## Step Response

The step response measurement is very useful in our analysis.
From it, we can derive a curve of impedance versus frequency.
Test setup:

Pulse generator repeatedly applies step input to DUT.


Output impedance of step source

Rules of thumb in characterizing the DUT using the step response:

- Resistors display a flat step response, i.e., at time $t=0$, the output rises and remains at a fixed value.



## Step Response

- Capacitors display a rising step response, i.e., at time $t=0$, the output starts rising and later reaches its full value.


- Inductors display a sinking step response, i.e., at time $t=0$, the output rises instantly to its full value and then later decays back toward 0 .


Capacitors and inductors subdivide into ordinary and mutual categories.
Ordinary capacitance and inductance (two-terminal devices) can be a help or hindrance.

Mutual capacitance and inductance usually creates unwanted crosstalk.

## Capacitance

The capacitor is a 2-terminal element in which the branch voltage and current variables are related by integral and differential equations:

$$
v(t)=\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau+v\left(t_{0}\right) \quad \begin{aligned}
& \text { (Valtage on } \\
& \text { cap depends } \\
& \text { on history of } i)
\end{aligned} \quad \text { and } \quad i(t)=C \frac{d v}{d t}
$$

Charge and voltage are related by the linear relationship:

$$
q(t)=C v(t) \xrightarrow{q} \text { slope }=C
$$

Power is negative or positive depending on the value of the term $v(t) d v / d t$ in the following expression

$$
p(t)=C v(t) \frac{d v}{d t}
$$

## Capacitance

But energy (the integral of power) is always positive or zero:

$$
w(t)=\frac{C v^{2}(t)}{2}
$$

Therefore, it's a passive element (like the resistor) but it is non-dissipative (unlike the resistor).
All the energy supplied to the cap. is stored in the electric field.
Note that the voltage appearing across a capacitor must always be a continuous function (voltage steps not allowed -- require an infinite $i$ ).

Current, on the other hand, is allowed to change instantenously.




## Capacitance

The energy stored in the electric field of a capacitor is supplied by the driving circuit.

Since the driving source is a limited source of power, the voltage takes a finite time to build up.

The reluctance of voltage to build up quickly in response to injected power (or decay quickly) is called capacitance.



## Capacitance

Bear in mind that a capacitor behaves like an inductor at high frequencies (unfortunately).

This is due to the mounting leads on capacitors.
This inductance causes the step response to have a tiny pulse (a couple hundred ps) at time 0 , followed by a drop to 0 and then a capacitive ramp.

Note that you will not be able to see this unless your step source rise time is sharp.

At $T_{r}$, you can characterize the circuit element for frequencies up to:

$$
F_{A}=\frac{0.5}{T_{r}}
$$

Reactance on leading edge (to est. distortion in digital wfm by a cap.):

$$
X_{C}=\frac{T_{r}}{\pi C}
$$

## Capacitance Test Gig

A measurement setup ideal for characterizing capacitors:


Note that the resistances are known, so by measuring the rise time of the resulting waveform, the capacitance of the DUT can be computed.

The test gig is dimensioned at 1 square inch to ensure it behaves in a lumped fashion.

The test gig should include a ground plane of 1 square inch.

## Inductance

The inductor is a 2-terminal element in which the branch voltage and current variables are related by integral and differential equations:

$$
i(t)=\frac{1}{L} \int_{t_{0}}^{t} v(\tau) d \tau+i\left(t_{0}\right) \quad \text { and } \quad v(t)=L \frac{d i}{d t}
$$

Flux linkages (in weber-turns) and current are related by the relationship:


Power is negative or positive depending on the value of the term $i(t) d i / d t$ in the following expression

$$
p(t)=i(t) v(t)=i(t) L \frac{d i}{d t}
$$

## Inductance

But energy (the integral of power) is always positive or zero:

$$
w(t)=\frac{L i^{2}(t)}{2}
$$

Therefore, it's a passive element (like the resistor) but it is non-dissipative (unlike the resistor).
All the energy supplied to the ind. is stored in the magnetic field.
Note that the current flowing through an inductor must always be a continuous function (current steps not allowed -- require an infinite $v$ ).

Voltage, on the other hand, is allowed to change instantenously.




## Inductance

The energy stored in the magnetic field of a inductor is supplied by the driving circuit.

Since the driving source is a limited source of power, the current takes a finite time to build up.

The reluctance of current to build up quickly in response to injected power (or decay quickly) is called inductance.


## Inductance Test Gig

A measurement setup ideal for characterizing inductors:


Reactance on leading edge (to est. distortion in digital wfm by an inductive load:

$$
X_{L}=\frac{\pi L}{T_{r}}
$$

## Measuring Inductance

Inductance can be measured in a similar way to capacitance by computing the time, for example, in the response waveform to the $63 \%$ point.

A second method for inductance involves computing the area under the response waveform's curve:

$$
\begin{array}{ll}
\qquad v(t)=L \frac{d i}{d t} \longrightarrow & \int_{0}^{\infty} V_{\mathrm{ind}}(t) d t=L \int_{0}^{\infty} \frac{d I_{\mathrm{ind}}(t)}{\mathrm{dt}} d t \\
& \begin{array}{l}
\infty \\
\\
\text { Inductor acts as a short } \\
\end{array} \int_{0}^{\infty} V_{\mathrm{ind}}(t) d t=L[I(\infty)-I(0)]
\end{array}
$$

circuit at time (infinity) therefore delta $\mathrm{V} / \mathrm{R}_{\mathrm{S}}$ gives the current.

$$
\Delta I=\frac{\Delta V}{R_{S}}
$$

$$
\text { area }=L[I(\infty)-I(0)]
$$

where $\mathrm{R}_{\mathrm{S}}$ and $\Delta \mathrm{V}$ are the open circuit response values (see Example 1.2)

## Mutual Capacitance

Mutual capacitance coupling between two circuits is simply a parasitic capacitor connected between circuit $A$ and circuit $B$.

The coefficient of interaction is in units of farads or amp-seconds/volt.
Mutual capacitance $C_{M}$ injects a current $\mathrm{I}_{\mathrm{M}}$ into circuit $B$ proportional to the rate of change of voltage in circuit $A$ :

$$
I_{M}=C_{M} \frac{d V_{A}}{d t}
$$

This simplification works if:

- The coupled current flowing in $C_{M}$ is much smaller than the primary signal current in circuit $A$, i.e. $\mathrm{C}_{\mathrm{M}}$ does not load circuit $A$.
- The coupled signal voltage in circuit $B$ is small and can be ignored. Therefore, the voltage difference between $A$ and $B$ is just $\mathrm{V}_{\mathrm{A}}$.
- The mutual capacitance represents a large impedance compared to the impedance to ground of circuit $B$.


## Mutual Capacitance

A more accurate model uses the difference in voltages between circuits $A$ and $B$ and the loading effect of $C_{M}$ on both circuits.

When the coupled noise voltage (crosstalk) is less than $10 \%$ of the signal step size (on $A$ ), this approximation is accurate to one decimal place.

Given:

- $C_{M}$ is known.
- The rise time $\mathrm{T}_{\mathrm{r}}$ and voltage step magnitude $\mathrm{V}_{\mathrm{A}}$ are known.
- The impedance in the receiving circuit, $\mathrm{R}_{\mathrm{B}}$, to ground is known. Then crosstalk can be estimated as a fraction of the driving $\mathrm{wfm} \mathrm{V}_{\mathrm{A}}$.

First derive the maximum change in voltage/time of $w f m V_{A}$ :

$$
\frac{d V_{A}}{d t}=\frac{\Delta V}{T_{r}} \quad \text { where } \Delta \mathrm{V} \text { is the step height of } \mathrm{V}_{\mathrm{A}} .
$$

## Mutual Capacitance

Second, compute the mutual capacitive current which flows from circuit $A$ to circuit $B$ using:

$$
I_{M}=C_{M} \frac{\Delta V}{T_{r}} \longleftarrow(\mathrm{dV} / \mathrm{dt})
$$

Finally, multiply the interfering current $\mathrm{I}_{\mathrm{M}}$ by $\mathrm{R}_{\mathrm{B}}$ to find the interfering voltage (divide by $\Delta \mathrm{V}$ to express the result as a fractional interference level):

$$
\text { Crosstalk }=\frac{R_{B} I_{M}}{\Delta V}=\frac{R_{B} C_{M}}{T_{r}} \quad \text { using } \quad \frac{I_{M}}{\Delta V}=\frac{C_{M}}{T_{r}} \text { given above. }
$$

If $C_{M}$ is not known, we can measure it from response wfm.


## Mutual Capacitance

We use the area method here as well.


## Mutual Inductance

Whenever there are two loops of current, this is mutual inductance.
The coefficient of interaction is in units of heneries or volt-seconds/amp.

Mutual inductive coupling between two circuits $A$ and $B$ acts the same as a tiny transformer connecting the circuits.


Mutual inductance is usually more problematic than mutual capactance.

## Mutual Inductance

The mutual inductance $L_{M}$ injects a noise voltage $Y$ into circuit $B$ proportional to the rate of change in current in $A$ :

$$
Y=L_{M} \frac{d I_{A}}{d t}
$$

Once again, this equation is an approximation to the actual coupled noise voltage and is valid under an analogous set of restrictions:

- Induced voltage across $L_{M}$ is much smaller than the signal voltage and $L_{M}$ does not load $A$.
- The coupled signal current in $B$ is smaller than the current in $A\left(\mathrm{I}_{\mathrm{A}}\right)$ and therefore, the small coupled current in $B$ can be ignored.
- Coupled impedance is small compared to impedance to ground of $B$.


Magnetic flux in B is total magnetic field strength of $A$ over loop.

## Mutual Inductance

Note that voltage induced in loop $B$ is proportional to the rate of change of current in loop $A$.

Also note that a magnetic field is a vector quantity, e.g. flipping loop $B$ reverses the polarity of the flux coupling and induced voltage in $B$.

Given:

- $\mathrm{L}_{\mathrm{M}}$ is known.
- The rise time $\mathrm{T}_{\mathrm{r}}$ and voltage step magnitude $\mathrm{V}_{\mathrm{A}}$ are known.
- The impedance in the driving circuit, $\mathrm{R}_{\mathrm{A}}$, to ground is known. Then crosstalk can be estimated as a fraction of the driving wfm $\mathrm{V}_{\mathrm{A}}$.

First derive the maximum change in voltage/time of wfm $\mathrm{V}_{\mathrm{A}}$ :

$$
\frac{d V_{A}}{d t}=\frac{\Delta V}{T_{r}} \quad \text { where } \Delta \mathrm{V} \text { is the step height of } \mathrm{V}_{\mathrm{A}} .
$$

## Mutual Capacitance

Second, assume loop $A$ is resistively damped by $R_{A}$, i.e. current and voltage are proportional to each other.
Then, we can relate current to voltage using some well-defined resistance $R_{A}$ :

$$
\frac{d I_{A}}{d t}=\frac{\Delta V}{R_{A} T_{r}} \quad(\mathrm{~V}=\mathrm{IR})
$$

Next compute the mutual inductive interference $Y$, which appears in $B$ :

$$
Y=L_{M} \frac{\Delta V}{R_{A} T_{r}} \quad \text { from } \quad Y=L_{M} \frac{d I_{A}}{d t}
$$

Finally, divide by $\Delta \mathrm{V}$ to express the result as a fractional interference level:

$$
\text { Crosstalk }=\frac{L_{M}}{R_{A} T_{r}}
$$

