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Telegrapher’s Equations for Transmission Lines
Telegrapher’s equations accurately model the propagation of electrical cur-
rents and voltages provided:

• There is a well-defined uniform path for flow of both the signal and return
current.

• The conductors are closely spaced in comparison to the wavelength of the
signals conveyed.

Assumes the signal and return conductors are insulated from each other,
have a uniform cross section along their entire length and are long com-
pared to the spacing.

The equations assume the transmission line may be modeled as a succession
of small, independent elements, each with a transverse-electric-and-mag-
netic (TEM) wave configuration

Lines of electric and magnetic flux are confined to a flat, perpendicular
plane to the signal flow -- no forward or backward component.

Each element represents a very short length of the line.
Therefore, it’s performance is simple to describe.
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Telegrapher’s Equations for Transmission Lines
The telegrapher’s equations mathematically model the complete line as an
infinite cascade of these short elements.

Each element is modeled as:
• An impedance z in series with the signal-and-return current.
• An admittance y shunting the signal conductor to the return conductor.

Impedance z consists of the series resistance of the signal and return conduc-
tors and inductance.

Admittance y consists of parasitic capacitance between signal and return con-
ductors, and any DC leakage through the dielectric insulation.
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Telegrapher’s Equations for Transmission Lines
The series impedance and shunt admittance are defined in units of ohms-per-
unit-length and Sieman-per-unit-length, and vary with frequency.

Kirchoff’s current law assumes that for lumped circuit elements, the sum of
the current into and out of a device is zero.

No individual device stores current.

This holds for the two conductors crossing the divider labeled Cut Set A, i.e.,
the currents are equal in magnitude and opposite in direction.

Note that displacement current caused by external EM fields was ignored
by Kirchoff.

He used the term lumped-element to exclude the presence of stray electro-
magnetic fields -- current flows by direct transport of charged particles.

We can ignore it here too because of the TEM assumption, i.e., TEM
propagation precludes direct EM coupling (leapfrogging) between
stages.



Digital Systems Transmission Lines II CMPE 650

4 (3/18/08)UMBCU  M  B  C

U
N

IV
E

R
SI

T
Y

  O
F 

 M
ARYLAND  BALTIM

O
R

E
  C

O
U

N
TY

1 9 6 6

Characteristic Impedance of Transmission Lines
The telegrapher’s discrete equivalent circuit model

The series impedance z (R and L) and shunt admittance y (G and C) are per
unit length of the transmission line (1 meter in our case).

We will derive the characteristic impedance, ZC(ω), for the transmission line.

ZC is the ratio of voltage to current by a signal traveling in one direction

along the transmission line (it’s equal to the input impedance Zin).

Bear in mind that signal reflections cause signals to flow in both direc-
tions, in which case Zin will not equal ZC.
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Characteristic Impedance of Transmission Lines
You can infer ZC from measurements of Zin under certain assumptions.

A time-domain reflectometer (TDR) is typically used to measure ZC.

Here, the rise and fall times of the measurement setup complete well before
one round-trip delay of the transmission line.

The observed signal using the probe will reach a steady-state value a before
the arrival of the reflection.

Trace under test

A 50-Ω step source injects open-circuit

High

probe

Flat part of
step response

impedance

First reflection
from far end

a

voltage of amplitude v

ZC ZS
a v⁄

1 a v⁄–
------------------ 

 =
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Characteristic Impedance of Transmission Lines
Here, ZS is the source impedance, v is the open-circuit amplitude of the

source and a is the steady-state value of the measured response.

Note the ZC may change as a function of frequency.

In this case, the step-response waveform will not be flat, and it will be
difficult to calculate ZC

Fortunately, impedance changes relatively slowly for most transmission
lines (over the relevant frequency range).

To derive ZC mathematically, write z and y as

Consider the input impedance of an infinite chain of cascaded blocks.
Adding one more block to the front of the chain won’t change the input
impedance, ZC of the whole structure.

z jωL R+=
y jωC G+=
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Characteristic Impedance of Transmission Lines
Mathematically, the addition involves first combining the shunt admittance y
in parallel with ZC and then adding the series impedance z.

Multiplying both sides by (1+yZC)

This expresses the input impedance of an infinite chain of discrete lumped-
element blocks.

This only approximates the behavior of a continuous transmission line.

It works better and better as the block size becomes smaller, in the limit,
length becomes zero and models the transmission line perfectly.

Z̃C z
1

1

Z̃C
------- y+
-----------------+=

Z̃C 1 yZ̃C+( ) z 1 yZ̃C+( ) Z̃C+=

yZ̃C
2

z zyZ̃C+= Cancel the two ZC terms.

ZC
˜ z

y
-- zZ̃C+= Divide both sides by y and take sqrt
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Characteristic Impedance of Transmission Lines
Splitting each block into a cascade of n blocks, changes the values of R, L, G
and C within each block to new values R/n, L/n, etc.

This modifies z and y as z/n and y/n

Substituting for z and y

The value of ZC varies significantly with frequency.

In particular, G hovers near zero in modern transmission lines and R changes
noticeably with frequency.

Z̃C
z n⁄
y n⁄
---------

z
n
--- Z̃C+

n ∞→
lim= Right-hand term goes to zero

Z̃C
z
y
--=

ZC ω( ) jωL R+
jωC G+
----------------------=
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Characteristic Impedance of Transmission Lines
At high frequencies, the terms R and G are overwhelmed by jωL and jωC,
respectively.

Here, impedance remains constant (reaches a plateau).

This feature is of great value for high-speed digital circuits since it makes it
possible to terminate transmission lines with a single resistor.

The value of the characteristic impedance at the plateau is called Z0

Note that for VERY high frequencies, this does not hold because the circuit
becomes overwhelmed with multiple non-TEM modes of propagation.

Also known as waveguide modes.

Therefore, this expression is bound by frequency on both ends.
More on this later...

Z0 ZC ω( )
ω ∞→

lim L
C
----= =

∆
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Propagation Coefficient of Transmission Lines
Signals propagating along a transmission line are attenuated by a certain fac-
tor H as they pass through each unit length of the line.

The signal amplitude decays exponentially with distance.

The per-unit-length attenuation factor H is called the propagation function
of the transmission line, and it varies with frequency, e.g., H(ω).

Let H(ω) represent the curve of attenuation vs. frequency ω in a unit-length
segment, and H(ω, l) the curve for a line of length l.

An exponential relationship describes the relationship

The complex logarithm of H(ω) is appropriate for exponentials because the
response scales linearly with l.

H ω l,( ) H ω( )[ ]l
=

γ ω( ) H ω( )ln–=∆

H ω( ) e
γ ω( )–

=

Negative indicates attenuating

H ω l,( ) e
lγ ω( )–

=
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Propagation Coefficient of Transmission Lines
The negative natural logarithm of the per-unit-length propagation function H is
called the propagation coefficient.

Units are in complex nepers per meter.

We use α and β to represent the real and imaginary parts as

α is expressed in units of nepers per unit length.
An attenuation of 1 neper per unit length (α = 1) equals -8.6858896 dB of
gain per unit length

So a value of α = 1 scales a signal by 1/e = 0.367879 as it passes through
each unit length of the transmission line.

α ω( ) Re γ ω( )[ ] Re H ω( )( )ln–[ ]= =∆

β ω( ) Im γ ω( )[ ] Im H ω( )( )ln–[ ]= =∆
Attenuation induced by H

Phase delay

20
1
e
--- 

 log 8.6858896 dB–=
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Propagation Coefficient of Transmission Lines
β is expressed in units of radians per unit length.

A phase delay of one radian per unit length (β = 1), equals -57.295779
degrees of phase shift per unit length.

Remember, α, β and γ all vary with frequency, even if not shown with their
frequency arguments.

Alternative representation of α and β

Bringing l back, yields

Important point to remember is that signals propagating on a transmission
line decay exponentially with distance.

H ω( ) e
α–

=

H ω( )∠ β–=

H ω l,( ) e
lγ ω( )–

e
l α jβ+( )–

= =
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Relating Propagation Coefficient with Transmission Line Parameters
Adding one unit-size discrete transmission block to the head of a transmis-
sion line with input impedance ZC.

Define z’ as the impedance looking to the right of line A.

The transmission coefficient is defined by the resistor-divider theorem.

Where z’ is the parallel combination of admittance y and impedance ZC.

z

y ZC

H̃

line A z’

ZC represents the input
impedance of a continuous
transmission line.

H̃
z′

z z′+
------------= with ZC

z
y
--=
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Relating Propagation Coefficient with Transmission Line Parameters
Substituting

This expresses the transfer function of one discrete block of unit size.

Splitting the unit sized block into a succession of n blocks, each of length 1/n
and taking the limit

The combined response of cascade of n blocks equals the response of an
individual block of size 1/n raised to the nth power.

H̃

1

y y z⁄+
----------------------

z
1

y y z⁄+
----------------------+

------------------------------- 1

zy zy 1+ +
------------------------------= = Multiply left by y y z⁄+( )

H̃
1

z n⁄( ) y n⁄( ) z n⁄( ) y n⁄( ) 1+ +
------------------------------------------------------------------------------

n

n ∞→
lim=

H̃
zy n⁄ zy+

n
---------------------------- 1+

n–

n ∞→
lim=
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Relating Propagation Coefficient with Transmission Line Parameters
Using the fact that

But zy/n goes to zero, so only the right term of a survives.

Finally, substituting for y and z

The telegrapher’s equation predicts the amplitude and phase response for a
single mode of propagation on a transmission line given R, L, G and C

a n⁄( ) 1+[ ] n–

n ∞→
lim e

a–
= where a zy n⁄( ) zy+=

H e
zy–

= and therefore, γ zy=

γ jωL R+( ) jωC G+( )= Propagation coefficient

H ω l,( ) e
l jωL R+( ) jωC G+( )–

=
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Lossless Transmission Line
We indicated earlier (ideal) lossless transmission lines propagate signals with
no distortion or attenuation.

This requires R = G = 0, yielding

The real and imaginary parts of γ give the attenuation in units of nepers/m
and phase delay in units of rad/m, respectively.

For a unit length of an ideal transmission line, the transfer function is a sim-
ple linear-phase delay

Note the real part of propagation coefficient is zero, i.e., no loss, while
the imaginary part is a constant times ω.

ZC
jωC
jωL
----------- L

C
----= = (derived earlier)

γ ω( ) jωL( ) jωC( ) jω LC= = (assumed earlier)

H jω( ) e
jω LC–

=
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Lossless Transmission Line
The delay per unit length (and velocity) equals

Note if L and C are given in H/in. and L/in., then delay is in s/in. Scale

appropriately, e.g., by 10-12 to get in ps/in.

Also, we talked about propagation velocity in the introduction slide set,
where we indicated that it depended on the dielectric.

The general form of the relationship is given by

Since most dielectric insulating materials are non-magnetic, µr = 1.

delay LC=

velocity 1

LC
------------=

(This is the assumption we started with last
slide set - EM theory...)

v
c

εrµr

---------------= εr equal to the permittivity (dielectric constant)
µr equal to the permeability

c is the velocity of light in a vacuum
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Lossless Transmission Line
Given our new expression, then the following must hold

This indicates that for a given transmission line configuration (with a con-
stant ε), changing L or C necessarily changes the other variable.

For example, if a stripline trace is widened, C increases and the L decreases,
i.e., the product remains constant.

Current flow/behavior of a pulse traveling down a transmission line

c

εrµr

--------------- 1

LC
------------=

direction of
propagation

Caps discharging
at trailing edge

Caps charging
at leading edge


