
HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 1 (6/27/17)

Mapping DFGs to Software

There are a wide variety of approaches of mapping DFGs to software

Sequential implementations can make use of static or dynamic schedules

Parallel, multi-processor mappings require more effort due to:

• Load balancing: Mapping actors such that the activity on each processor is about

the same

• Minimizing inter-processor communication: Mapping actors such that communica-

tion overhead is minimized

Software Mapping
of SDF

Sequential

single-processor

Parallel

multi-processor

*Processor Networks

Using a Static

Schedule

*Single-thread execution
*Inlined

Using a Dynamic

Schedule

*Single-thread execution
*Multithreading

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 2 (6/27/17)

Mapping DFGs to Software

We focus first on single-processor systems, and in particular, on finding efficient ver-

sions of sequential schedules

As noted on the previous slide, there are two options for implementing the schedule:

• Dynamic schedule

Here, software decides the order in which actors execute at runtime by testing

firing rules to determine which actor can run

Dynamic scheduling can be done in a single-threaded or multi-threaded execu-

tion environment

• Static schedule

In this case, the firing order is determined at design time and fixed in the imple-

mentation

The fixed order allows for a design time optimization in which the firing of mul-

tiple actors can be treated as a single firing

This in turn allows for ’inlined’ implementations

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 3 (6/27/17)

DFG Elements

Before discussing these, let’s first look at C implementations of actors and queues

FIFO Queues:

Although DFGs theoretically have infinite length queues, in practice, queues are lim-

ited in size

We discussed earlier that constructing a PASS allows the maximum queue size

to be determined by analyzing actor firing sequences

A typical software interface of a FIFO queue has two parameters and three methods

• The # of elements N that can be stored in the queue and the data type of the ele-

ments

• Methods that put elements into the queue, get elements from the queue, and query

the current size of the queue

void Q.put(element &) void & Q.get()

N
unsigned Q.getsize()

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 4 (6/27/17)

DFG Elements

Queues are well defined (standardized) data structures

A circular queue consists of an array, a write-pointer and a read-pointer

They use modulo addressing, e.g., the Ith element is at position (Rptr + I) mod

Q.getsize()

Example fifo data structure definition in C:

#define MAXFIFO 1024

typedef struct fifo {

int data[MAXFIFO]; // array

unsigned wptr; // write pointer

unsigned rptr; // read pointer

} fifo_t;

Queue
Wprt Rprt

Queue

Wprt

Rprt
5

Queue

Wprt

Rprt
5

6

Init After ’put(5)’ After ’put(6)’

Queue

Wprt

Rprt
5

6

’put(2)’ -- NO!
Queue is Full

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 5 (6/27/17)

DFG Elements

void init_fifo(fifo_t *F); // These functions defined

void put_fifo(fifo_t *F, int d); // in text

int get_fifo(fifo_t *F);

unsigned fifo_size(fifo_t *F);

int main()

 {

 fifo_t F1;

 init_fifo(&F1); // resets wptr, rptr

 put_fifo(&F1, 5);

 put_fifo(&F1, 6);

 printf("%d %d\n", fifo_size(&F1), get_fifo(&F1));

 printf("%d\n", fifo_size(&F1)); // prints 1

 }

Note that the queue size is fixed here at compile time

Alternatively, queue size can be changed dynamically at runtime using malloc()

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 6 (6/27/17)

DFG Elements

Actors:

An actor can be represented as a C function, with an interface to the FIFOs

The actor function incorporates a finite state machine (FSM), which checks the firing

rules to determine whether to execute the actor code

The local controller (FSM) of an actor has two states

wait state: start state which checks the firing rules immediately after being

invoked by a scheduler

work state: wait transitions to work when firing rules are satisfied

The actor then reads tokens, performs calculation and writes output tokens

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 7 (6/27/17)

Example C Implementation of DFG

An example which supports up to 8 inputs and outputs per actor:

#define MAXIO 8

typedef struct actorio {

fifo_t *in[MAXIO], *out[MAXIO];

} actorio_t;

An example actor implementation:

void fft2(actorio_t *g)

 {

int a, b;

if(fifo_size(g->in[0]) >= 2) // Firing rule check

 {

 a = get_fifo(g->in[0]);

 b = get_fifo(g->in[0]);

 put_fifo(g->out[0], a+b);

 put_fifo(g->out[0], a-b);

 }

 }

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 8 (6/27/17)

Mapping DFGs to Single Processors: Dynamic Schedule

In a dynamic system schedule, the firing rules of the actors are tested at runtime

In a single-thread dynamic schedule, we implement the system scheduler as a func-

tion that instantiates ALL actors and queues

The scheduler typically calls the actors in a round-robin fashion

void main() {

 fifo_t q1, q2;

 actorio_t fft2_io = {{&q1}, {&q2}};

 ...

 init_fifo(&q1);

 init_fifo(&q2);

while (1)

 {

 fft2_actor(&fft2_io);

 // .. call other actors

 }

 }

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 9 (6/27/17)

Mapping DFGs to Single Processors: Dynamic Schedule

Note that it is impossible to call the actors in the wrong order

This is true b/c each of them checks a firing rule that prevents them from run-

ning when there is no data available

An interesting question is ’is there a call order of the actors that is best?’

The schedule on the right shows that snk in (a) is called as often as src

However, snk will only fire on even numbered invocations

(b) shows a problem that is not handled by static schedulers

Round-robin scheduling in this case will eventually lead to queue overflow

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 10 (6/27/17)

Mapping DFGs to Single Processors: Dynamic Schedule

The underlying problem with (b) is that the implemented firing rate differs from the

firing rate for a PASS, which is given as (src, snk, snk)

There are two solutions to this issue:

• Adjust the system schedule to match the PASS

void main()

 {

 ..

while (1) {

 src_actor(&src_io);

 snk_actor(&snk_io);

 snk_actor(&snk_io);

 }

 }

Unfortunately, this solution defeats one of the goals of a dynamic scheduler, i.e., that

it automatically converges to the PASS firing rate

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 11 (6/27/17)

Mapping DFGs to Single Processors: Dynamic Schedule

• A better solution is to add a while loop to the snk actor code to allow it to continue

execution while there are tokens in the queue

void snk_actor(actorio_t *g) {

int r1, r2;

while ((fifo_size(g->in[0]) > 0)) {

 r1 = get_fifo(g->in[0]);

 ... // do processing

 }

}

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 12 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

Let’s implement the 4-point Fast Fourier Transform (FFT) shown above using a

dynamic schedule

The array t stores 4 (time domain) samples

The array f will be used to store the frequency domain representation of t

The FFT utilizes butterfly operations to implement the FFT, as defined on the right

side in the figure

The twiddle factor W(k, N) is a complex number defined as e-j2πk/N, with W(0, 4)

= 1 and W(1, 4) = -j

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 13 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

The DFG for (a) is given as follows

• reorder: Reads 4 tokens and shuffles them to match the flow diagram

The t[0] and t[2] are processed by the top butterfly and t[1] and t[3] are pro-

cessed by the bottom butterfly

• fft2: Calculates the butterflies for the left half of the flow diagram

• fft4mag calculates the butterflies for the right half and produces the magnitude com-

ponent of the frequency domain representation

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 14 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

The implementation first requires a valid schedule to be computed

The firing rate is easily determined to be [qreorder, qfft2, qfft4mag] = [1, 2, 1]

void reorder(actorio_t *g)

 {

int v0, v1, v2, v3;

while (fifo_size(g->in[0]) >= 4)

 {

 v0 = get_fifo(g->in[0]);

 v1 = get_fifo(g->in[0]);

 v2 = get_fifo(g->in[0]);

 v3 = get_fifo(g->in[0]);

 put_fifo(g->out[0], v0);

 put_fifo(g->out[0], v2);

 put_fifo(g->out[0], v1);

 put_fifo(g->out[0], v3);

 }

 }

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 15 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

void fft2(actorio_t *g)

 {

int a, b;

while (fifo_size(g->in[0]) >= 2)

 {

 a = get_fifo(g->in[0]);

 b = get_fifo(g->in[0]);

 put_fifo(g->out[0], a+b);

 put_fifo(g->out[0], a-b);

 }

 }

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 16 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

void fft4mag(actorio_t *g)

 {

int a, b, c, d;

while (fifo_size(g->in[0]) >= 4)

 {

 a = get_fifo(g->in[0]);

 b = get_fifo(g->in[0]);

 c = get_fifo(g->in[0]);

 d = get_fifo(g->in[0]);

 put_fifo(g->out[0], (a+c)*(a+c));

 put_fifo(g->out[0], b*b - d*d);

 put_fifo(g->out[0], (a-c)*(a-c));

 put_fifo(g->out[0], b*b - d*d);

 }

 }

while loops are used in all actors as a mechanism to deal with mismatches between

the scheduler’s calls to actors and their actual firing rates (as noted earlier)

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 17 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

int main()

 {

 fifo_t q1, q2, q3, q4;

 actorio_t reorder_io = {{&q1}, {&q2}};

 actorio_t fft2_io = {{&q2}, {&q3}};

 actorio_t fft4_io = {{&q3}, {&q4}};

 init_fifo(&q1);

 init_fifo(&q2);

 init_fifo(&q3);

 init_fifo(&q4);

// Test vector fft([1 1 1 1])

 put_fifo(&q1, 1);

 put_fifo(&q1, 1);

 put_fifo(&q1, 1);

 put_fifo(&q1, 1);

HW/SW Codesign Data Flow Software Implementation I ECE 522

ECE UNM 18 (6/27/17)

Mapping DFGs to Single Processors: Example Dynamic Schedule

// Test vector fft([1 1 1 0])

 put_fifo(&q1, 1);

 put_fifo(&q1, 1);

 put_fifo(&q1, 1);

 put_fifo(&q1, 0);

 while (1)

 {

 reorder(&reorder_io);

 fft2(&fft2_io);

 fft4mag(&fft4_io);

 }

 return 0;

 }

The deterministic property of SDFs and the while loops inside the actors allow the

call order shown above to be re-arranged while preserving the functional behavior

