
HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 1 (4/21/10)

Micro-program Interpreters (A Practical Intro. to HW/SW Codesign, P. Schaumont)

A micro-program is a highly-optimized sequence of commands (optimized for paral-

lelism) for a datapath

Writing efficient micro-programs requires an in-depth understanding of the machine

architecture

A common usage of micro-programs is to serve as interpreters for other programs,

and not to encode complete applications

An interpreter is a machine that decodes and executes instruction sequences of an

abstract high-level machine -- a macro-machine

The instructions from the macro-machine will be implemented as micro-programs

A micro-program interpreter is designed as an infinite loop

It reads a macro-instruction byte and decodes it into opcode and operand fields

It then takes specific actions depending on the values of the opcode

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 2 (4/21/10)

Micro-program Interpreters

A micro-program interpreter

Consider the following simple machine as a programmers’ model of the macro-

machine

It has four registers RA through RD, and two instructions for adding and multiplying

those registers

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 3 (4/21/10)

Micro-program Interpreters

The macro-machine has the same wordlength as the micro-programmed machine but

has fewer register than the micro-programmed machine

To implement the macro-machine, we map the macro-register set directly onto the

micro-register set (as shown above)

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 4 (4/21/10)

Micro-program Interpreters

This leaves register R0 to R3, and the accumulator, available to implement macro-

instructions

The macro-machine has two instructions: ADD and MUL, which take two source

operands (in the macro-machine registers) and generates one

The micro-machine needs a decoder for macro-instructions (which are 1 byte wide)

The format is two bits for the macro-opcode, and two bits for each of the macro-

instruction operands

Consider the following implementation the ADD and MUL instructions:

 1 //---

 2 // Macro-machine for the instructions

 3 //

 4 // ADD Rx, Ry, Rz

 5 // MUL Rx, Ry, Rz

 6 //

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 5 (4/21/10)

Micro-program Interpreters

 7 // Macro-instruction encoding:

 8 // +----+----+----+----+

 9 // | ii + Rx + Ry + Rz +

10 // +----+----+----+----+

11 //

12 // where ii = 00 for ADD

13 // 01 for MUL

14 // where Rx, Ry and Rz are encoded as follows:

15 // 00 for RA (mapped to R4)

16 // 01 for RB (mapped to R5)

17 // 10 for RC (mapped to R6)

18 // 11 for RD (mapped to R7)

19 //

20 // Interpreter loop reads instructions from input

21 macro: IN -> ACC

22 (ACC & 0xC0) >> 1 -> R0 // shift 6 right

23 R0 >> 1 -> R0 // most bits off

24 R0 >> 1 -> R0

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 6 (4/21/10)

Micro-program Interpreters

25 R0 >> 1 -> R0

26 R0 >> 1 -> R0

27 R0 >> 1 -> R0 || JUMP_IF_NZ mul

28 (no_op) || JUMP add

29 macro_done: (no_op) || JUMP macro

30

31 //---

32 //

33 // Rx = Ry + Rz

34 //

35 add: (no_op) || CALL getarg

36 ACC -> R0

37 R2 -> ACC

38 (R1 + ACC) -> R1

39 R0 -> ACC || CALL putarg

40 (no_op) || JUMP macro_done

41

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 7 (4/21/10)

Micro-program Interpreters

42 //---

43 //

44 // Rx = Ry * Rz

45 //

46 mul: (no_op) || CALL getarg

47 ACC -> R0

48 0 -> ACC

49 8 -> R3

50 loopmul: (R1 << 1) -> R1 || JUMP_IF_NC nopartial

51 (ACC << 1) -> ACC

52 (R2 + ACC) -> ACC

53 nopartial: (R3 - 1) -> R3 || JUMP_IF_NZ loopmul

54 ACC -> R1

55 R0 -> ACC || CALL putarg

56 (no_op) || JUMP macro_done

57

58 //--

59 //

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 8 (4/21/10)

Micro-program Interpreters

60 // GETARG

61 //

62 getarg: (ACC & 0x03) -> R0 || JUMP_IF_Z Rz_is_R4

63 (R0 - 0x1) || JUMP_IF_Z Rz_is_R5

64 (R0 - 0x2) || JUMP_IF_Z Rz_is_R6

65 Rz_is_R7: R7 -> R1 || JUMP get_Ry

66 Rz_is_R6: R6 -> R1 || JUMP get_Ry

67 Rz_is_R5: R5 -> R1 || JUMP get_Ry

68 Rz_is_R4: R4 -> R1 || JUMP get_Ry

69 get_Ry: (ACC & 0x0C) >> 1 -> R0

70 R0 >> 1 -> R0 || JUMP_IF_Z Ry_is_R4

71 (R0 - 0x1) || JUMP_IF_Z Ry_is_R5

72 (R0 - 0x2) || JUMP_IF_Z Ry_is_R6

73 Ry_is_R7: R7 -> R2 || RETURN

74 Ry_is_R6: R6 -> R2 || RETURN

75 Ry_is_R5: R5 -> R2 || RETURN

76 Ry_is_R4: R4 -> R2 || RETURN

77

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 9 (4/21/10)

Micro-program Interpreters

78 //---

79 //

80 // PUTARG

81 //

82 putarg: (ACC & 0x30) >> 1 -> R0

83 R0 >> 1 -> R0

84 R0 >> 1 -> R0

85 R0 >> 1 -> R0 || JUMP_IF_Z Rx_is_R4

86 (R0 - 0x1) || JUMP_IF_Z Rx_is_R5

87 (R0 - 0x2) || JUMP_IF_Z Rx_is_R6

88 Rx_is_R7: R1 -> R7 || RETURN

89 Rx_is_R6: R1 -> R6 || RETURN

90 Rx_is_R5: R1 -> R5 || RETURN

91 Rx_is_R4: R1 -> R4 || RETURN

The micro-interpreter loop, on line 21-29, reads one macro-instruction from the

input, IN, and stores it in the ACC register

It determines the macro-instruction opcode with a couple of shift instructions

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 10 (4/21/10)

Micro-program Interpreters

The opcode field determines whether the micro-program jumps to ADD or MUL rou-

tine (We assume that single-level calls to subroutines are supported)

Macro-instructions can use one of four possible operand registers -- therefore, an

additional register-move operation, putarg and getarg, is needed

getarg subroutine copies data from the macro-machine source registers (RA through

RD) to the micro-machine source working registers (R1 and R2)

putarg subroutine moves data from the micro-machine destination working register

R1 back to the destination macro-machine register (RA through RD).

Note that the implementation of MUL preserves only the lower order byte of the

product (need 16-bits for 2 8-bit operands)

A micro-programmed interpreter can create the illusion of a machine that has more

powerful instructions than the original micro-programmed architecture

Bear in mind the performance impact introduced by the many-to-one mapping

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 11 (4/21/10)

Micro-program Interpreters

The concept of micro-program interpreters has been used extensively to design pro-

cessors with configurable instruction sets

And it was originally used to enhance the flexibility of expensive hardware

Today, the technique of micro-program interpreter design is still very useful for creat-

ing an additional level of abstraction on top of a micro-programmed architecture

Micro-program Pipelining

Pipeline registers can be used to break up the micro-program controller logic

However, adding pipeline registers has a large impact on the design of micro-pro-

grams

First consider that the CSAR register (next slide) is part of possibly three combina-

tional logic loops

• First loop runs through the next-address logic

• Second loop runs through the control store and the next-address logic

• Third loop runs through the control store, the data path, and the next-address logic

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 12 (4/21/10)

Micro-program Pipelining

These combinational paths may limit the maximum clock frequency of the micro-

programmed machine

There are three common places where pipeline registers may be inserted, as shown

above with shaded boxes

• At the output of the control store: as a micro-instruction register

Inserting a register there allows overlap of the datapath evaluation, the next

address evaluation, and the micro-instruction fetch

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 13 (4/21/10)

Micro-program Pipelining

• In the datapath

Also, additional condition-code registers can be inserted on datapath outputs

• For the next-address logic

 For high-speed operation when the target CSAR address cannot be evaluated

within a single clock cycle

Micro-instruction Register

Note that each of these registers cuts through a different update-loop of the CSAR

register

Therefore, each of them will have a different effect on the micro-program

 Consider the effect of adding the micro-instruction register

With this register in place, the micro-instruction fetch is offset by one cycle

from the evaluation of that micro-instruction

For example, when the CSAR is fetching instruction i, the datapath and next-

address logic will be executing instruction i - 1

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 14 (4/21/10)

Micro-program Pipelining

Consider this offset under the condition that the instruction stream contains a jump

instruction

The micro-programmer entered a JUMP 10 instruction in CSTORE location 4, and

which is fetched in clock cycle N

In clock cycle N+1, the micro-instruction will appear at the output of the micro-

instruction register and its execution will complete in cycle N+2

For a JUMP, this means that the CSAR should NOT point to the next instruction in

cycle N+2, but the instruction at N+2 has already been fetched

This instruction needs to be canceled

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 15 (4/21/10)

Micro-program Pipelining

There are two ways to deal with this problem:

• Programmer takes into account that a JUMP will be executed with one cycle of

delay (so-called ’delayed branch’)

• Include support in the micro-programmed machine to cancel the execution of an

instruction in case of a jump

Datapath Condition-Code Register

Assume that we have a condition-code register in the datapath, in addition to a micro-

instruction register

The fact that its a register means that the actual condition code will not be available

in the current clock cycle (when the expression is evaluated)

Therefore, conditional-jump instructions can only operate on datapath conditions

from the previous clock cycle

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 16 (4/21/10)

Datapath Condition-Code Register

Here, the branch instruction in CSTORE(4) is a conditional jump

When the condition is true, the jump will be executed with one clock cycle delay

The JZ instruction implements the jump in cycle N+2, which tests the condition code

generated in cycle N+1 and which becomes available in N+2

Here, the micro-programmer just needs to be aware that condition flag need to be

generated one clock cycle before they are used in conditional jumps

Note instruction at N+3 needs to be cancelled if jump is taken

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 17 (4/21/10)

Pipelined Next-address Logic

Assume that there is a third level of pipelining available inside of the next-address

update loop

For simplicity, we will assume there are two CSAR registers back-to-back in the

next-address loop

The output of the next-address-logic is fed into the CSAR pipeline register

And the output of CSAR pipeline register is connected to CSAR

Assuming all registers are initially zero, the two CSAR registers in the next-address

loop result in two (independent) address sequences

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 18 (4/21/10)

Pipelined Next-address Logic

We see that each instruction of the micro-program is executed twice!

What is needed is a careful initialization of CSAR pipe and CSAR such that they start

out at different values (e.g. 1 and 0)

Unfortunately, this needs to be done for each jump instruction too

This complicates the design and the programming of pipelined next-address logic

These examples show that a micro-programmer must be aware of the implementa-

tion details of the micro-architecture

In particular, he/she MUST be aware of all the delay effects caused by registers

This significantly increases the complexity of the development of micro-pro-

grams

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 19 (4/21/10)

Picoblaze: A Contemporary Microprogram Controller

When complex systems are created in hardware, the design of an adequate control

architecture is often a key problem

In this section, we illustrate a possible solution based on the use of a micro-controller

Most FPGA companies now offer small programmable, synthesizable controllers

This includes for example Picoblaze (Xilinx), Mico8 (Lattice Semiconductor)

or Avalon (Altera)

These controllers have only minimal computational capabilities, such as an ALU

with basic logical and arithmetic operations

However, they do implement an instruction-fetch engine, and as such as they are

well suited as controllers for larger circuits

They also come with a pseudo-assembly instruction-set, that allows for easy design

of control programs

For these reasons, these controllers are well suited as replacement for FSMs

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 20 (4/21/10)

Picoblaze: A Contemporary Microprogram Controller

Here, we consider another use of these controllers, namely using them as micro-pro-

gram controllers

Picoblaze

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 21 (4/21/10)

Picoblaze: A Contemporary Microprogram Controller

The Picoblaze controller is an 8-bit architecture with an internal program memory

The controller has several additional ports that are helpful for using this module as a

system controller

• An 8-bit input port in_port can read in 8-bit values

• An 8-bit output port out_port can produce 8-bit values

• A port identifier port_id carries a port address

This allows the picoblaze controller to distinguish 256 multiplexed input and

output ports

• A read_strobe and write_strobe synchronizes input/output operations on

the I/O ports

• Additional control lines will initialize the controller (reset) or will handle inter-

rupts (interrupt, interrupt_ack)

The Picoblaze controller has several instructions to communicate through I/O ports

OUTPUT sX, sY; // write contents of

 // reg sX to port ID reg sY

HW/SW Codesign w/ FPGAs Microprogramming III ECE 495/595

ECE UNM 22 (4/21/10)

Picoblaze: A Contemporary Microprogram Controller

OUTPUT sX, kk; // write contents of reg

 // sX to port ID const kk

INPUT sX, sY; // read contents of port ID

 // reg sY into reg sX

INPUT sX, kk; // read contents of port ID

 // const kk into reg sX

In the figure above, I/O ports are used to control several datapath sub-modules

Combining the port address and the port data, we can communicate up to 16 bits of

data per Picoblaze instruction to the datapath sub-modules

Thus, we need to use a vertically-encoded micro-instruction to accommodate a

large number of logic modules

This is shown by the decoders on top of each logic module

Also, there can be up to 8 bits of status information feed back to the Picoblaze con-

troller

