
HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 1 (5/3/10)

The RISC Pipeline (A Practical Intro. to HW/SW Codesign, P. Schaumont)

Here we cover the internal architecture of a very common type of microprocessor, the

Reduced Instruction Set Computer (RISC)

The material in this section is typically covered in-depth in a CompArch course

We cover the basic ideas to allow us to deal with common codesign problems

In a RISC processor, the execution of a single instruction occurs in a pipeline

Each instruction operates on a set of registers contained within the processor

For example, the ARM processor contains 17 registers: data register r0 to r14, a

program counter register pc, and a processor status register cpsr

The Microblaze processor has 32 general-purpose registers (r0 to r31) and up to

18 special-purpose registers (such as the PC, the status register, etc.

Processor registers are used as operands or as targets for the processor instructions

The figure below shows a five-stage pipeline, in which standard instructions take 5

clock cycles to complete (this is the instruction latency).

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 2 (5/3/10)

RISC Pipeline: Operation and Hazards

Each dashed line represents a pipeline register

Instruction Fetch: an instruction is retrieved from memory or the instruction cache

Instruction Decode: an instruction is decoded and the register operands for this

instruction are fetched. Branch instructions will modify the PC during this phase

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 3 (5/3/10)

RISC Pipeline: Operation and Hazards

Execute: the operands are input to the datapath operators and executed

Buffer: the data memory is accessed using an address generated in the execute phase

Write-back: registers are updated to reflect the final result of the instruction execu-

tion

In an ideal situation, the architecture above can complete 1 instruction per clock

cycle (this is instruction throughput)

Even though instruction latency is 5 clock cycles, the pipeline enables over-

lapped execution of these instructions to increase throughput

The clock cycle time is limited by the slowest component in the pipeline, plus the

overhead of the pipeline registers (clock skew and setup)

If a pipeline stage is too slow, additional pipeline stages can be added spreading the

computation over multiple clock cycles

Doing so also extends the instruction latency

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 4 (5/3/10)

RISC Pipeline: Operation and Hazards

The ideal situation of one instruction per clock cycle is the best case scenario

A pipeline stall occurs when the progress of instructions through the pipeline is tem-

porarily halted

The cause of such a stall is a pipeline hazard

Pipeline interlock hardware can detect pipeline hazards and resolve them automati-

cally in many cases, but stalls still occur

There are several types of pipeline hazards

We discuss these in the context of examples from a ARMv6 processor

The following generalizations can be made:

• Control hazards are caused by branches

• Data hazards are caused by unfulfilled data dependencies

• Structural hazards are caused by resource conflicts and cache misses

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 5 (5/3/10)

Control Hazards

Branches are the most common form of pipeline stalls

As shown in the pipeline architecture, a branch is only executed in stage 2 of the

pipeline

When this occurs, another instruction has already entered the pipeline

This instruction follows the branch instruction sequentially, so if the branch is

taken, its execution needs to be cancelled

The next slide illustrates a control hazard

The pipeline is shown drawn on its side, running from left to right and time runs

down across the rows

A control hazard occurs because of the branch instruction ble TGT

In cycle 2, the new program counter value evaluates to the target address of the

branch, TGT

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 6 (5/3/10)

Control Hazards

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 7 (5/3/10)

Control Hazards

Note that ble is a conditional branch that uses the result of the instruction just before

that (cmp r0, #5)

And the interlock hardware in the pipeline makes the branch condition available

in cycle 2

The instruction following the branch is cancelled in the decode stage, and the unused

slot progress through the remaining pipeline stages

Starting in cycle 3, instructions from the target address TGT enter the pipeline

Some processors (including the Microblaze) have a branch-delay instruction

A branch-delay instruction that allows the instruction following the branch to com-

plete even when the branch is taken

The instruction inserted into the branch-delay slot must be an instruction that

would execute independent of the branch

The compiler can automatically determine candidate instructions for the slot --

if none exist, a NO-OP instruction is inserted

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 8 (5/3/10)

Control Hazards

This fills in the stall slots with execution of an instruction at X+4

int accumulate() {

 int i, j;

 for (i=0; i<100; i++)

 j += i;

 return j;

 }

Compiling generates the following assembly code for Microblaze:

 addk r4,r0,r0 ;clear r4 (holds i)

 addk r3,r3,r4 ;j = j + i

$L9:

 addik r4,r4,1 ;i = i + 1

 addik r18,r0,99 ;r18 <- 99

 cmp r18,r4,r18 ;compare i and 99

 bgeid r18,$L9 ;delayed branch if not equal

addk r3,r3,r4 ;j = j + i (branch delay slot)

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 9 (5/3/10)

Data Hazards

Registers are updated only during the write-back phase

However, it is possible that a register value is required before that value has reached

the write-back phase

Consider the instructions:

MOV r0, #5

ADD r1, r0, r1

By the time the MOV instruction reaches the write-back stage, the ADD instruction

will be in the buffer stage, and the addition would have already completed

This situation will be detected by the pipeline interlock, which will stall part of the

pipeline

When the data becomes available, it will be directly forwarded to the execution

stage where it is needed

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 10 (5/3/10)

Data Hazards

In some cases, forwarding is NOT possible b/c the data is simply not yet available

This happens when a read-from-memory instruction is followed by an instruc-

tion that uses the data coming from memory

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 11 (5/3/10)

Data Hazards

The second instruction fetches data from memory and stores it in register r1

The following add instruction uses the data from that register as an operand

In cycle 4, the add instruction reaches the execute stage

However, at that moment, the ldr instruction is still accessing the data memory

The new value of r1 is only available at the start of cycle 5

Therefore, the interlock hardware will stall all stages preceding the buffer stage

in cycle 4

Data hazards can lengthen the execution time of an instruction

For classic RISC processors, data hazards can be predicted statically, by examining

the assembly program

When the execution time of a program needs to be estimated exactly, a programmer

will need to be able to identify all data hazards and their effects

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 12 (5/3/10)

Structural Hazards

Structural Hazards are caused by instructions that require more resources than the

processor has available

These cause stalls to be introduced into the pipeline, similar to data and control

hazards

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 13 (5/3/10)

Structural Hazards

Here, the ldmia instruction is a load-multiple instruction that will read consecu-

tive memory locations and store the resulting values in memory

In the example shown, the value stored in address r0 will be copied to r1, while the

value stored in address r0+4 will be copied to r2

When the ldmia instruction reaches the execute stage, the execute stage will be

busy for two clock cycles in order to evaluate the memory addresses r0 and r0+4

Therefore, all pipeline stages before the execute stage are halted for a single clock

cycle

A structural hazard is caused by the processor architecture, but it may have a wider

range of causes

• The width of memory ports

• The number of execution units in the data-path

• Restrictions on the communication busses

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 14 (5/3/10)

Structural Hazards

A programmer can only predict structural hazards through a solid understanding of

the processor architecture

Furthermore, memory latency effects can also cause the execution time of the buffer

stage to vary

A cache miss for example can extend the latency of a load-memory instruction

to hundreds of cycles

Program Organization

Here, we will look at the relationship between a C program and its implementation

on a RISC processor

This includes:

• A discussion of the main parts of a C program and their mapping to instructions and

into sections of memory

• The organization of a C program into binary format

• And the link between a C program and the RISC architecture

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 15 (5/3/10)

Program Organization

While the examples will be made for ARM and MicroBlaze RISC processors, the

ideas explained here are generic and applicable to many other RISC processors

A good hardware/software codesigner tries to be as architecture-independent as

possible, to enable easy movement between architectures

In fact, it is possible to do a decent performance analysis of a C program at the cycle-

accurate level, without detailed knowledge of the instruction-set of a processor

Data Types

C program data types are a good starting point to discuss the mapping of C programs

to RISC processors

The following table shows how C maps to the native data types supported by ARM

and Microblaze processors

All C data types, apart from char, are treated as signed (two’s complement) numbers

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 16 (5/3/10)

Program Organization (Data Type)

The difference between operations on two’s complement (signed) numbers and oper-

ations and unsigned numbers is minor

Signed numbers may require sign extension

In addition, the comparison of signed numbers is different from the comparison of

unsigned numbers

When comparing unsigned bytes, 0xff is bigger then 0x01, but is smaller for

signed numbers

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 17 (5/3/10)

Program Organization (Data Type)

The mapping of C data types to physical memory locations is affected by several fac-

tors

First, data types need to follow the rules of data type alignment, which define what

are the allowed starting addresses for data types in memory

A RISC processor will access the data memory at pre-defined physical boundaries,

typically one word (32 bits) at a time

Thus, a single memory transfer may be able to access any of the four bytes in a word

But a group of four bytes across a word boundary cannot be accessed in a sin-

gle memory transfer

For this reason, data types may need alignment in the physical memory organization,

and this restricts the location of these data types in logical address space

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 18 (5/3/10)

Program Organization (Data Type)

A second factor that affects the mapping of data types is the storage order (see Figure

6.7b)

A little-endian storage order will map the least significant bytes of a word into

lower memory locations (big-endian storage order is the opposite)

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 19 (5/3/10)

Program Organization (Data Type)

In C, you do not need to worry about the endianess

In hardware/software codesign, the physical representation of data types is important

in the transition of software to hardware and back

Hence, the endianess of a processor (and in some cases even the bit-ordering) is

important

It is easy to check the endianess of a given processor using a small C program:

int main() {

 char j[4];

 volatile int *pj;

 pj = (int *) j;

 j[0] = 0x12;

 j[1] = 0x34;

 j[2] = 0x56;

 j[3] = 0x78;

 printf("‰x\n", *pj); }

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 20 (5/3/10)

Program Organization (Data Type)

For this program

• A little-endian processor will print 78563412

• A big-endian processor will print 12345678

 Microblaze processor is big-endian, while an ARM processor is (normally) little-

endian

