## CryptoAnalysis

Upper case letters can be represented by numbers 0-25 (modulo 26).

| $A$ | $B$ | $C$ | $D$ | $\ldots$ | $X$ | $Y$ | $Z$ |
| ---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: |
| 0 | 1 | 2 | 3 | $\ldots$ | 23 | 24 | 25 |

Operations on letters:

$$
\begin{aligned}
& A+2 \bmod 26=C \\
& X+4 \bmod 26=B
\end{aligned}
$$

## Basic Types of Ciphers

- Substitution ciphers

Letters of plaintext $P$ are replaced with other letters by encryption algorithm E

- Transposition or permutation ciphers

Order of letters in $P$ are rearranged by E

- Product ciphers

Combine two or more ciphers to enhance the security of the crypto-system

## Substitution Ciphers

Outline:
a. The Caesar Cipher
b. Other Substitution Ciphers
c. One-Time Pads

## The Caesar Cipher

$c_{i}=E\left(p_{i}\right)=\left(p_{i}+3\right) \bmod 26 \quad$ (26 letters in the English alphabet)

Change each letter to the third letter following it (circularly)
A->D, B->E, ... X->A, Y->B, Z->C

Can represent as a permutation $\pi$ : $\pi(\mathrm{i})=(\mathrm{i}+3) \bmod 26$

$$
\begin{aligned}
& \pi(0)=3, \pi(1)=4, \ldots \\
& \pi(23)=26 \bmod 26=0, \pi(24)=1, \quad \pi(25)=2
\end{aligned}
$$

Key $=3$, or key $=$ ' ${ }^{\prime}$ ' (b/c D represents 3 )

## Caesar Cipher (Barbara Endicott-Popovsky, U. Washington)

Example
P (plaintext): HELLO WORLD
C (ciphertext): khoor zruog

Caesar Cipher is a monoalphabetic substitution cipher (a simple substitution cipher)
Exhaustive search
If the key space is small enough, try all possible keys until you find the right one
Caesar cipher has 25 possible keys ( 1 to 25 ) (assuming 0 would never be used!)

Statistical analysis (attack)
Compare to 1-gram (unigram) model of English, which shows frequency of (single) characters in English

## Statistical Attack

1-grams (unigrams) for English

| a | 0.080 | h | 0.060 | n | 0.070 | t | 0.090 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | 0.015 | i | 0.065 | o | 0.080 | u | 0.030 |
| c | 0.030 | j | 0.005 | p | 0.020 | v | 0.010 |
| d | 0.040 | k | 0.005 | q | 0.002 | w | 0.015 |
| e | 0.130 | l | 0.035 | r | 0.065 | x | 0.005 |
| f | 0.020 | m | 0.030 | s | 0.060 | $y$ | 0.020 |
| g | 0.015 |  |  |  |  | z | 0.002 |

[cf. Barbara Endicott-Popoysky, U. Washington]

## Step 1: Statistical Attack

Compute frequency $f(c)$ of each letter $c$ in ciphertext

Example: $C=$ 'khoor zruog'
10 characters: 'o': 3 , 'r': $2,\{\mathrm{k}, \mathrm{h}, \mathrm{z}, \mathrm{u}, \mathrm{g}\}: 1$
$f(c)$ :

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{~g})=0.1 & \mathrm{f}(\mathrm{~h})=0.1 & \mathrm{f}(\mathrm{k})=0.1 \\
\mathrm{f}(\mathrm{u})=0.1 & \mathrm{f}(\mathrm{z})=0.1 & \mathrm{f}\left(\mathrm{c}_{\mathrm{i}}\right)=0.3
\end{array} \mathrm{f}(\mathrm{r})=0.2 \mathrm{for} \text { all other } \mathrm{c}_{\mathrm{i}} .
$$

## Statistical Attack

## Step 2: Statistical Analysis

$\phi(i)$ : Correlation of frequency of letters in ciphertext with frequency of corresponding letters in English for a particular key $i$

For key $i$ : $\phi(\mathrm{i})=\Sigma_{0<=\mathrm{c}<=25} \mathrm{f}(\mathrm{c}) * \mathrm{p}(\mathrm{c}-\mathrm{i})$
$c$ is representation of character (0-25)
$f(c)$ is frequency of letter $c$ in ciphertext $C$
$p(x)$ is frequency of character $x$ in English
This is correlation analysis, i.e., the value of $i$ that generates the largest sum indicates the closest match between frequencies in alphabet and cipher text.

## Statistical Attack

Example: $C=$ 'khoor zruog' $\quad(P=$ 'HELLO WORLD')

$$
\begin{aligned}
& f(c): f(g)=0.1, f(h)=0.1, f(k)=0.1, f(0)=0.3, \\
& f(r)=0.2, f(u)=0.1, f(z)=0.1
\end{aligned}
$$

Convert letters to numbers:

$$
\mathrm{g}: ~ 6, \mathrm{~h}: ~ 7, \mathrm{k}: 10, \mathrm{o}: 14, \mathrm{r}: 17, \mathrm{u}: 20, \mathrm{z}: 25
$$

Compute correlation value:

$$
\begin{aligned}
\phi(i)= & 0.1 \mathrm{p}(6-\mathrm{i})+0.1 \mathrm{p}(7-\mathrm{i})+0.1 \mathrm{p}(10-\mathrm{i})+0.3 \mathrm{p}(14-\mathrm{i})+0.2 \mathrm{p}(17-\mathrm{i})+ \\
& 0.1 \mathrm{p}(20-\mathrm{i})+0.1 \mathrm{p}(25-\mathrm{i})
\end{aligned}
$$

## Step 2a: Statistical Attack Calculations

- Correlation $\varphi(i)$ for $0 \leq i \leq 25$

| $\boldsymbol{i}$ | $\varphi(\boldsymbol{i})$ | $\boldsymbol{i}$ | $\varphi(\boldsymbol{i})$ | $\boldsymbol{i}$ | $\varphi(\boldsymbol{i})$ | $\boldsymbol{i}$ | $\varphi(\boldsymbol{i})$ |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.0482 | 7 | 0.0442 | 13 | 0.0520 | 19 | 0.0315 |
| 1 | 0.0364 | 8 | 0.0202 | 14 | 0.0535 | 20 | 0.0302 |
| 2 | 0.0410 | 9 | 0.0267 | 15 | 0.0226 | 21 | 0.0517 |
| 3 | 0.0575 | 10 | 0.0635 | 16 | 0.0322 | 22 | 0.0380 |
| 4 | 0.0252 | 11 | 0.0262 | 17 | 0.0392 | 23 | 0.0370 |
| 5 | 0.0190 | 12 | 0.0325 | 18 | 0.0299 | 24 | 0.0316 |
| 6 | 0.0660 |  |  |  |  | 25 | 0.0430 |

## Statistical Attack

Most probable keys are the largest $\phi(i)$ values:

$$
i=6, \phi(i)=0.0660
$$

Plaintext EBIIL TLOLA
$i=10, \phi(i)=0.0635$
Plaintext AXEEH PHKEW
$i=3, \phi(i)=0.0575$
Plaintext HELLO WORLD
$i=14, \phi(i)=0.0535$
Plaintext WTAAD LDGAS

The plaintext is 'legible English' only for the case when $i=3$
So the key is 3 or ' D ' and the code broken

## Caesar's Problem

Problem: Key is too short
Only used a 1-char key (monoalphabetic substitution)

- Can be found by exhaustive search
- Statistical frequencies not concealed well by the short key, i.e., ciphertext looks too much like the composition of 'regular' English phrases

Solution: Make the key longer
$n$-char key ( $n>=2$ ) - polyalphabetic substitution

- Makes exhaustive search much more difficult
- Statistical frequencies concealed much better
- Makes cryptoanalysis harder


## Other Substitution Ciphers

Vigenere Tableaux cipher is a polyalphabetic substitution cipher

## Polyalphabetic Substitution Ciphers (J. Leiwo, VU, NL)

Attempts to flatten (diffuse) the frequency distribution of letters by combining high frequency letters with low frequency letters

Example: key substitution:

| Key1: <br> Key2: |  |  |
| :---: | :---: | :---: |
|  | Key1: <br> Key2: | NOPQRSTUVWXYZ nqtwzcfilorux afkpuzejotydi |

Key definition:
Key1: Start with 'a', skip 2, take next, skip 2, take next letter, ... (circular)
Key2: Start with 'n' (2nd half of alphabet), skip 4, take next, skip 4, take next, ... (circular)

Encryption involves using Keyl for first letter of plaintext, Key2 for second letter, Keyl again for third letter, etc.

## Polyalphabetic Substitution Ciphers

Plaintext: TOUGH STUFF
Ciphertext: ffirv zfjpm
Obtained by mapping T->f using Key1, O->f using Key2, U->i using Key1, etc.

| Key1: <br> Key2: | ABCDEFGHIJKLM <br> adg jmpsvybehk ↔skip 2 letters $\mathrm{n} \mathrm{s} \times \mathrm{chmrwb} \mathrm{m}$ q $\mathrm{m}<$-skip 4 letters |  |
| :---: | :---: | :---: |
|  | Key1: <br> Key2: |  |

Characteristics:

- Different chars mapped into the same one: T, O -> f
- Same char mapped into different ones: F-> p, m
- 'f' most frequent in Ciphertext $=>0.30$

In English: $f(\mathbf{f})=0.02 \ll f(\mathbf{e})=0.13$

## Vigenere Tableaux

Key:

## EXODUS

Plaintext:
YELLOW SUBMARINE FROM YELLOW RIVER

Extended keyword: Re-applied to match length of plaintext:
YELLOW SUBMARINE FROM YELLOW RIVER
EXODUS EXODUSEXO DUSE XODUSE XODUS
Ciphertext:

## cbzoio wlppujmks ilgq vsofhb owyyj

How does this work?
Char from plaintext indexes row and char from extended key indexes column

For example,

- row Y and column E: 'c'
- row E and column X: 'b'
- row L and column O : 'z'


## Vigenere Tableaux



## One-Time Pads

OPT: Variant of using Vigenere Tableaux
Designed to fix problem its problem that the key used might be too short Above: 'EXODUS' is only 6 chars

Sometimes considered a perfect cipher
Used extensively during Cold War

One-Time Pad:
Large, non-repeating set of long keys on pad sheets/pages
Sender and receiver have identical pads
Example:
300 -char msg to send, 20 -char key per sheet
Use \& tear off $300 / 20=15$ pages from the pad

## Encryption:

Sender writes letters of consecutive 20-char keys above the letters of the plaintext

## One-Time Pads

## Encryption:

Sender creates ciphertext by adding the plaintext and key characters in each of the columns and takes the sum $\bmod 26$
And then destroys the used keys

## Decryption:

Receiver constructs columns in the same way with ciphertext and the key characters from the same 15 consecutive pages of the pad
Receiver subtracts key characters from ciphertext mod 26 and destroys the keys

## Characteristics:

- The key is as long as the message
- The key is always changing (and destroyed after use)


## Weaknesses:

- Requires perfect synchronization required between $S$ and $R$

Intercepted or dropped messages can destroy synchronization

## One-Time Pads

Weaknesses:

- Need lots of keys
- Need to distribute pads securely


## Transposition Ciphers

Rearrange letters in plaintext to produce ciphertext

Example of columnar transposition
Plaintext: HELLO WORLD
(a) Transposition into 3 columns:

HEL
LOW
ORL
DXX XX - padding

## Transposition Ciphers

(b) Transposition into 2 columns:

HE
LL
OW
OR
LD
Ciphertext is constructed by reading table column-wise:
(a) hlodeorxlwlx
(b) hloolelwrd

What is the key?
Number of columns: (a) key $=3$ and (b) key $=2$
Example 2: Rail-Fence Cipher
Plaintext: HELLO WORLD

## Transposition Ciphers

Transposition into 2 rows (rails) column-by-column:

## HLOOL

ELWRD

Ciphertext:
hloolelwrd (Does it look familiar?)
What is the key?
Number of rails: key $=2$

## Attacking Transposition Ciphers

Anagramming
n-gram: $n$-char strings in English

Digrams (2-grams) for English alphabet are: aa, ab, ac, ...az, ba, bb, bc, ...,
zz $\left(26^{2}=676\right.$ rows in table)

Trigrams are: aaa, aab, $\ldots\left(26^{3}=17,576\right.$ rows in table $)$

## Attacking Transposition Ciphers

Anagramming
4-grams are: aaaa, aaab, ...

Attack procedure:
If 1-gram frequencies in C match their frequencies in English BUT other ngram frequencies in C do not match their frequencies in English, THEN It is probably a transposition encryption

Find $n$-grams with the highest frequencies in ciphertext then rearrange substrings in ciphertext to form $n$-grams with highest frequencies Start with $n=2$

Ciphertext $C$ :
hloolelwrd (from Rail-Fence cipher)

N -gram frequency check
1-gram frequencies in $C$ do match their frequencies in English

## Attacking Transposition Ciphers

N -gram frequency check
2-gram (hl, lo, oo, ...) frequencies in $C$ do not match their frequencies in English
3-gram (hlo, loo, ool, ...) frequencies in $C$ do not match their frequencies in English
=> Conclude it is probably a transposition

Frequencies in English for all 2-grams from $C$ starting with $\mathbf{h}$ (from table of frequencies of English digrams)
he 0.0305
ho 0.0043
hl, hw, hr, hd < 0.0010

Implies that in hloolelwrd, e follows $h$

## Attacking Transposition Ciphers

Arrange $C$ so that the $\mathbf{h}$ and $\mathbf{e}$ are adjacent
Since 2-gram suggests a solution, cut $C$ into 2 substrings with the 2 nd substring starting with $\mathbf{e}$ :

## hlool elwrd

Put them in 2 columns:
he
II
ow
or
ld

Read row by row to get original plaintext: HELLO WORLD

## Product Ciphers

Another name for combination ciphers
Built of multiple blocks, where each is based on substitution or transposition
Example: two-block product cipher

$$
\mathrm{E}_{2}\left(\mathrm{E}_{1}\left(\mathrm{P}, \mathrm{~K}_{\mathrm{E} 1}\right), \mathrm{K}_{\mathrm{E} 2}\right)
$$

Product cipher might not be stronger than its individual components used separately! Might not even be as strong as individual components!

## Criteria for Good Ciphers (Claude Shannon's criteria (1949)

- Needed degree of secrecy should determine amount of labor
- Set of keys and enciphering algorithm should be free from complexity
- Implementation should be as simple as possible
- Size \& storage of $C$ should be restricted, e.g., $\operatorname{size}(C)$ should not be $>\operatorname{size}(P)$

These were proposed at the dawn of computer era are still valid!

## Criteria for Good Ciphers

Plus, one additional one

- Propagation of errors should be limited

Characteristics of good encryption schemes

- Confusion

Interceptor cannot predict what will happen to $C$ when she changes one character in $P$

Encryptor with good confusion hides relationship between $P+K$ and $C$

- Diffusion

Changes in $P$ spread out over many parts of $C$

Encryptor with good diffusion requires attacker to collect/analyze a lot of $C$

Two basic types of Ciphers

- Stream
- Block


## Stream and Block Ciphers

## Stream Cipher:

1 char from $P$ transformed into 1 char for $C$

The polyalphabetic cipher we saw earlier is an example, e.g., $P$ and $K$ (repeated
"EXODUS")
YELLOWSUBMARINEFROMYELLOWRIVER
EXODUSEXODUSEXODUSEXODUSEXODUS

Encryption involves translating $P$ one character at a time and transmitting to receiver
Problem: dropping a char results in wrong decryption

## Block Ciphers

1 block of chars from $P$ transformed to 1 block of chars for $C$

Example is the columnar transposition we saw earlier

## Stream and Block Ciphers

## Pros/Cons of Stream Ciphers

- Positive: Low delay for decoding individual symbols

Can start decoding as soon as the $C$ begins to be received

- Positive: Low error propagation

Error in $\mathrm{E}\left(\mathrm{c}_{1}\right)$ does not affect $\mathrm{E}\left(\mathrm{c}_{2}\right)$

- Drawback: Low diffusion

Each char encoded separately and therefore can reveal frequency information

- Drawback: Susceptibility to malicious insertion and manipulation

Adversary can fabricate a new msg from pieces of broken msgs, even if he doesn't know E

Pros/Cons for Block Ciphers

- Positive: High diffusion

Frequency of a chars in $P$ diffused over a block of $C$

- Positive: Immune to insertion

Impossible to insert a char into a block without easy detection (block size would change)
Impossible to modify a char in a block without easy detection (checksums)

## Stream and Block Ciphers

Pros/Cons for Block Ciphers

- Drawback: Large delay for decoding individual chars

For some E, can not decode 1st char of $C$ until entire block is received

- Drawback: High error propagation

Errors affect the entire block, not just a single character

