
HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 1 (6/21/17)

Data Flow Models

As we discussed, hardware is parallel while software is sequential

We need concurrent high-level models to allow designers to describe systems that

are independent of software or hardware

This provides flexibility in mapping components to either HW or SW in later

phases of design

Block diagrams have become popular as a mechanism to describe systems, includ-

ing DSP systems such as digital radios and radar, at a high level of abstraction

Block diagrams use symbols to represent signal processing functions, i.e., operations

performed on a digital data stream, without specifying the implementation strategy

This block diagram shows an example of a pulse-amplitude modulation (PAM) sys-

tem, used to transmit information over bandwidth-limited channels

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 2 (6/21/17)

Data Flow Models

The PAM system reads a file of binary data in 32-bit chunks

The map function converts the 32-bits of each word to 16 2-bit symbols (PAM-4 is

used to refer to such systems

Each 2-bit sequence maps to one of 4 separate symbols in the set {-3, -1, 1 and

3}

Each symbol represents a pulse height

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 3 (6/21/17)

Data Flow Models

The 2-bit symbols need to be converted into a smooth shape using pulse shaping

The pulse shaper ensures that the frequency content of the smoothed curve does

not exceed 2X the symbol rate to avoid adding artifacts to the generated curve

The pulse-shape function oversamples the symbols to provide a smooth function,

producing 128 digital samples for each symbol as shown

A convolution-based function is used to ensure the curve goes through the symbols

while providing a memory effect, which allows symbols to influence other symbols

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 4 (6/21/17)

Data Flow Models

The digital-to-analog converter (DAC) is used to convert the discrete samples into an

analog output signal

Here’s a high-level simulation model for PAM-4

extern int read_from_file(), map_to_symbol(int, int);

extern int pulse_shape(int, int);

extern void send_to_da(int);

int main() {

int word, symbol, sample;

int i, j;

while (1) {

 word = read_from_file();

for (i = 0; i < 16; i++) {

 symbol = map_to_symbol(word, i);

for (j = 0; j < 128; j++) {

 sample = pulse_shape(symbol, j);

 send_to_da(sample);

 } } } }

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 5 (6/21/17)

Data Flow Models

Although this is a good model for simulation, it is not for an implementation

C implicitly assumes sequential execution

The block diagram, on the other hand, is implicitly parallel

The lines between blocks represent data dependencies, and therefore, they force an

ordering to the sequence of operations

However, unlike C, each block can execute simultaneously with other blocks

Another example of the difference between C and block diagrams is shown by the

’fanout’ in the following:

Here, Block2 and Block3 are clearly parallel but C would execute them sequentially

Block1

Block2

Block3

Block4

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 6 (6/21/17)

Data Flow Models

Note that, in general, it is easier to create a sequential implementation from a parallel

model than it is to create a parallel implementation from a sequential model

This argues in favor of Data Flow diagrams for modeling

The following is a Data Flow model of PAM-4:

The bubbles, called actors, represent the functions in the block diagram

Actors are linked together using directional lines, called queues

The numbers on the lines represent the relative rates of communications between

modules, e.g., Map converts a 32-bit word into 16 2-bit symbols

Note that each actor works independently, i.e., it checks its input queue for the

proper number of elements and executes immediately when satisfied

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 7 (6/21/17)

Data Flow Models vs. C Programs

We cover Data Flow extensively in this lecture series but for now, we note the follow-

ing important differences between C and Data Flow models:

• Data Flow is a concurrent model (this is a major driver for their popularity), which

means they can easily be mapped to hardware or software implementations

• Data Flow models are distributed, i.e., there is no centralized controller, i.e., each

actor operates autonomously

• Data Flow models are modular, allowing libraries of components to be constructed

and utilized in a plug-and-play fashion

• Data Flow models can be analyzed, e.g., for deadlock conditions that can result in

system lock-up

Deterministic, mathematical methods can be used to analyze Data Flow

models, which is generally not possible using C

Data Flow models have been around since the early 1960s

The 70’s and 80’s were active periods of research and development of Data Flow pro-

gramming languages and even Data Flow architectures

NI’s Labview is a classic example of a Data Flow programming language

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 8 (6/21/17)

Tokens, Actors and Queues

Here, we define the elements that make up a Data Flow model, and discuss a special

class of Data Flow models called Synchronous Data Flow (SDF) Graphs

SDFs allow for the application of formal analysis techniques

A simple example:

A Data Flow model is made up of three elements:

• Actors: Contain the actual operations

Actors have a precise beginning and end, i.e., they have bounded behavior, and

they iterate that behavior continuously

Each iteration is called a firing, e.g., an addition is performed on each firing

add

1 4

5 8

actor

queue

token

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 9 (6/21/17)

Tokens, Actors and Queues

• Tokens: Carry information from one actor to another

A token has a value, such ’1’ and ’4’ as shown above

• Queues: Unidirectional communication links that transport tokens between actors

We assume Data Flow queues have an infinite amount of storage

Data Flow queues are first-in, first-out (FIFO)

In above example, token ’1’ is entered after token ’4’ so token ’4’ is pro-

cessed first

When a Data Flow model executes, actors read tokens from their input queues, apply

an operation and then write values to the output queue

The execution of a Data Flow model is expressed as a sequence of concurrent actor

firings

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 10 (6/21/17)

Tokens, Actors and Queues

Data Flow models are untimed

The firing of an actor happens instantaneously and therefore time is irrelevant

Firings actually take non-zero time in an actual implementation

The execution of Data Flow models is guided only by the presence of data, i.e.,

an actor can not fire until data becomes available on its inputs

A Data Flow graph with tokens distributed across its queues is called a marking of a

Data Flow model

A Data Flow graph goes through a series of marking when it is executed

Each marking corresponds to a different state of the system

The distribution of tokens in the queues (marking) are the ONLY observable

state in the system (no state is maintained inside the actors)

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 11 (6/21/17)

Firing Rates, Firing Rules and Schedules

A firing rule defines the conditions that enable an actor to fire

In the above example, the firing rule checks that the actor’s input queues contain

at least one token

Therefore, actors are able to check the number of tokens in each of its queues

add

1 4

5 8

fire add

1

12

5

add

1

12

5

fire add
6 12

HW/SW Codesign w/ FPGAs Data Flow Modeling I ECE 522

ECE UNM 12 (6/21/17)

Firing Rates, Firing Rules and Schedules

The required number of tokens consumed and produced can be annotated on the

actors inputs and outputs, respectively

Therefore, this information combined with a marking makes is easy to decide

whether an actor can fire

Data Flow actors can also consume more than one token per firing

This is referred to as a multi-rate Data Flow graph

add

1

1

1

Inputs: token consumption rate

Outputs: token production rate

add

1 4
1

1

1

1

10
Not able to fire

add
2 11 4

fire add
2 1 5

