Step Response

The step response measurement is very useful in our analysis. From it, we can derive a curve of impedance versus frequency.

Test setup:

Rules of thumb in characterizing the DUT using the step response:

• Resistors display a flat step response, i.e., at time t = 0, the output rises and remains at a fixed value.

Step Response

• Capacitors display a *rising* step response, i.e., at time t = 0, the output starts rising and later reaches its full value.

• Inductors display a *sinking* step response, i.e., at time t = 0, the output rises instantly to its full value and then later decays back toward 0.

Capacitors and inductors subdivide into *ordinary* and *mutual* categories.

Ordinary capacitance and inductance (two-terminal devices) can be a help or hindrance.

2

Mutual capacitance and inductance usually creates unwanted crosstalk.

The capacitor is a 2-terminal element in which the branch voltage and current variables are related by integral and differential equations:

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau)d\tau + v(t_0)$$
 (Voltage on cap depends on history of *i*) and $i(t) = C\frac{dv}{dt}$

Charge and voltage are related by the linear relationship:

$$q = Cv(t)$$

$$slope = C$$

Power is negative or positive depending on the value of the term v(t)dv/dt in the following expression

$$p(t) = Cv(t)\frac{dv}{dt}$$

But energy (the integral of power) is always positive or zero:

$$w(t) = \frac{Cv^2(t)}{2}$$

Therefore, it's a passive element (like the resistor) but it is **non-dissipative** (unlike the resistor).

All the energy supplied to the cap. is stored in the electric field.

Note that the voltage appearing across a capacitor must always be a continuous function (voltage steps not allowed -- require an infinite *i*).

Current, on the other hand, is allowed to change instantenously.

The energy stored in the electric field of a capacitor is supplied by the driving circuit.

Since the driving source is a limited source of power, the voltage takes a finite time to build up.

The reluctance of voltage to build up quickly in response to injected power (or decay quickly) is called *capacitance*.

Digital Systems

Bear in mind that a capacitor behaves like an *inductor* at high frequencies (unfortunately).

This is due to the mounting leads on capacitors.

This inductance causes the step response to have a tiny pulse (a couple hundred ps) at time 0, followed by a drop to 0 and then a capacitive ramp.

Note that you will not be able to see this unless your step source rise time is sharp.

At $T_{r\prime}$ you can characterize the circuit element for frequencies up to:

$$F_A = \frac{0.5}{T_r}$$

Reactance on leading edge (to est. distortion in digital wfm by a cap.):

$$X_C = \frac{T_r}{\pi C}$$

Capacitance Test Gig

A measurement setup ideal for characterizing capacitors:

Note that the resistances are known, so by measuring the rise time of the resulting waveform, the capacitance of the DUT can be computed.

The test gig is dimensioned at 1 square inch to ensure it behaves in a lumped fashion.

The test gig should include a ground plane of 1 square inch.

Inductance

The inductor is a 2-terminal element in which the branch voltage and current variables are related by integral and differential equations:

$$i(t) = \frac{1}{L} \int_{t_0}^{t} v(\tau) d\tau + i(t_0)$$
 and $v(t) = L \frac{di}{dt}$

Flux linkages (in weber-turns) and current are related by the relationship:

Power is negative or positive depending on the value of the term i(t)di/dt in the following expression

$$p(t) = i(t)v(t) = i(t)L\frac{di}{dt}$$

Inductance

But energy (the integral of power) is always positive or zero:

$$w(t) = \frac{Li^2(t)}{2}$$

Therefore, it's a passive element (like the resistor) but it is **non-dissipative** (unlike the resistor).

All the energy supplied to the ind. is stored in the magnetic field.

Note that the current flowing through an inductor must always be a continuous function (current steps not allowed -- require an infinite v).

Voltage, on the other hand, is allowed to change instantenously.

Inductance

The energy stored in the magnetic field of a inductor is supplied by the driving circuit.

Since the driving source is a limited source of power, the current takes a finite time to build up.

The reluctance of current to build up quickly in response to injected power (or decay quickly) is called *inductance*.

10

Inductance Test Gig

A measurement setup ideal for characterizing inductors:

Reactance on leading edge (to est. distortion in digital wfm by an inductive load:

$$X_L = \frac{\pi L}{T_r}$$

Measuring Inductance

Inductance can be measured in a similar way to capacitance by computing the time, for example, in the response waveform to the 63% point.

A second method for inductance involves computing the area under the response waveform's curve:

$$v(t) = L\frac{di}{dt} \longrightarrow \int_{0}^{\infty} V_{\text{ind}}(t)dt = L\int_{0}^{\infty} \frac{dI_{\text{ind}}(t)}{dt}dt$$

 $\int_{0}^{\infty} V_{\text{ind}}(t)dt = L[I(\infty) - I(0)]$

Inductor acts as a short circuit at time (infinity) therefore delta V/R_S gives the current.

 $\Delta I = \frac{\Delta V}{R_{\rm S}}$

$$area = L[I(\infty) - I(0)]$$

$$L = \left[\frac{area}{\Delta I}\right] = \frac{(area)R_S}{\Delta V}$$

where R_S and ΔV are the open circuit response values (see Example 1.2)

Mutual capacitance coupling between two circuits is simply a parasitic capacitor connected between circuit *A* and circuit *B*.

The coefficient of interaction is in units of farads or amp-seconds/volt.

Mutual capacitance C_M injects a current I_M into circuit B proportional to the rate of change of voltage in circuit A:

$$I_M = C_M \frac{dV_A}{dt}$$

This simplification works if:

- The coupled current flowing in C_M is much smaller than the primary signal current in circuit A, i.e. C_M does not load circuit A.
- The coupled **signal** voltage in circuit B is small and can be ignored. Therefore, the voltage difference between A and B is just V_A .
- The mutual capacitance represents a large impedance compared to the impedance to ground of circuit *B*.

A more accurate model uses the **difference** in voltages between circuits A and B and the loading effect of C_M on both circuits.

When the coupled noise voltage (crosstalk) is less than 10% of the signal step size (on A), this approximation is accurate to one decimal place.

Given:

- C_M is known.
- The rise time T_r and voltage step magnitude V_A are known.
- The impedance in the receiving circuit, R_B, to ground is known.

Then *crosstalk* can be estimated as a fraction of the driving wfm V_A .

First derive the maximum change in voltage/time of wfm V_A :

$$\frac{dV_A}{dt} = \frac{\Delta V}{T_r}$$
 where ΔV is the step height of V_A .

Second, compute the mutual capacitive current which flows from circuit *A* to circuit *B* using:

$$I_M = C_M \frac{\Delta V}{T_r} - (dV/dt)$$

Finally, multiply the interfering current I_M by R_B to find the interfering voltage (divide by ΔV to express the result as a fractional interference level):

Crosstalk =
$$\frac{R_B I_M}{\Delta V} = \frac{R_B C_M}{T_r}$$
 using $\frac{I_M}{\Delta V} = \frac{C_M}{T_r}$ given above.

If C_M is not known, we can measure it from response wfm.

We use the *area* method here as well.

integrated current =
$$\frac{area}{R_B}$$
 \longrightarrow $C_M = \frac{area}{R_B\Delta V}$ (Q=CV)

We measure area of voltage wfm.

then Crosstalk =
$$\frac{R_B C_M}{T_r}$$

Mutual Inductance

Whenever there are two loops of current, this is *mutual inductance*.

The coefficient of interaction is in units of heneries or **volt-seconds/amp**.

Mutual inductive coupling between two circuits *A* and *B* acts the same as a tiny transformer connecting the circuits.

Mutual inductance is usually more problematic than mutual capactance.

Mutual Inductance

The mutual inductance L_M injects a noise voltage Y into circuit B proportional to the rate of change in current in A:

$$Y = L_M \frac{dI_A}{dt}$$

Once again, this equation is an approximation to the actual coupled noise voltage and is valid under an analogous set of restrictions:

- Induced voltage across L_M is much smaller than the signal voltage and L_M does not load A.
- The coupled signal current in B is smaller than the current in A (I_A) and therefore, the small coupled current in B can be ignored.
- Coupled impedance is small compared to impedance to ground of *B*.

Mutual Inductance

Note that voltage induced in loop *B* is proportional to the **rate of change** of current in loop *A*.

Also note that a magnetic field is a vector quantity, e.g. flipping loop *B* reverses the polarity of the flux coupling and induced voltage in *B*.

Given:

- L_M is known.
- The rise time T_r and voltage step magnitude V_A are known.
- The impedance in the *driving* circuit, R_A , to ground is known.

Then *crosstalk* can be estimated as a fraction of the driving wfm V_A .

First derive the maximum change in voltage/time of wfm V_A :

$$\frac{dV_A}{dt} = \frac{\Delta V}{T_r}$$
 where ΔV is the step height of V_A .

Second, assume loop A is resistively damped by R_A , i.e. current and voltage are proportional to each other.

Then, we can relate current to voltage using some well-defined resistance R_A:

$$\frac{dI_A}{dt} = \frac{\Delta V}{R_A T_r}$$
 (V=IR)

Next compute the mutual inductive interference *Y*, which appears in *B*:

$$Y = L_M \frac{\Delta V}{R_A T_r}$$
 from $Y = L_M \frac{dI_A}{dt}$

Finally, divide by ΔV to express the result as a fractional interference level:

Crosstalk =
$$\frac{L_M}{R_A T_r}$$