
HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 1 (6/18/17)

Hardware vs. Software

Choosing between implementing an application in HW or implementing it in SW

may seem like a no-brainer -- clearly writing software is easier!

Software is flexible, compilers are very fast, there are lots of libraries available and

computing platform are cheap and plentiful

More importantly, it seems a waste of effort to design a new hardware system when it

is easy just to purchase one, e.g., a desktop computer

So what are the drivers for custom hardware?

Let’s consider two important metrics that are used to compare hardware and software

Performance and Energy Efficiency

Performance:

Expressed as the amount of work done per unit of time

Let’s define a unit of work as the processing of 1 bit of data



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 2 (6/18/17)

Hardware vs. Software

The figure shows various embedded system cryptographic implementations in soft-

ware and hardware that have been proposed over 2003-2008.

Performance in bits/cycle shown along x-axis shows that hardware has better perfor-

mance than embedded processors (software)

Bear in mind that even though hardware executes more operations in parallel, high-

end micro-processors have VERY high clk frequencies

Therefore, software may in fact out-perform dedicated hardware



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 3 (6/18/17)

Hardware vs. Software

Therefore, performance is not a very good metric to compare hardware and software,

especially in resource-constrained environments such as IoT

A better metric (that is independent of clk frequency) is energy efficiency, i.e., the

amount of useful work done per unit of energy

This graph shows energy consumption of an AES engine (encryption) on different

architectures, with y-axis plotting Gigabytes per Joule of energy

This shows battery-operated devices would greatly benefit using less flexible,

dedicated hardware engines

Increasing flexibility
Increasing energy efficiency

NOTE
log scale!

software hardware



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 4 (6/18/17)

Hardware vs. Software

This is true b/c there is a large overhead associated with executing software instruc-

tions in the microprocessor implementation

• Instruction and operand fetch from memory

• Complex state machine for control of the datapath, etc.

Also, specialized hardware architectures are usually also more efficient than software

from a relative performance perspective, i.e., amount of useful work done per clock

cycle

Flexibility comes with a significant energy cost -- one which energy optimized appli-

cations cannot tolerate

Therefore, you will never find a Pentium processor in a cell phone!



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 5 (6/18/17)

Hardware vs. Software

The complete picture of whether and how to implement a system is more compli-

cated

Hardware or software present many trade-offs, some of which have conflicting objec-

tives

Arguments in favor of increasing the amount of hardware (HW):

• Performance and Energy Efficiency:

As indicated above, improvements in relative performance and energy efficiency

is a big plus for hardware, especially battery-operated devices

HW/SW codesign plays an important role in optimizing energy-efficiency by

helping designers to decide which components of flexible SW should be moved

into fixed HW



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 6 (6/18/17)

Hardware vs. Software

• Power Densities:

Further increasing clock speed in modern high-end processors as a performance

enhancer has run-out-of-gas because of thermal limits

This is driven a broad and fundamental shift to increase parallelism within pro-

cessor architectures

However, there is no dominant parallel computer architecture that has emerged

as ’the best architecture’ -- commercially available systems include

• Symmetric multiprocessors with shared memory

•Traditional processors tightly coupled with FPGAs as accelerator engines

• Multi-core and many-core architectures such as GPUs

Nor is there yet any universally adopted parallel programming language, i.e.,

code must be crafted differently depending on the target parallel platform

This forces programmers to be architecturally-aware of the target platform



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 7 (6/18/17)

Hardware vs. Software

Arguments for increasing the amount of software (SW):

• Design Complexity

Modern electronic systems are extremely complex, containing multiple proces-

sors, large embedded memories, multiple peripherals and input-output devices

It is generally difficult or impossible to design all components in fixed hardware

On the other hand, software implementations running on processors can better

handle complexity and additionally allows for updates and bug fixes

• Design Cost

New chips are very expensive to design and fabricate

Programmable architectures including processors and FPGAs are becoming

more attractive because they can reused over multiple products or product gen-

erations

System-on-Chip (SoCs) are good examples of this trend



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 8 (6/18/17)

Hardware vs. Software

• Shrinking Design Schedules

Each new technology is more complex than the previous generation, and the

move to the next generation happens more quickly

For the designer, this means that each new product generation brings more work

that needs to be completed in a shorter amount of time

Shrinking design schedules require engineering teams to develop the HW and

SW components of a system concurrently

These trends also increase the attractiveness of software and microprocessor-

based solutions

Finding the correct balance, while weighing in all these factors, is a complex problem

Instead, we will focus on optimizing metrics related to design cost and performance

In particular, we will consider how adding hardware to a software implementa-

tion increases performance while weighing in the increase in design cost



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 9 (6/18/17)

The Hardware-Software Codesign Space

The proceeding discussion makes it apparent that there are a multitude of alternatives

available for mapping an application to an architecture

The collection of all possible implementations is called the HW/SW codesign space

The following figure represents the design space symbolically

Platform Design Space: The objective of the design process is to map a specification

onto a target platform



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 10 (6/18/17)

Examples Micrographs of Target Platforms
Microprocessor FPGA SoC

DSP Microcontroller



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 11 (6/18/17)

SoC Examples

Example System-on-Chip (SoC) with IP cores

Transreflective
monochrome
backlit display

drivers

Motorola
#MC68VZ328

DragonBall Proc.

Hynix
#HY57V641629
SDRAM 8MB

Fijitsu
#MBM29D1323
Flash 4MB

MMC-fermat
memory
card slot

Xilinx
#XCR3064

CPLD

Manual inputs

Maxim
#MAX3386
Transceivers

Philips
#PDIUBD12

USB Interface

Agere
#I2R50INE

POM baseband proc.

Analog Devices
#AD7873

Screen digitizer

Universal
Connector

Motorola
#MC1376VF

Dig. Transceivers

TCXO

K001 VCO

Maxim
#MAX4472

Pow. Amp contrl

RF Micro
#RF2173
Pow Amp

DSP

RF

Interface

Processor
Memory

FPGA



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 12 (6/18/17)

Codesign Examples

Video Codec (H261)

Camera

Grabber

MSQ bus

MCC bus

VLD MSQ IDCT

Display

MCC

Unframer Framer DCT

ISDN

Line

Pred.
Filter

M.E. VLC

CODEC

uP+code

HW

SW Processors

HW Processors



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 13 (6/18/17)

The Hardware-Software Codesign Space

Each of the above platforms presents a trade-off between flexibility and efficiency

The wedge-shape of the diagram expresses this idea:

Flexibility refers to the versatility of the platform for implementing different

application requirements, and how easy it is to update and fix bugs

Efficiency refers to performance (i.e. time-efficiency) or to energy efficiency

Increasing flexibility
Increasing energy efficiency



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 14 (6/18/17)

The Hardware-Software Codesign Space

Another concept reflected in the wedge-figure is the domain-specific platform

General-purpose platforms, such as RISC and FPGA, are able to support a broad

range of applications

Application-specific platforms, such as the ASIC, are optimized to execute a single

application

In the middle is a class called domain-specific platforms that are optimized to exe-

cute a range of applications in a particular application domain

Signal-processing, cryptography, networking, are examples of domains

And domains can have sub-domains, e.g., voice-signal processing vs. video-signal

processing

Optimized platforms can be designed for each of these cases

DSPs and ASIPs are two examples of domain-specific platforms



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 15 (6/18/17)

The Hardware-Software Codesign Space

Codesign involves the following three activities:

• Platform selection

• Application mapping

• Platform programming

We start with a specification:

For example, a new application can be a novel way of encoding audio in a more

economical format than current encoding methods

Designers can optionally write C programs to implement a prototype

Very often, a specification is just a piece of English text, that leaves many details

of the application undefined

Step 1: Select a target platform

This involves choosing one or more programmable component as discussed pre-

viously, e.g., a RISC micro, an FPGA, etc.



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 16 (6/18/17)

The Hardware-Software Codesign Space

Step 2: Application mapping

The process of mapping an application onto a platform involves writing C code and/

or VHDL/verilog

Examples include:

• RISC: Software is written in C while the hardware is a processor

• FPGAs: Software is written in a hardware description language (HDL)

FPGAs can be configured to implement a soft processor, in which case, software

also needs to be written in C

• DSP: A digital signal processor is programmed using a combination of C and

assembly, which is run on a specialized processor architecture

• ASIP: Programming an ASIP is a combination of C and an HDL description

• ASIC: The application is written in a HDL which is then synthesized to a hardwired

netlist and implementation

Note: ASICs are typically non-programmable, i.e., the application and platform

are one and the same



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 17 (6/18/17)

The Hardware-Software Codesign Space

Step 3: Platform programming is the task of mapping SW onto HW

This can be done automatically, e.g., using a C compiler or an HDL synthesis

tool

However, many platforms are not just composed of simple components, but rather

require multiple pieces of software, possibly in different programming languages

For example, the platform may consist of a RISC processor and a specialized hard-

ware coprocessor

Here, the software consists of C (for the RISC) as well as dedicated coprocessor

instruction-sequences (for the coprocessor).

Therefore, the reality of platform programming is more complicated, and automated

tools and compilers are NOT always available



HW/SW Codesign w/ FPGAs The Nature of HW/SW II ECE 522

ECE UNM 18 (6/18/17)

The Hardware-Software Codesign Space

Difficult questions:

• How does one select a platform for a given specification (harder problem of two)

• How can one map an application onto a selected platform

The first question is harder - seasoned designers choose based on their previous expe-

rience with similar applications

The second issue is also challenging, but can be addressed in a more systematic fash-

ion using a design methodology

A design method is a systematic sequence of steps to convert a specification

into an implementation

Design methods cover many aspects of application mapping

• Optimization of memory usage

• Design performance

• Resource usage

• Precision and resolution of data types, etc.

A design method is a canned sequence of design steps


