
HOST Practical Aspects of PUFs ECE 525

ECE UNM 1 (3/25/13)

Practical Aspects of PUFs

PUFs are going commercial as we speak (as of the writing of this on 3/2013)

In their move from academic/theoretical exercises to commercial products, the prac-

tical aspects of the PUF need to be addressed

We already discussed (in the statistics lecture) several metrics on which PUFs are

evaluated

• Randomness and Bias (NIST tests)

• Uniqueness (Average inter-chip Hamming Distance, and their distribution charac-

teristics)

• Stability (Average intra-chip Hamming Distance)

Some metrics are more important than others, depending on the usage scenario



HOST Practical Aspects of PUFs ECE 525

ECE UNM 2 (3/25/13)

Practical Aspects of PUFs

Usage Scenarios:

• The PUF will be used as a ’serial number’ to identify and/or track parts through

manufacturing or in the field

This usage scenario has the fewest requirements, in particular, the uniqueness

metric is important because each chip must be uniquely identified!

Note that there is no security implications in this scenario, i.e., no attack model

Stability is not a critical concern as long as

1) bit flips are infrequent, i.e., intra-HD is relatively small, otherwise the proba-

bility of ’aliasing’ gets unacceptably large

2) it is possible to use a ’fuzzy match’ criteria when the identifier is read

• The PUF will be used to authenticate chips at periods throughout its lifetime

This usage scenario has more requirements because it is designed to protect

against an attacker,

E.g., someone who wants to replace a chip in the field with a malicious clone



HOST Practical Aspects of PUFs ECE 525

ECE UNM 3 (3/25/13)

Practical Aspects of PUFs

• The PUF will be used to authenticate chips (cont.)

So how does this work?

At ’time 0’ (after manufacturing), a trusted entity applies a process called

enrollment

Here, a subset of challenges are applied from the much larger number of

available challenges and the challenge/response pairs (CRPs) are stored in a

secure database

Only the trusted entity has knowledge of which challenges are applied

Later in the field, during the authentication process, the trusted entity removes

CRPs from the database and applies them to the chip

If the chip responds correctly with the same (or similar) response, we can

assume it is the original chip, and not a malicious clone



HOST Practical Aspects of PUFs ECE 525

ECE UNM 4 (3/25/13)

Practical Aspects of PUFs

• The PUF will be used to authenticate chips (cont.)

Let’s look more carefully at the assumptions

In this model, we assume that the PUF is able to produce a large set of CRPs

Otherwise, the number of CRPs in the secure database, and available to

apply to the chip, will be small, significantly simplifing the task of creating

a clone

We also assume that any CRPs that are used for authentication are NEVER used

again (to avoid replay attacks)

Given that a trusted party is involved in authentication, the stability requirement

can be relaxed

This is true b/c the trusted entity can apply ’fuzzy matching’ criteria to vali-

date the responses, i.e., the responses can be deemed ’close enough’

Bear in mind the intra-chip HD must still be small otherwise the ’code

space’ occupied by each chip becomes unacceptably large making it easier

for the adversary to guess or clone it!



HOST Practical Aspects of PUFs ECE 525

ECE UNM 5 (3/25/13)

Practical Aspects of PUFs

• The PUF will be used to authenticate chips (cont.)

However, uniqueness and randomness are still very important,

I.e., it must be VERY difficult for an attacker to predict the response from a

challenge and/or to build a clone

Note that in order to implement this, it must be possible to apply challenges and

receive responses from the chip (either in person or over the internet)

I.e., the responses must be made available through I/O pins on the chip

Also, there is no need to store any type of information on the chip, in, e.g., non-

volatile memory (NVM)

• The PUF will be used to generate encryption keys

The ’Creme de la creme’ of the applications!

Here, uniqueness, randomness and stability are all critical



HOST Practical Aspects of PUFs ECE 525

ECE UNM 6 (3/25/13)

Practical Aspects of PUFs

• The PUF will be used to generate encryption keys

How does this work?

The PUF needs to be able to, periodically, produce or re-produce the/a key, e.g.,

after power cycles of the chip

• If only one key is needed for the lifetime of the chip, then the ’challenges’ can

be hardcoded in an LFSR

• If a new key is needed periodically, then NVM is required to (at least) store the

’seed’ used by the challenge generator on chip

There is NO tolerance for errors here -- even a difference of 1 bit in a 512-bit

key causes total chaos between communicating parties

For public/private encryption engines, e.g., RSA and ECC, the private key need

not ever be made public (can be ’hidden’ on the chip)

Therefore, it is NOT necessary to have an I/O interface to the PUF!



HOST Practical Aspects of PUFs ECE 525

ECE UNM 7 (3/25/13)

Practical Aspects of PUFs

• The PUF will be used to generate encryption keys

Note, there is no ’trusted entity’ here, and the PUF engine on the chip must be

able to run correctly without intervention

In conclusion, all applications require uniqueness and randomness:

• Chip ID: PUF bitstrings must be large enough to support the number of chips in

the population. Intra-chip HD can be > 0 but bear in mind, number of unique

IDs are reduced.

• Authentication: Requires large numbers of CRPs to prevent adversary from

measuring them all and building a clone. Also subject to model building

attacks b/c the responses are sent off-chip.

• Encryption: Large number of CRPs is not necessary in cases where only a single

key (or small number of keys) need to be generated over lifetime of chip.

Intra-chip HD must be zero (or a mechanism put in place to ensure it, as we

discuss next).



HOST Practical Aspects of PUFs ECE 525

ECE UNM 8 (3/25/13)

Practical Aspects of PUFs

Perhaps the biggest challenge the encryption key scenario poses deals with ’stability’

The ’zero tolerance’ criteria to bit flips makes it necessary to integrate additional

mechanisms into the PUF engine

Bit flips occur when the two analog quantities, e.g., delays, leakage current, RO fre-

quencies, voltages, are too similar to distinguish reliably in the presence of environ-

mental ’noise’ sources:

• Temperature variations

• Supply voltage variations

• EMI coupling

The nature of the ’unbiased’ distributions (usually Guassian) of the analog values

increases the probability that the two values being compared are VERY similar



HOST Practical Aspects of PUFs ECE 525

ECE UNM 9 (3/25/13)

Practical Aspects of PUFs

For example, consider histogram of the voltage differences (that when compared pro-

duce a digital ’0’ or ’1’ in the bit stream) from our power grid PUF

You might say, "why don’t you just design the PUF to ensure the analog quantities

are always large enough to avoid this situation?"

In order to accomplish this, you would need to introduce ’BIAS’

This, in turn, would destroy uniqueness, i.e., all chips would produce similar, or

worst case, the same, responses

All
analog
differences

+/- 2mV +/- 200uV

Bit Flip
analog
differences

+/- 2mV

Both
sets



HOST Practical Aspects of PUFs ECE 525

ECE UNM 10 (3/25/13)

Practical Aspects of PUFs

There is no PUF, to my knowledge, that can avoid the ’bit flip’ problem, and it

MUST be dealt with for crypto applications

Most deal with bit flips using error correction

Devadas et al. at MIT have quite a few publications which investigate schemes such

as Indexed Based Syndrome (IBS) and BCH coding

Although they are designed to ensure error-free key regeneration, they come at a cost:

• Area overhead to implement the error correction algorithms

• Information leakage

The latter occurs because, in order to correct errors, you typically have to publically

store "special" information that relates to the key

So in some sense, you are making it easier for an adversary to accomplish his/her

goal!



HOST Practical Aspects of PUFs ECE 525

ECE UNM 11 (3/25/13)

Practical Aspects of PUFs

You might (eventually) deduce that perhaps you can setup a ’threshold’ mechanism

to deal with bit flips

For example, from the analog voltage difference histograms shown earlier, you might

be tempted to suggest the following:

"Everytime I re-generate the key, I’ll compare the analog values for each chal-

lenge and discard (throw away) those that are less than my threshold"

For the sake of argument, let’s assume you determine that 250 uV is a good threshold

Here’s the caveat (we call it the two-fence problem):

Let’s assume we apply a set of three challenges at time 0 and measure the ana-

log voltages as shown below

So you discard the 2nd bit b/c the analog difference is less than the threshold

V1a

V1b

> 250uV

Challenge 1

V2a

V2b < 250uV

Challenge 2

stable 1 unstable
V3a

V3b
>> 250uV

Challenge 3

stable 0

DISCARD



HOST Practical Aspects of PUFs ECE 525

ECE UNM 12 (3/25/13)

Practical Aspects of PUFs

The fact that you only generated 2 of the 3 bits requires that you apply another chal-

lenge (not shown) -- let’s say it produces a stable ’1’ and the final sequence is ’101’

What can go wrong with this scheme?

Let’s assume we need to re-generate the exact same key after a power cycle -- we

apply the same challenges again and get:

Ouch! Since the second challenge produced two analog voltages that are close to the

threshold, it can happen that in some cases, it is unstable while in others it is stable

So, the final sequence becomes ’100’ this time -- NOT GOOD

One solution is to ’record’ the results of the stability analysis during enrollment and

store it somewhere (off-chip is fine) so the sequence can be replayed during regen.

V1a

V1b

> 250uV

Challenge 1

V2a

V2b > 250uV

Challenge 2

stable 1 stable 0
V3a

V3b
>> 250uV

Challenge 3

stable 0

KEEP



HOST Practical Aspects of PUFs ECE 525

ECE UNM 13 (3/25/13)

Practical Aspects of PUFs

One last issue I want to bring up deals with entropy

All PUFs leverage physical sources of variation on the chip

The primary difference among PUFs lies in the specific source they are each

leveraging

For RO and arbiter PUFs, the primary source leveraged is variations in transistor

threshold voltages

They are measured indirectly by measuring the corresponding changes they

produce in delay

Our power grid PUF leverages resistance variations, which we measure indirectly as

voltage variations

Since the sources of physical variations are limited on the chip, most PUFs need to

re-use these physical sources over-and-over again in the bit generation process

For example, it is not uncommon to compare n sources of variation to produce

n*(n-1)/2 bits



HOST Practical Aspects of PUFs ECE 525

ECE UNM 14 (3/25/13)

Practical Aspects of PUFs

Given this is true, the goal of an adversary, who is trying to predict the response of a

PUF, is to learn the values of the constituent physical sources of variation

(Note: We assume authentication scenario where responses are sent off-chip,

which doesn’t happen for crypto apps).

Once these are known, e.g., once the frequencies of the individual ROs are ’learned’,

then it becomes possible to predict the responses to ANY challenge

It follows then that the larger the source of physical variations, the more difficult it

is for an adversary to build a model of the PUF

SRAM, RO, VT and arbiter PUFs are limited to the 2-D space of the chip

On the other hand, a PUF derived from resistance variations in metal (and/or polysil-

icon) wires can leverage a third dimension and potentially be more resistant to

model building attacks


