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cynicism. Too many of us believe
breaking RSA is at least as hard as fac-
toring when it’s the other way
around: breaking RSA is no harder
than factoring, (and it might even be
easier). Furthermore, when design-
ing security protocols and systems
that use these properties, we depend
too often on fairy dust: critical prop-
erties that we uncritically assume to
be unassailable.

One of these critical assumptions
is that secrets remain secret. This as-
sumption underlies designs that
make basic use of cryptography, such
as an e-commerce server armed with
an SSL private key, a user’s desktop
mail client equipped with S/MIME
private keys for signed and encrypted
email, or even a simple identity card
that electronically authorizes its
holder to receive some service, such
as dormitory or lab access.

We design complex security ar-
chitectures that begin with the as-
sumption that if an entity uses a par-
ticular secret in a certain way, then
that entity must be authentic: Only
the SSL server www.foo.bar should
be using the www.foo.bar’s private
key in an SSL handshake; only Alice’s
email client should sign with Alice’s
private key. But making this assump-
tion hold in the real world requires

that the actual device that is the
server or the mail client store and use
the private key, without revealing it
to adversaries.

More esoteric architectures use
“trustable” entities in attempts to build
secure protocols for problems associ-
ated with multiple parties and conflicts
of interest. For example, flexible elec-
tronic auctions might be made secure
by having each party use a private
channel to inject a bidding strategy
into a trusted mediator, which then
plays these strategies against each other
to reveal the highest bid. Practical pri-
vate information retrieval might re-
quire that a small trusted component
participate in the shuffling.

For such applications, the trusted
entity building block starts by assum-
ing a secure coprocessor platform—and
architectures for secure coprocessors
usually start from the assumption that
the hardware ensures that critical pri-
vate keys remain inaccessible to any-
one except a well-defined computa-
tional entity within an untampered
platform. In particular, the machine’s
owner, with direct access to the
hardware, should not be able to get
the keys—otherwise, the auctioneer
can cheat, and the private informa-
tion server can spy on the private
queries. Indeed, the “trustability” of

these trusted third parties critically
depends on secrets remaining secret.

Thus, on many levels, it all comes
down to keeping secrets. When de-
signing and deploying security archi-
tectures and systems, it’s easy to think
about many other things: protocols,
algorithms, key lengths, interoper-
ability with current software, maybe
even the user interface. But, at the
foundation, something needs to
store and use secrets. This storage and
usage of secrets needs to be instanti-
ated in the real world, as devices and
computational processes. This jump
from concept to reality introduces
threats that designers can easily over-
look. In this article, we look at some
of these issues.

Storing secrets
To begin, how do we securely store
secrets in a device? Storing them in a
general-purpose computing envi-
ronment is loaded with issues. It is
risky to depend on a general-purpose
operating system to protect an appli-
cation’s memory, given the historical
tendency of OSs—particularly those
highly integrated with desktop
applications—to provide many av-
enues of access for malicious code.
What does the OS do when it re-
claims a page frame, or a disk block?
Protection through careful coding
also might not work, as CryptLib ar-
chitect Peter Gutmann (http://
online.securityfocus.com/archive/8
2/297827) recently pointed out, be-
cause common development com-
pilers can easily optimize away a care-
ful programmer’s attempt to clear
vulnerable memory. Further, should
adversaries have the opportunity to
wander through memory, they can
clearly distinguish cryptographic keys
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as byte strings with significantly
higher entropy. Adi Shamir and
Nicko van Someren pointed this out
in a paper presented at the Financial
Cryptography Conference in 1999.

Alternatively, instead of a gen-
eral-purpose machine, we should
use a specialized device to hide our
secrets. In the 1990s, we witnessed
the merging of several such device
families: independent personal tokens
that users (or other mobile entities)
can carry with them; cryptographic ac-
celerators to improve performance by
offloading cryptographic computa-
tion from a host; and secure coproces-
sors to improve security by offload-
ing sensitive computation from a
host. My own exposure to the need
for devices that actually keep secrets
at a high level of assurance came
from many years of designing appli-
cations and architectures for secure
coprocessors. (For a thorough over-
view of architecture and applications
of secure coprocessing, see www.
research.ibm.com/secure_systems/
scop.htm).

Unfortunately, boundaries among
specialized devices blurred because of
overlapping requirements: personal
tokens needed to be secure against
thieves, or perhaps the users them-
selves; coprocessors and tokens ended
up requiring cryptography; and accel-

erators needed physical security and
programmability. (Of course, putting
a general-purpose computational en-
vironment within an armored box re-
introduces the general-purpose issues
already discussed. As Gutmann would
say, “lather, rinse, repeat.”)

Besides, if we’re hiding secrets in
physical devices, how easy is it to just
open them up and take a look? Way
back in 1996, Ross Anderson and
Markus Kuhn1 showed how easy it
was to explore single-chip devices
such as smart cards. Exploitable
weaknesses included UV radiation to
return chips to a “factory mode”
where secrets are accessible; fuming
nitric acid to remove potting com-
pounds but not the electronics; mi-
croprobes and laser cutters; and fo-
cused ion beams to modify circuits.

Steve Weingart,2 a longtime hard-
ware security architect and my occa-
sional collaborator at IBM, followed
up with a longer laundry list of attacks
from his own experience. These ex-
tend to larger devices with more
elaborate physical protections that try
to zeroize sensitive memory before
adversaries can reach it.

In addition to various probing ap-
proaches, careful machining (includ-
ing using tools as mundane as sand,
water, and hands) can be quite effec-
tive in removing barriers without

triggering zeroization. Shaped-
charge explosives can create plasma
lances to separate sensitive memory
from its destruction circuitry before
the latter can do its work.

Even if the physical protections
work, environmental factors such as
extremely cold temperatures and ra-
diation can cause SRAM to imprint
and safely retain its secrets for an ad-
versary to inspect after an attack. Even
long-term storage of the same bits in
SRAM can cause such imprinting.

Anderson and Kuhn continue
with their work; a recent result in-
volves using flash bulbs and a micro-
scope to probe smart card electroni-
cally erasable programmable read-
only memory.3 Other ongoing efforts
in this spirit include penetrating phys-
ical protections in the XBox gaming
device (www.xenatera.com/bunnie/
proj/anatak/xboxmod.html). Wein-
gart’s work, however, focused pri-
marily on defense (as we will discuss
shortly). These researchers remain
active in the area.

Using secrets
Even if we could hide a secret effec-
tively, our device must occasionally
perform operations with it. Using a
secret is not a clean, abstract process;
it must occur in real physical and
computational environments. An
adversary can observe and manipu-
late these environments with surpris-
ing effectiveness.

For a classic example of this ap-
proach, let’s look back to password
checking in the Tenex operating sys-
tem, an early 1970s timesharing sys-
tem for the PDP-10. At first glance,
the number of attempts necessary to
guess a secret password is exponential
to the password’s length. Tenex made
it much easier to gain access because
it checked a guess one character at
time, and stopped at the first mis-
match. By lining up a guess across the
boundary between a resident page
and a nonresident page and observ-
ing whether a page fault occurred
when the system checked the guess,
an adversary could verify whether a
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specific prefix of a guess was correct.
The fact that the secret password

comparison occurred on a real ma-
chine led to an observable property
that turned an intractable exponen-
tial search into a feasible linear one.

If we fast forward to 1995, the
same basic problem—an observable
artifact lets an adversary verify the
prefix of a guess—emerged for more
abstract cryptographic devices.4 Let’s
consider modular exponentiation
with a secret exponent, the core of
the RSA cryptosystem.

The time that the modular opera-
tion takes depends on the exponent
and the operand, and is well under-
stood. Suppose an adversary guessed
a secret exponent, calculated the
time for that guess on an operand,
and then actually measured that time.
If only the first k bits of the guess
were correct, then the adversary’s
model would be correct for the first
k bits, but wrong for the remainder.

However, over enough samples,
the difference between predicted and
real times would form a distribution
with variance proportional to n-k, so
the adversary could confirm the cor-
rectness of a guessed k-bit prefix of
the secret by calculating the variance.
With enough samples, this artifact of
the physical implementation of RSA
(and other cryptosystems) turns an
infeasible exponential search into a
feasible linear one. Instantiating the
cryptography in the real world leads
to threats that do not always show up
on a programmer’s white board.

Paul Kocher’s timing attack trig-
gered an avalanche of side-channel
analysis (www.research.ibm.com/
intsec) in the open world, by Kocher
and others.

In addition to the time-of-opera-
tion approach, physical devices have
other observable physical character-
istics that depend on hidden secrets.
One natural characteristic is power.
When complementary metal-oxide
semiconductors switch, they con-
sume power; an adversary could
measure this consumption and at-
tempt to deduce things about the

operation. With simple power analysis,
an adversary tries to draw conclu-
sions from a simple power trace. SPA
can be quite effective; a co-worker of
mine managed to extract a DES key
from a commercial device with a sin-
gle power trace—an initial parity
check led to a mix of 56 spikes, some
short, some tall, one for each bit.
More advanced differential power
analysis looks at more subtle statistical
correlations between the secret bits
and power consumption.

Other types of observable physi-
cal properties exploited by re-
searchers in the last few years to re-
veal hidden secrets include EMF
radiation and even the changes in
room light from CRT displays. (In
the classified world, the use of such
emanations from the real-world in-
stantiations of algorithms has fallen
under the Tempest program, some of
which has become declassified.)

In attacks described earlier, an ad-
versary learns information by observ-
ing physical properties of the device
doing the computation. However, an
adversary can sometimes learn more
by carefully inducing errors in the
computation.

In their physical attacks on smart
cards, Anderson and Kuhn observed
that carefully timed voltage spikes on
a processor could disrupt its current
instruction. Applying these spikes at
critical points during an operation
on a secret—such as when compar-
ing the number of DES iterations
completed against the number de-
sired—can transform a designer’s in-
tended cryptographic operation into
one much more amenable to crypt-

analysis. (This provided a practical
demonstration of speculative work
on such differential fault analysis.)

In the last two years, researchers
have focused attention on the API
level of these devices.5,6 Besides
physical properties, instantiation of
abstract ideas in the real world also
can lead to feature creep. As Mike
Bond paraphrases Needham, clean
abstract designs tend to become
“Swiss Army knives.” In particular,
cryptographic accelerators have
found major commercial application
in banking networks: for ATM and
credit card processing, devices need
to transmit, encode, and verify PINs.
However, the accumulation of usage
scenarios leads to a transaction set
complexity that permits many clever
ways to piece together program calls
that disclose sensitive PINs and keys.
Jolyon Clulow, in particular, dis-
cusses many amusing attacks possible
from exploiting error behavior re-
sulting from devious modifications
of legitimate transaction requests.

Traditional defenses
How do we build devices that actu-
ally retain their secrets? Weingart2

gives a good overview of the multi-
ple defense components:

• tamper evidence—ensuring that
tamper causes some observable
consequence

• tamper resistance—making it hard
to tamper with the device

• tamper detection—having the de-
vice able to sense when tamper is
occurring

• tamper response—having the de-
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vice take some appropriate coun-
termeasure

Weingart also presents the oper-
ating envelope concept he evolved
in his earlier work. If certain aspects
of the defense mechanism require
certain environmental properties
(such as voltage and temperature) to
function, then the device should
treat departures from that envelope
as a tamper event.

Our team put these principles
into practice. Our coprocessor archi-
tecture paper7 provides a more de-
tailed discussion of a practical defense
instantiation that our team designed
and built at IBM. We dispensed with
tamper evidence, because tamper ev-
idence is worthless without an audit
trail; our usage model did not guar-
antee one. Instead, we focused on re-
sistance (the device was housed in
two metal cans filled with resin); de-
tection (the resin contained a con-
ductive mesh, chemically and physi-
cally similar to the resin); and
response (changes to the mesh—or
other detected tamper events—trig-
gered direct zeroization of the sensi-
tive SRAM).

To enforce the operating enve-
lope, we detected anomalies in volt-
age, temperature, and radiation from
the moment the device left the fac-
tory. We also ensured that sensitive
memory was regularly, randomly in-
verted to avoid imprinting. The large
form factor created Faraday cages to
protect against electromagnetic radi-
ation, and power circuitry sophisti-
cated enough to protect against SPA
and DPA.

To date, we know of no successful
attack on the basic coprocessor plat-
form or on the security configura-
tion software that controls what the
box does. We make such claims hesi-
tantly, however, because we cannot
prove the absence of flaws, just the
absence of successful penetrations up
to some point in time.

Starting with protection of se-
crets, we then made design choices in
a product’s lifecycle, software config-

uration, and other hardware protec-
tion that actually yields a secure co-
processor platform suitable for some
trusted third-party applications.

Unfortunately, this was a some-
what Pyrrhic victory—the primary
commercial use of our box was to
house cryptographic accelerator
software vulnerable to the API-level
attacks discussed earlier.

New directions
Secure interaction in the distributed,
heterogeneous, mutually suspicious
environment that is today’s Internet
appears to require that we have
trustable places to keep and wield se-
crets. Security designs start out by as-
suming these places exist. Our quick
look at history suggests that it can be
risky to assume that current comput-
ing technology can live up to this
task. So what do we do? How do we
keep secrets in the real world?

Looking at the weaknesses of tra-
ditional computing technologies,
some researchers are exploring fun-
damentally different approaches. As
an example, effectively hiding infor-
mation in storage bits or circuit
structure of a consumer-level chip
has been difficult—an adversary al-
ways seems to find a way to peel off
protections and probe. In response,
researchers at MIT have proposed—
and prototyped—silicon physical un-
known functions8 that use the random
delays in circuit elements as a secret.
In theory, these delays are byproducts
of the manufacturing process, and
the only way to measure the delay is
to use the circuit. If these hypotheses
hold up, this technology could en-
able some interesting applications.
Many researchers (including myself)
are looking into this.

Other researchers have been
moving away from silicon circuits to
other physical forms of storage and
computation. Ravi Pappu and his
colleagues have built physical one-way
functions9 from optical epoxy tokens
containing tiny glass spheres. The
“secret” is how this exact arrange-
ment of spheres scatters laser light

sent in from different angles. The re-
searchers believe that determining
the arrangement might be possible,
but cloning a token, even from this
information, is intractable.

Another novel direction is the use
of microelectromechanical systems for in-
fosecurity (www.cs.dartmouth.edu/
~brd/Research/MEMS/ISTS/me
ms.html). MEMS are physical de-
vices—levers, gears, springs—that
are small: feature size less than 1 mi-
cron, and total size typically between
10 and 100 microns. Such small
physical devices might not be as sus-
ceptible to circuit-based side-chan-
nels such as EMF and power analysis,
and (for the foreseeable future) fabri-
cation cost places a very high thresh-
old for adversaries.

The preceding new approaches
start to blur our original problem.
Do we want to hide a secret we
choose? Is it sufficient to hide a ran-
dom secret that we cannot choose? Is
it sufficient to have a device with a
unique property that cannot be
physically duplicated?

This blurring indicates another
new line of thinking: If technology
cannot support our assumption of a
trustable place, perhaps we can make
do with a weaker assumption. In this
direction, researchers have consid-
ered alternate trust models, and pro-
tocols to support these models.

On a high design level, examples
include general multi-party computation,
encrypted functions, and threshold cryptog-
raphy, which transform a sensitive
computation into a larger computa-
tion among many parties, but which is
more resilient to various trust compro-
mises. Harnessing such transforma-
tion in practical ways is an area of on-
going research. Some examples
include distributed systems, mobile
agent security, and ad-hoc PKI. An-
other new trust model is white-box
cryptography (see www.scs.carleton.ca/
~paulv for some representative pa-
pers): encoding computation in such
a way that it can hide its secret even if
runs on an adversary’s computer.

Other recent work tries to bridge
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these theoretical results with more
practical systems views by reducing
the role (and required trust) of the
trustable place. Some examples in-
clude recent work in practical private
information retrieval and mobile
code security (where a trusted third
party is involved only in a small part
of the operation), and the commod-
ity model of server-assisted cryptog-
raphy and privacy protocols (where
only partially trusted third parties
participate, and do so before the pro-
tocol starts).

To some extent, recent commer-
cial efforts to incorporate some hard-
ware security into common desktops
(the multi-vendor Trusted Comput-
ing Platform Alliance, and also Mi-
crosoft’s Palladium initiative) fall into
this category.10 Of course, given the
history of sound ideas proving leaky
when they become real devices in
the real world, several aspects of these
notes could have relevance for these
new efforts.

Computation must exist in the
physical world. Security designs

that require secrets must hide and use
them in the real world. Unfortu-
nately, the real world offers more
paths to secret storage and more ob-
servable computational artifacts than
these security designs anticipate.
Careful integration of physical de-
fenses and security architecture can

sometimes succeed against the adver-
sary class designers consider. How-
ever, in the long term, we hope for ei-
ther a quantum leap in physically
defensible technology—or a signifi-
cant reduction in the properties that
designs force us to assume about our
computers. It would be nice to have
fairy dust that works. 
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