HW/SW Codesign Data Flow Software Implementation I ECE 522

fMapping DFGs to Software)
There are a wide variety of approaches of mapping DFGs to software

Software Mapping
of SDF

Sequential Parallel
single-processor multi-processor
Using a Dynamic Using a Static
Schedule Schedule

*Single-thread execution ‘ *Single-thread execution
*Multithreading *Inlined

*Processor Networks

Sequential implementations can make use of static or dynamic schedules

Parallel, multi-processor mappings require more effort due to:

* Load balancing: Mapping actors such that the activity on each processor is about
the same

e Minimizing inter-processor communication: Mapping actors such that communica-
tion overhead i1s minimized

. J
ECE UNM | (6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

\

fMapping DFGs to Software)

We focus first on single-processor systems, and in particular, on finding efficient ver-
sions of sequential schedules

As noted on the previous slide, there are two options for implementing the schedule:
* Dynamic schedule
Here, software decides the order in which acfors execute at runtime by testing
firing rules to determine which actor can run

Dynamic scheduling can be done in a single-threaded or multi-threaded execu-
tion environment

* Static schedule
In this case, the firing order is determined at design time and fixed in the imple-
mentation

The fixed order allows for a design time optimization in which the firing of mul-
tiple actors can be treated as a single firing
This in turn allows for ’inlined’” implementations

J

ECE UNM 2 (6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

\

fDFG Elements)

Before discussing these, let’s first look at C implementations of acfors and queues

FIFO Queues:
Although DFGs theoretically have infinite length gueues, in practice, queues are lim-
ited 1n size
We discussed earlier that constructing a PASS allows the maximum queue size
to be determined by analyzing actor firing sequences

O7—=0

void Q.put(element &) void & Q.get()
- —

<L> unsigned Q.getsize()

A typical software interface of a FIFO queue has two parameters and three methods

» The # of elements N that can be stored in the gueue and the data type of the ele-
ments

» Methods that put elements into the gueue, get elements from the gueue, and query
the current size of the queue

J

ECE UNM 3 (6/27/17)

HW/SW Codesign Data Flow Software Implementation I

ECE 522

\

fDFG Elements

Queues are well defined (standardized) data structures

A circular queue consists of an array, a write-pointer and a read-pointer

They use modulo addressing, e.g., the Ith element is at position (Rptr + I) mod

~\

Q.getsize()
Wprt Queue Rprt Queue Rprt Queue Rprt Queue Rprt
—> “— Wprt 5 |&— 5 |&— 5 |e&—
Wprt 6 Wprt 6
> N
Init After ‘put(5)’ After ‘put(6)’ ‘put(2)’ -- NO!
Queue is Full
Example fifo data structure definition in C:
#define MAXFIFO 1024
typedef struct fifo {
int data[MAXFIFO]; // array
unsigned wptr; // write pointer
unsigned rptr; // read pointer
} fifo t;
Y,
ECE UNM 4 (6/277/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522
fDFG Elements)
void init_fifo(fifo_t *F); // These functions defined

void put_fifo(fifo_t *F, int d); // in text
int get_fifo(fifo_t *F);
unsigned fifo_size(fifo_t *F);

int main()
{
fifo t F1;
init_fifo (&F1) ; // resets wptr, rptr
put_fifo(&F1, 5);
put_fifo(&F1l, 6);

}

Note that the queue size is fixed here at compile time

\

printf ("%d %d\n", fifo_size(&F1l), get_fifo(&F1l));
printf ("%d\n", fifo_size(&F1l)); // prints 1

Alternatively, gueue size can be changed dynamically at runtime using malloc()

J

ECE UNM 5

(6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522
DFG Elements)
Actors:

An actor can be represented as a C function, with an interface to the FIFOs

firing_rule

getSize() ! firing_rule
- i _>
I
iz pin] i 1
— . ! run()

| mro | v FIFO

]

1| Queue _Jr"“‘ L e 0] Queue
] I

i ! Actor Function

| FIFO | —— | FIFO

: Queue '1 Queue

rules to determine whether to execute the actor code

The local controller (FSM) of an actor has two states

invoked by a scheduler

work state: wait transitions to work when firing rules are satisfied

\

The actor function incorporates a finite state machine (FSM), which checks the firing

wait state: start state which checks the firing rules immediately after being

The actor then reads tokens, performs calculation and writes output tokens

J

ECE UNM 6

(6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

fExample C Implementation of DFG)
An example which supports up to 8 inputs and outputs per actor:

#define MAXIO 8
typedef struct actorio {
fifo t *1In[MAXIO], *out[MAXIO];

} actorio t;

An example actor implementation:
void fft2 (actorio_t *qg)
{
int a, b;
if(fifo _size(g->in[0]) >= 2) // Firing rule check
{
a = get_fifo(g->in[0]);
b = get_fifo(g->1in[0]) ;
put_fifo(g->out[0], a+b);
put_fifo(g->out[0], a-b);
}

. Y,
ECE UNM 7 (6/27/17)

HW/SW Codesign

Data Flow Software Implementation I

ECE 522

tion that instantiates ALL actors and gueues

void main() {

fifo_t gl, qg2;
actorio_t fft2_io = {{&gl},

init_fifo(&gl) ;
init_fifo(&g2) ;

fMapping DFGs to Single Processors: Dynamic Schedule
In a dynamic system schedule, the firing rules of the actors are tested at runtime

In a single-thread dynamic schedule, we implement the system scheduler as a func-

The scheduler typically calls the actors in a round-robin fashion

{&g2}1};

~\

J

while (1)
{
fft2_actor (&fft2_io);
// .. call other actors
}
}
g
ECE UNM 8 (6/27/17)

HW/SW Codesign Data Flow Software Implementation I

ECE 522

\

fMapping DFGs to Single Processors: Dynamic Schedule

Note that it is impossible to call the actors in the wrong order

\

This 1s true b/c each of them checks a firing rule that prevents them from run-

ning when there is no data available

An interesting question is ’1s there a call order of the actors that is best?’

while (1) {

L
2 1)
(b) SRC @ Q |

The schedule on the right shows that snk in (a) is called as often as src

1 2 System Schedule
(a) SRC > SNK void main() {
SNK

However, snk will only fire on even numbered invocations

(b) shows a problem that is not handled by static schedulers

src actor(&src io);
snk actor(&snk io);

Round-robin scheduling in this case will eventually lead to queue overflow

J

ECE UNM 9

(6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

fMapping DFGs to Single Processors: Dynamic Schedule)
The underlying problem with (b) is that the implemented firing rate differs from the

firing rate for a PASS, which is given as (src, snk, snk)

There are two solutions to this issue:
* Adjust the system schedule to match the PASS

void main ()

{

while (1) {
src_actor (&src_io) ;
snk_actor (&snk_io) ;
snk_actor (&snk_io) ;

}

Unfortunately, this solution defeats one of the goals of a dynamic scheduler, i.e., that
it automatically converges to the PASS firing rate

. J
ECE UNM 10 (6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

fMapping DFGs to Single Processors: Dynamic Schedule)
* A better solution is to add a while loop to the snk actor code to allow it to continue

execution while there are rokens in the queue

void snk_actor (actorio_t *g) {
int rl, r2;
while ((fifo_size(g->in[0]) > 0)) {
rl = get_fifo(g->in[0]);

// do processing

. Y,
ECE UNM 11 (6/27/17)

HW/SW Codesign

Data Flow Software Implementation I

ECE 522

\

t[0] >< f[0]
a2 Wi 1 \/

1] /\ 2]
t3] x w, :

(a)

Let’s implement the 4-point Fast Fourier Transform (FFT) shown above using a

dynamic schedule

> 3]

+

= £[0] +
= t[0]
= t[1]
= tf1]

0] = a

1] =b

2] = ¢

The array ¢ stores 4 (time domain) samples

The array f will be used to store the frequency domain representation of ¢

The FFT utilizes butterfly operations to implement the FFT, as defined on the right

side in the figure

The twiddle factor W(k, N) is a complex number defined as eTPTN | Wwith W(0, 4)
=land W(1,4)=-j

W(0,
- W(0O,
W0,
W(0O,
wi(o,
W(1,
'n'n'{C',
Wil,

(Mapping DFGs to Single Processors: Example Dynamic Schedule

\

4) * £[2] = £[0] + €[Z]
4) * €£[2] = £[0] - t,?.]
4) * t[3] = t[0] + t[3]
4y * €[3] = t[1] - t[3]
4) *.¢c = a + c

4) % d = b - .
4) * ¢ = a =g

4y * d = b + j.d

(b)

J

ECE UNM

12

(6/27/17)

HW/SW Codesign Data Flow Software Implementation I

ECE 522

(Mapping DFGs to Single Processors: Example Dynamic Schedule

1] fl2] £
.
3] X W, /\

> 3]

(a) (b)
The DFG for (a) is given as follows

reorder

* reorder: Reads 4 tokens and shuffles them to match the flow diagram

cessed by the bottom butterfly
e fft2: Calculates the butterflies for the left half of the flow diagram

ponent of the frequency domain representation

\

0] 0] a = £[0] + W(0,4) * £[2] = t[D] 4
b = £[0] - W(D,4) * £[2] = £[0] -
W, >< \/ = = £[1] + W(0,4) * t[3] = £[0] +
tz] = -1 d = £[1] - W{0D,4) * ©[3] = t[1] -
£[0] = a + W(D,4) * ¢ - a
f[1] = & + W(l,4) * d - b
f[2] = ¢ W(O,4) * ¢ = a
[3] = k - W(I,d} * d = h

[S e i

\

[2]
[2]
[3]
[3]

The #/0] and #/2] are processed by the top butterfly and ¢//] and ¢/3] are pro-

* fftdmag calculates the butterflies for the right half and produces the magnitude com-

J

ECE UNM 13

(6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

fMapping DFGs to Single Processors: Example Dynamic Schedule)
The implementation first requires a valid schedule to be computed

The firing rate is easily determined to be (G014 dfi2> Gfamag] = [1 25 11

void reorder (actorio_t *qg)
{
int vO, vl1, v2, Vv3;
while (fifo_size(g->in[0]) >= 4)
{
v0 = get_fifo(g->in[0]
vl = get_fifo(g->in[0]
v2 = get_fifo(g->in[0]
v3 = get_fifo(g->in[0]
], vO
2
1
3

put_fifo(g->out[0 ;
put_fifo(g->out[0], v2);
put_fifo(g->out[0], v1);
put_fifo(g->out[0], v3);
}
}
. Y,

ECE UNM 14 (6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522
(Mapping DFGs to Single Processors: Example Dynamic Schedule)
void fft2 (actorio_t *g)
{
int a, b;
while (fifo_size(g->in[0]) >= 2)
{
a = get_fifo(g->in[01]);
b = get_fifo(g->1in[01]);
put_fifo(g->out[0], a+b);
put_fifo(g->out[0], a-b);
}
}
_ J
ECE UNM 15 (6/277717)

HW/SW Codesign Data Flow Software Implementation I ECE 522

fMapping DFGs to Single Processors: Example Dynamic Schedule)
void fftdmag(actorio_t *qg)
{

int a, b, c, d;
while (fifo_size(g->in[0]) >= 4)

4

= get_fifo(g->in

4

a (1)
b = get_fifo(g->in[0])
c = get_fifo(g->in([0]);
d 1)
(a

[0
[0
[0
[0]);

14

= get_fifo(g->in

put_fifo(g->out[0], +c) * (a+c)) ;

put_fifo(g->out[0], b*b - d*d);
put_fifo(g->out[0], (a-c)*(a-c));
put_fifo(g->out[0], b*b - d*d);

}
}

while loops are used in all actors as a mechanism to deal with mismatches between
the scheduler’s calls to actors and their actual firing rates (as noted earlier)

. J
ECE UNM 16 (6/27/17)

HW/SW Codesign Data Flow Software Implementation I

ECE 522

//

\

(Mapping DFGs to Single Processors: Example Dynamic Schedule
int main()

{

fifo_t gl, g2, g3, g4;

actorio_t reorder_io = {{&gl}, {&g2}};
actorio_t fft2_io = {{&g2}, {&g31}};
actorio_t fftd4_io = {{&g3}, {&gd}};

4

init_fifo (&gl

4

init_fifo (&g3

4

()
init_fifo (&g2) ;
()
init_fifo(&g4)
Test vector fft([1 1 1 117)
put_fifo(&gl, 1)
put_fifo(&gl, 1);
put_fifo(&gl, 1)
put_fifo(&gl, 1)

\

J

ECE UNM

17

(6/27/17)

HW/SW Codesign Data Flow Software Implementation I ECE 522

\

fMapping DFGs to Single Processors: Example Dynamic Schedule

// Test vector fft([1 1 1 0])
put_fifo(&gl, 1
put_fifo(&gl, 1
put_fifo(&gl, 1
put_fifo(&gl, O

) ;
) ;
).
)

4

4

while (1)
{
reorder (&reorder_io) ;
fft2(&fft2_1io);
fftdmag (&fftd_io);
}

return 0O;

}

The deterministic property of SDFs and the while loops inside the actors allow the
call order shown above to be re-arranged while preserving the functional behavior

\

J

ECE UNM 18 (6/27/17)

