #5 a | b;
end

endmodule

Programmable Logic Devices Simulation and TestBenches CMPE 415

9 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Delay Control Operator
Non-blocking assignments enable concurrency, like that present in the actual
hardware -- as the following code fragments illustrate.

On the right, all assignments are evaluated concurrently and scheduled.

t a b c d e f
0 x x x x x x
2 x x x x 0 x
3 x x x x 0 1
10 1 x x 1 0 1
12 1 0 x 1 0 1
15 1 0 1 1 0 1

module nb1;
reg a, b, c, d, e, f;
// blocking assignments
initial

begin
a = #10 1;
b = #2 0;
c = #3 1;

end

// non-blocking assignments
initial

begin
d <= #10 1;
e <= #2 0;
f <= #3 1;

end
endmodule

Programmable Logic Devices Simulation and TestBenches CMPE 415

10 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Test Benches
A test bench separates the design of the module from its testing module.

The test bench contains an instantiation of the unit-under-test (UUT) and Ver-
ilog behaviors that:

• Generate the input waveforms that are applied to the UUT (stimulus genera-
tor).

• Monitor the response of the UUT.
• Compare responses with those that are expected and issue messages.

The stimulus generator consists of a set of procedural statements that assign
value to register variables to create wfms on the input ports of the UUT.

preset

clear

Q

Qbar

module nand_latch(Q, Qbar, preset, clear)
output Q, Qbar;
input preset, clear;

endmodule

nand 1 G1(Q, preset, Qbar),
G2(Qbar, clear, Q);

1

1

Programmable Logic Devices Simulation and TestBenches CMPE 415

11 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Test Benches
Variables ps and clr are declared as reg since they will be assigned value.

Verilog provides special variables, e.g., $monitor, $time, $stop to support
simulation.

module test_nand_latch;
reg ps, clr
wire q, qbar;

initial begin
$monitor ($time, "ps = %b clr = %b q = %b qbar = %b", ps, clr, q, qbar);

end

#60 $finish;
endmodule

nand_latch M1 (q, qbar, ps, clr);

initial begin

initial
end

#10 ps = 0; clr = 1;
#10 ps = 1; $stop;
#10 clr = 0;
#10 clr = 1;
#10 ps = 0;

// Only one $monitor task is in effect at a time --
// subsequent calls overwrite the format string.

// Stop and allow user to interact with simulator.
// Type "." to proceed.

// Return control to OS

// TEST BENCH for nand_latch

// Instantiate a copy of nand_latch

Programmable Logic Devices Simulation and TestBenches CMPE 415

12 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Test Benches
initial and always are used to initialize variables and to define wfms.

The #half_cycle introduces 50 units of delay.

The simulation finishes after 10 clock cycles.

module simple_clock_gen (clock)

parameter half_cycle = 50;
parameter max_time = 1000;

output clock;
reg clock;

initial
clock = 0;

always
begin

#half_cycle clock = ~clock;
end

initial
#max_time $finish;

endmodule

50 100 150 200

// Assign at tsim = 0

0

Programmable Logic Devices Simulation and TestBenches CMPE 415

13 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Test Benches: Waveform Generation
Using non-blocking assignments with intra-assignment delay to create a
schedule of assignments to a target register variable.

Note that the reference to i[0] refers to the low order bit of the counter vari-
able, i, used in the for loop.

Draw the waveforms associated with these modules.

module multiple_no_block_1;
reg wave;
reg [2:0] i;

initial begin

end

for (i = 0; i <= 5; i = i+1)
wave <= #(i*10) i[0];

endmodule

module multiple_no_block_2;
reg wave1, wave2;

initial begin

end

#5 wave1 = 0;

endmodule

wave2 = 0;
wave1 <= #5 1;
wave2 <= #10 1;
wave2 <= #20 0;

#10 wave1 = 1;
wave1 <= #5 0;

All RHS are sampled at the same
time, but the value depends on
i (the for loop executes in 0 time).

Programmable Logic Devices Simulation and TestBenches CMPE 415

14 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Test Benches: Waveform Generation
Here, a waveform pair is generated from a reference signal, sig_c.

You should be able to draw the wfms from these descriptions.

module non_block(sig_a, sig_b, sig_c);
reg sig_a, sig_b, sig_c;
initial

begin
sig_a = 0;
sig_b = 1;
sig_c = 0;

end
always sig_c = #5 ~sig_c;
always @ (posedge sig_c)

begin
sig_a <= sig_b;
sig_b <= sig_a;

end
endmodule

// Non-overlapping wfms generated
// (sig_a and sig_b) from a clock signal
// sig_c

Programmable Logic Devices Simulation and TestBenches CMPE 415

15 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

MISC: force ... release
 force ... release is a special form of procedural continuous assignment that can
be used to control registers or nets during simulation.

This construct is not accepted by synthesis engines.

For example:

When force is applied to a net, it remains in effect until a release is executed.

The force ... release stmt overrides other assignments, e.g., from a primitive,
a continuous assignment, etc.

force sig_a = 1;
force sig_b = 1;
force sig_c = 0;
sig_in1 = 0;
#5 sig_in1 = 1;
#5 sig_in1 = 0;
// other code
release sig_a;
release sig_b;
release sig_c;

in1 in2 in3 in4

sig_a sig_b sig_c

sig_in1

A test to sensitive a path

Programmable Logic Devices Simulation and TestBenches CMPE 415

16 (10/2/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

MISC: wait
The wait statement models level-sensitive behavior by suspending activity
flow until the expression becomes TRUE.

If true when evaluated, no suspension occurs.

If false, the simulator suspends the activity thread and sets up a monitor.

For example:

module wait_example(...)
...
always

begin
...
wait (enable) register_a = register_b;

end
endmodule

#10 register_c = register_d;

