
HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 1 (6/29/17)

Mapping DFGs to Hardware

As indicated in previous lectures, SDF graphs are particularly well-suited for map-

ping directly into hardware

For SDFs with single-rate schedules, all actors can execute in parallel using the same

clock

The rules for mapping single-rate SDFs to hardware are straightforward

• All actors map to a single combinational hardware circuit

• All FIFO queues map to wires (without storage)

• Each initial token in a queue is replaced with a register

This means that two actors with no token on the queue between them will be effec-

tively represented as two back-to-back combinational circuits

Timing requirements regarding the delay of the combinational logic must be met, i.e.,

all computation within the combinational logic must complete in 1 clock cycle

Therefore, in practice, the length of the actor sequence will be limited



HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 2 (6/29/17)

Mapping DFGs to Hardware

The performance annotations we’ve used in DFGs are only estimates of delay

Obtaining precise combinational circuit delays falls in the realm of CAD tools

We will treat the delay annotations for an actor as the critical path delay, i.e.,

the delay of the worst-case path in the actor’s combinational circuit

Let’s use Euclid’s Greatest Common Divisor algorithm to illustrate the process

The sort actor reads the two initial token values a and b, sorts them and reproduces

them on the output

The diff actor subtracts the smallest number from the largest one as long as they are

not equal

Euclid’s
GCD Algorithm



HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 3 (6/29/17)

Mapping DFGs to Hardware

You should convince yourself that a PASS exists using the techniques described ear-

lier for SDFs

Following the mapping rules given above, we obtain the following circuit

The sort and diff actors are implemented using a comparator, a subtractor plus a few

multiplexers

Note that the delay through the circuits of both actors define the maximum achiev-

able clock frequency

If the critical path delays are 5 and 15 ns, then max. operating freq. is 50 MHz



HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 4 (6/29/17)

Mapping DFGs to Hardware: Pipelining

The pipelining transformation discussed earlier is a very popular technique to deal

with path delays that limit clock frequency

Consider a dataflow specification of a digital filter

The filter computes a weighted sum of the samples arriving from the input

stream as out = x0.c2 + x1.c1 + x2.c0

The critical path of this graph is associated with the one of the multiplier actors, c0 or

c1, in series with two addition actors

multiply actors



HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 5 (6/29/17)

Mapping DFGs to Hardware: Pipelining

Pipeling allows additional tokens to be added (at the expense of increase latency)

Here, one is introduced by the in actor

And then retiming is used to redistribute the tokens, as shown by the above marking,

which is produced after firing c0, c1 and c2

Retiming creates additional registers and an additional pipeline stage

The critical path is now reduced to two back-to-back adder actors



HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 6 (6/29/17)

Mapping DFGs to Hardware: Pipelining

This final marking is obtained by allowing the in actor to add one more token and

then using retiming to fire c0, c1, c2 and the top add actor

The schematic on the right shows a fully pipelined implementation

Note that it is not possible to introduce arbitrary initial tokens in a graph without fol-

lowing the actor’s firing rules

Doing so would likely change the behavior of the system

The resulting
pipelined
DFG
implementation



HW/SW Codesign Data Flow Hardware Implementation ECE 522

ECE UNM 7 (6/29/17)

Mapping DFGs to Hardware: Pipelining

This change in behavior is obvious in the case of feedback loops, as shown here for

an accumulator circuit

• Using a single token in the feedback loop of an add actor will accumulate all input

samples, as shown on the left

• Using two tokens in the feedback loop will accumulate the odd samples and even

samples separately

When pipelining a DFG, be sure to follow the rules for subsequent markings

When adding new tokens, add them only at the input or output of the DFG, outside of

any loops

And then use retiming to redistribute the tokens to reduce critical path delay


