Skin-Effect Region

In the skin-effect region, the internal inductance of the conductors becomes significant compared to the DC resistance.

ω_{δ} delineates the start of the region where the real part of the skin-effect resistance, $R_{A C}$, equals the $D C$ resistance, $R_{D C}$.

Skin-Effect Region

Recalling from previous discussions

$$
R_{D C}=\frac{k_{a} \rho}{a} \quad \operatorname{Re}\left[R_{A C}\right]=\frac{k_{p} k_{r} \sqrt{\omega \mu}}{p \sqrt{2 \sigma}}
$$

ω_{δ} is given by

$$
\omega_{\delta}=\omega_{0}\left(\frac{R_{D C}}{R_{0}}\right)^{2}
$$

Here, ω_{0} is a frequency well into the skin-effect region and R_{0} is the value of $R_{A C}$ at that frequency.

In skin-effect mode, the characteristic impedance remains fairly flat but the
line attenuation in dB varies in proportion to the square root of frequency.
Characteristic impedance is given by

$$
Z_{C}=\sqrt{\frac{j \omega L_{0}+R(\omega)}{j \omega C}}
$$

Skin-Effect Characteristic Impedance

The term L_{0} refers to the external inductance of the line, since internal inductance is accounted for in $R(\omega)$.

External inductance is the value of series inductance assuming that current rides on the surface without penetrating the wire.

As you proceed to higher frequencies above ω_{δ}, the contribution of $R(\omega)$ becomes negligable, leaving

$$
Z_{0} \stackrel{\Delta}{=} \lim _{\omega \rightarrow \infty} \sqrt{\frac{j \omega L_{0}+R(\omega)}{j \omega C}}=\sqrt{\frac{L_{0}}{C}}
$$

This indicates that although $R(\omega)$ grows in proportion to the square root of frequency, $j \omega L_{0}$ grows more quickly.

Therefore, once past the cross-over $\omega_{L C}$ (remember, this is where the inductance impedance equals the DC resistance), $R(\omega)$ diminishes in importance.

Skin-Effect Propagation Coefficient

Because the skin-effect onset is so close to the LC-mode onset, the flat region for the real part is very small.

PCB trace

As indicated, after ω_{δ}, attenuation (in dB) increases proportional to the square root of frequency.

The decoupling of phase and attenuation enable the construction of a line with an enormous phase delay and yet very low attenuation.

Skin-Effect Propagation Coefficient

Propagation function assuming operation at a frequency well in excess of ω_{δ} so that $R_{A C} \gg R_{D C}$

$$
\gamma(\omega)=\sqrt{\left(j \omega L_{0}+R_{A C}\right)(j \omega C)}
$$

Factoring out common $j \omega L_{0}$ and $j \omega C$ terms

$$
\gamma(\omega)=\sqrt{\left(j \omega L_{0}\right)(j \omega C)} \sqrt{1+\frac{R_{A C}}{j \omega L}}
$$

Assuming $\omega \gg \omega_{\mathrm{LC}}$ so that $\left|j \omega \mathrm{~L}_{0}\right| \gg\left|\mathrm{R}_{\mathrm{AC}}\right|$

$$
\gamma(\omega)=\sqrt{\left(j \omega L_{0}\right)(j \omega C)}\left(1+\frac{1}{2} \frac{R_{A C}}{j \omega L_{0}}\right)
$$

Distributing

$$
\gamma(\omega)=\sqrt{\left(j \omega L_{0}\right)(j \omega C)}+\sqrt{\left(j \omega L_{0}\right)(j \omega C)} \frac{1}{2} \frac{R_{A C}}{j \omega L_{0}}
$$

Skin-Effect Propagation Coefficient

Combining and substituting for characteristic impedance

$$
\gamma(\omega)=\sqrt{\left(j \omega L_{0}\right)(j \omega C)}+\frac{1}{2} \frac{R_{A C}}{Z_{0}}
$$

Factoring out $j \omega$ on the left and substituting expression for R_{AC} described earlier

$$
\gamma(\omega)=j \omega \sqrt{L_{0} C}+\frac{(1+j)}{2} \frac{R_{0}}{Z_{0}} \sqrt{\frac{\omega}{\omega_{0}}}
$$

Like the LC region, the first term indicates linear phase and represent the bulk transport delay.

$$
t_{p} \triangleq \frac{1}{v_{0}}=\sqrt{L_{0} C} \mathrm{~s} / \mathrm{m}
$$

The second term is a low-pass filter whose attenuation in dB grows proportional to the $\operatorname{sqrt}(f)$.

Skin-Effect Propagation Coefficient

Similar to the LC region, the skin-effect loss coefficient can be defined

$$
\alpha_{r} \triangleq \operatorname{Re}[\gamma(\omega)]=\frac{1}{2} \frac{R_{0}}{Z_{0}} \sqrt{\frac{\omega}{\omega_{0}}} \text { neper } / \mathrm{m}=4.34 \frac{R_{0}}{Z_{0}} \sqrt{\frac{\omega}{\omega_{0}}} \mathrm{~dB} / \mathrm{m}
$$

The low-pass filtering action will slur the rising edge of the step response, adding slew.

$$
|H(\omega, l)|=e^{-l \frac{1}{2} \frac{R_{0}}{Z_{0}} \sqrt{\frac{\omega}{\omega_{0}}}}
$$

Here again, doubling length, doubles the signal loss.
However, here signal loss is also frequency dependent, doubling the frequency multiplies the loss by the sqrt(2).

The termination approaches discussed with reference to the LC region work here as well (and in the dielectric-loss-limited region).

This is true because all three regions share the same asymptotic high-frequency value of characteristic impedance Z_{0}.

Dielectric-Loss-Limited Region

Dielectric-loss increases the slope of the $\operatorname{Re}(\gamma)$

PCB trace

It is common in PCB problems to see skin-effect losses AND dielectric losses.
Waveguide-dispersion region begins when the frequency of the signal approaches the dimensions of your conductor.

For a stripline, the critical dimension is the spacing between the planes.
Strange modes appear, severe ringing occurs under perfect termination.

Example

Specs

- Length $l=0.6 \mathrm{~m}$ (23.6 in.) (backplane application)
- Conductor parameters: $\mathrm{w}=152 \mu \mathrm{~m}(6 \mathrm{mil}), t=17.4 \mu \mathrm{~m}(1 / 2 \mathrm{oz} . \mathrm{Cu})$, perimeter $p=2(w+t)=339 \mu \mathrm{~m}(13.35 \mathrm{mil})$
- Conductivity of signal conductor $\sigma=5.98 \times 10^{7} \mathrm{~S} / \mathrm{m}$
- Specification frequency for AC parameters: $\omega_{0}=2 \pi \times 10^{9}$
- Characteristic impedance at $\omega_{0}: \mathrm{Z}_{0}=100 \Omega$
- Effective dielectric constant $\varepsilon_{\mathrm{R}}=4.3$
- Effective loss tangent for FR-4 dielectric: $\tan \theta_{0}=0.025$
- Proximity factor $k_{p}=3.2$

Computed values

- Propagation velocity above RC region

$$
v_{0}=\frac{c}{\sqrt{\varepsilon_{R}}}=1.4457 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad t_{p}=175.7 \mathrm{ps} / \mathrm{in} .
$$

Example

- Differential inductance per meter

$$
L=\frac{Z_{0}}{v_{0}}=691 \mathrm{nH} / \mathrm{m}
$$

- Differential capacitance per meter

$$
C=\frac{1}{Z_{0} v_{0}}=69.1 \mathrm{pF} / \mathrm{m}
$$

- DC resistance

$$
R_{D C}=\frac{2}{(\sigma \mathrm{w} t)}=12.64 \Omega / \mathrm{m}
$$

- AC resistance

$$
R_{0}=\frac{k_{p}}{p} \sqrt{\frac{\omega_{0} \mu}{2 \sigma}}=76.74 \Omega / \mathrm{m}
$$

Example

Lumped-element region
critical length $=\left(\frac{0.25}{R_{D C}}\right) \sqrt{\frac{L}{C}}=1.97 \mathrm{~m}$
The trace length of $l=0.6 \mathrm{~m}$ falls short of the critical length, so we move from lumped-element directly to LC , skipping the RC region.

Other region transitions
Note: ω values multiplied by $1 /(2 \pi)$

$$
\omega_{L C}=\left(\frac{\Delta}{l}\right) \sqrt{L C}=9.58 \mathrm{MHz} \quad \text { LC Region }
$$

$\omega_{\delta}=\omega_{0}\left(\frac{R_{D C}}{R_{0}}\right)^{2}=27.1 \mathrm{MHz} \quad$ Skin-effect
$\omega_{\theta}=\frac{1}{\omega_{0}}\left[\frac{\left(v_{0} R_{0}\right)}{Z_{0} \tan \theta_{0}}\right]^{2}=498 \mathrm{MHz} \quad$ Dielectric (haven't covered)

