
Programmable Logic Devices Verilog Introduction CMPE 415

1 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

EDA
Electronic design automation (EDA) is the practice of using computer-based
software systems to design VLSI circuits.

Many tools exist within EDA -- we focus here on the hardware description lan-
guages (HDL), in particular Verilog.

 HDLs enable designers to write computer-based descriptions of the proper-
ties, signals and functionality of a circuit.

Traditional approach for the designer is to work at the gate or transistor level.

Today, designers capture their designs in software, at higher levels of abstrac-
tion.

This methodology is coupled with synthesis tools to translate and opti-
mize the description of the design.

Synthesis engines map the design to physical parts such as an ASIC or
FPGA.

Programmable Logic Devices Verilog Introduction CMPE 415

2 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

EDA
Despite the powerful features available in such an approach, HDLs have not
been widely accepted because:

• Many designs are of a size and complexity that allow schematic entry to be
used successfully.

• Many engineers lack a working familiarity with HDLs.

Design flow
Design specifications summarize the functional behavior, timing require-
ments, and other relevant attributes including speed, power and area.

Design entry is the process of encapsulating a representation of the
design, i.e., schematic, state transition diagrams, HDL, etc.

Each step in the design flow either:
• Creates a database supporting the design flow
• Verifies that the design meets specific criteria

Programmable Logic Devices Verilog Introduction CMPE 415

3 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Design Flow
A design flow starts with design entry and ends with photomasks or a pro-
gramming file (for FPGAs).

A successful design might require multiple, iterative passes through all or
part of this flow.

Create gate-level desc.

Verify/Simulate

Verify timing

(consider testability)

(generate test patterns)

Create masks

DRC/extract parasitics

Write Verilog
(consider testability)

Verify/Simulate

Synthesize/optimize
gate-level netlist

First design flow Second design flow

Programmable Logic Devices Verilog Introduction CMPE 415

4 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Design Flow
There are several physical realizations of the design in hardware.

Each offers trade-offs with respect to time-to-market, cost, and performance.

NRE cost, process complexity, density, speed, complexity

M
ar

ke
t v

ol
um

e
to

 a
m

or
ti

ze
, t

im
e

to
pr

ot
ot

yp
e

PLDs

FPGAs,
gate arrays

std. cells

full-custom

VLSI course

This course

Programmable Logic Devices Verilog Introduction CMPE 415

5 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Design Entry
As indicated, design entry encapsulates a description of the design in a data-
base that serves subsequent steps in the design flow.

Schematics and HDLs are the two commonly used modes of entry.

Schematic entry focuses on the structural detail of the design.
Advantages: Familiarity of the designer with this visual format
Disadv: Supports only a low to moderate level of circuit complexity.

Almost all CAD tools support this mode of design entry, many with fancy
graphical interfaces and verification tools.

Divide and conquer through hierarchical decomposition is extensively used.

c_out

sum
a
b

Schematic Symbol

a

b

sum

c_out

Programmable Logic Devices Verilog Introduction CMPE 415

6 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Design Entry
A HDL is a programming language with special constructs and semantics to
model, represent, and simulate the function and timing of the hardware.

Variables are used to represent electrical signals.
Their semantics include both a value and time.

This allows the temporal relationship of the signals to be described, generated
and manipulated.

Tools exist that convert the HDL text to schematic automatically.

HDLs allow the designer to describe the design as a structural entity (such as
that required by schematic).

HDLs also allow the designer to describe the design as a behavioral entity,
using procedural code.

This decouples the description of the design from actual physical hard-
ware.

Programmable Logic Devices Verilog Introduction CMPE 415

7 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Structural Verilog
The Verilog HDL counterpart of the schematic shown earlier:

Module Ports can be inout for bidirectional signals

Gates are instantiated in the body of the module.

IMPORTANT: The order of the statements within the module is inconse-
quential -- signal values and assignments are functions of time!

In programming languages such as C, order does matter.

module half_adder(sum, c_out, a, b);
input a, b;
output sum,c_out;

xor(sum, a, b);
nand(c_out_bar, a, b);

endmodule

wire c_out_bar;

not(c_out, c_out_bar);

Module Name Module Ports

Declaration of Port Modes
Declaration of Internal Signal

Instantiation of Primitive Gates

Programmable Logic Devices Verilog Introduction CMPE 415

8 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Verilog
As indicated, Verilog also allows behavioral descriptions of designs:

Here, execution halts at the always statement until clk has a rising edge.

When this occurs, the body executes, which assigns q the value data_in unless
rst is asserted.

Once executed, execution is halted once again at the always statement until
the next event (clk has a rising edge) occurs.

module flip_flop(q, data_in, clk, rst);
input data_in, clk, rst;
output q;

end

reg q;

always @(posedge clk)
begin

endmodule

if (rst == 1) q = 0;
else q = data_in;

Declares q to be a register value,
i.e., it retains its value once
it is assigned between clk edges.
reg is an abstract memory variable

Programmable Logic Devices Verilog Introduction CMPE 415

9 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Verilog
The previous code is event-controlled.

The event control statement (always @...) defines the sensitivity of the behav-
ioral model to external signals.

IMPORTANT: The stmts within the process block execute sequentially, just
like they do within C (subject to any timing control expressions).

Within Verilog, there are 3 types of timing controls:
• Event control
• Delay control
• The wait statement

The first 2 are intuitive, event control suspends execution until an event
occurs, while delay control suspends execution for a specified time.

The wait statement suspends execution until a condition is satisfied (more on
this later).

Programmable Logic Devices Verilog Introduction CMPE 415

10 (10/1/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Verilog
A more complex behavioral model:

The assign statement describes a behavior (addition) that requires several
gates in actual hardware.

The keyword assign and the ’+’ operator provide a shortcut, i.e., they describe
the behavior of the circuit without a physical representation.

The continuous assignment stmt describes implicit combinational logic.

This style of Verilog is referred to as register transfer level (RTL) or data flow
because it represents operations on a data path using operators.

module 4bit_RTL_adder(a, b, c_in, sum, c_out);
output [3:0] sum;
output c_out;
input [3:0] a, b;

assign {c_out, sum} = a + b + c_in;
endmodule

Concatenation operator
input c_in;

Sum operator

