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Abstract 

Malicious modification of integrated circuit (IC), referred to as hardware Trojan, is an impending threat 
in the electronics industry. Increased reliance on 3rd party hardware intellectual property (IP) and 
automation tools in the IC design flow, as well as outsourcing of design/fabrication steps to external 
parties due to economic reasons, are rapidly increasing the vulnerability to Trojan attacks. An intelligent 
adversary can insert a tiny hard-to-detect Trojan into a large design, which can easily evade conventional 
post-silicon test and validation leading to catastrophic consequence. A Trojan attack can be mounted at 
different stages of IC life cycle with an objective to cause in-field operational failure or leak secret 
information from inside a chip – e.g. the key in a cryptographic IC. In this article, we analyze the Trojan 
problem and propose a comprehensive protection approach against Trojan attacks, combining pre-
deployment design/validation techniques with post-deployment online monitoring. 
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1. HARDWARE TROJAN ATTACKS: THE PROBLEM 

The issue of trust is an emerging problem in integrated circuit (IC) security [1, 2]. It has become 
prominent recently due to widespread outsourcing of the IC manufacturing processes to untrusted 
foundries in order to reduce cost. An adversary can potentially tamper a design in these fabrication 
facilities to cause undesired change in IC functionality, integrity or reliability through 
addition/deletion/alteration of the circuit structure, popularly referred to as Hardware Trojan attacks. On 
the other hand, third-party computer-aided design (CAD) tools and hardware intellectual property (IP) 
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Figure 1: Hardware Trojan attacks of different forms – a) combinational and sequential Trojans causing 
malfunction; b) a Trojan with capability of leaking secret information from inside a processor and can be exploited 
by software; and c) a Trojan with distributed trigger condition. 
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modules increasingly used in a Systems-on-Chip (SoC) design house greatly enhances the vulnerability to 
malicious design modifications [2]. Trojan attacks are intended to affect normal circuit operation, 
potentially with catastrophic consequences in critical applications in the domains of communications, 
space, military, and nuclear facilities. They can also aim at leaking secret information from inside a chip 
through covert channels or affect the reliability of an IC through undesired process changes that cause 
device/interconnect wear-out and long-term reliability issues [1]. Furthermore, they can be used to assist 
software attacks by providing hardware backdoor. Broadly, two types of Trojans can be inserted in a 
digital circuit: combinational Trojans – activated by a rare combination of internal node values, and 
sequential Trojans – activated through a sequence of rare events. Fig. 1(a) shows a circuit with a Trojan 
instance along with example of combinational and sequential Trojans, which are designed to cause 
malfunction under specific condition. Fig. 1(b) shows an example Trojan which aims at leaking secret key 
from inside a processor and can be exploited by either the software or input data. The Trojan circuit can 
be localized or distributed in a chip. An example of Trojan with distributed trigger condition is presented 
in Fig. 1(c). Note that a trigger condition or the payload of a Trojan can be either digital or analog – e.g. a 
Trojan can be triggered by temperature.  

 
A recently reported Trojan attack involves U.S. Navy, who discovered a hardware “back-door” in a 
microchip used in everything from missiles to transponders. If left undiscovered, the chips could have 
been hacked, able to shut off a missile in the event of war or lie around just waiting to malfunction [15]. 
A compelling aspect of this threat model lies in growing vulnerability of modern microchips towards 
these attacks, as exposed by researchers as well as hackers. With decreasing control on the IC design and 
fabrication steps, vulnerability to Trojan attacks of various forms is rapidly increasing. Hence, there is a 
critical need to develop low-cost design and test solutions that provide comprehensive protection against 
these attacks and thus enables trusted field operation of modern ICs.   
 
2. OVERVIEW OF PROTECTION APPROACHES 

Conventional post-manufacturing test using functional/structural/random patterns cannot reliably 
detect hardware Trojans. This is because manufacturing test generation and application aim at detecting 
defects that cause deviation from functional or parametric specifications. They do not aim at detecting 
additional functionalities or deviation in circuit behavior triggered by rare events. Reliable detection of 
hardware Trojan using post-silicon validation involves some major challenges. First, an adversary can 
exploit inordinately large number of Trojan instances of varying forms and sizes [1, 2]. Second, due to 
their stealthy nature, activating arbitrary Trojan instances and observing their effects can be extremely 
difficult. Hence, deterministic and exhaustive validation approaches appear infeasible.  

 

           
                                                (a)                                                                                 (b) 

Figure 2: (a) Taxonomy of design and test techniques for protection against Trojan attacks; (b) an integrative 
protection approach that combines the benefits of design, test and online monitoring solutions. 
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Existing research efforts for protection against Trojan attacks have focused on both design and 

validation techniques. Fig. 2(a) shows broad classification of the protection techniques that apply at 
different stages of IC life-cycle. The design approaches make hard-to-detect Trojan insertion difficult or 
facilitate detection during post-silicon validation [3, 6]. Post-manufacturing Trojan detection approaches 
[1, 2] can be classified into two categories. Destructive testing by de-packaging, de-metallization and 
micro-photography based reverse-engineering of a chip is highly expensive and may not work if an 
attacker selectively tamper only a subset of the manufactured ICs [1]. Logic testing approaches, both 
functional and structural, aim at developing directed test patterns to activate Trojan instances and 
propagate their effects to output ports [5]. Although robust under process and measurement noise, these 
approaches are generally not effective in triggering large Trojans consisting of complex combinational or 
sequential triggering conditions [5]. An alternative approach is to measure physical side-channel 
parameters, such as supply current [8-9] or path delay [4], which can manifest unintended design 
modifications. However, the effectiveness of side-channel analysis is reduced by large device parameter 
variations in nanoscale process technologies, which can mask the effect of small Trojans. Table I provides 
a comparison of two major validation paradigms. Non-destructive validation can also be performed at 
run-time [1] using online monitoring of critical circuit operations. Such approaches provide a last line of 
defense against Trojan attacks.  

 
Table II compares the Trojan detection capability of alternative approaches. Logic testing and side-
channel analysis based validation provide complementary capabilities in detecting Trojans of different 
types and sizes. Hence, a post-manufacturing validation approach that combines their benefits can be 
effective in maximizing the Trojan coverage. For applications which require highest level of assurance 
against Trojan attack, we need to combine post-manufacturing validation with online monitoring. Finally, 
validation approaches – both post-manufacturing and online – need to be complemented with low-cost 
design-for-security (DfS) solutions, which hardens a design with respect to Trojan insertion or facilitates 
Trojan detections during validation. Based on these observations, we propose an integrative protection 
approach, as illustrated in Fig. 2(b), which combines the benefits of different protection approaches and 
provides comprehensive coverage against Trojan of all types and sizes.  

3. DESIGN FOR TROJAN DETECTION 

Trojan detection during post-manufacturing test needs to address major challenges due to rare 
activating nets in the circuit, process variations, and measurement noise [3]. To improve the effectiveness 

Table I: Comparison of logic testing and side-channel analysis based Trojan detection 

Logic Testing Side-Channel Analysis

Pros ● Robust under process noise

● Effective for ultra-small Trojans

● Effective for large Trojans

● Easy to generate test vectors

Cons ●Difficult to generate test vectors

● Large Troj. detection challenging

●Vulnerable to process noise

● Ultra-small Troj. Det. challenging
 

Table II: Capability of Trojan detection schemes to identify different hardware Trojan types and sizes 

Troj. Size 
Troj.  
Type 

Large Small 

Localized Distributed Localized Distributed 

Digital 
Combinational 

Logic 
Testing 

Side-Channel 
(IDDT) + Online 

Logic Testing + 
Online 

Side-Channel 
(IDDT) 

Sequential 
Side-

Channel 
Side-Channel 

(IDDQ) 
Side-Channel 

(IDDT) 
Side-Channel 

(IDDT) 

Analog Side-Channel (IDDT, IDDQ, Others) + Online 
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of these detection methods, ICs should be designed with these detection strategies in mind. We outline 
two design-for-security approaches that can enhance Trojan detection using logic testing as well as side-
channel signal analysis [8]. 

 
3.1 Removing Rare-Triggered Nets 

Trojan circuits are stealthy and are typically triggered by rare conditions. Hence, improving Trojan 
detection can be tackled in two different ways: (1) generating deterministic test patterns intelligently to 
detect the impact of Trojans on design characteristics beyond process and environmental variations, 
which however is extremely challenging since the location, type, and size of the Trojans are unknown; 
and (2) changing the design such that random test patterns can effectively activate Trojans. 

The stealthy nature of Trojans suggests that they are activated only under very rare conditions – e.g. a 
rare circuit state, certain temperature or noise to avoid accidental detection using structural or functional 
patterns. As an example, a Trojan can have q > 1 trigger inputs which can be nets with (i) very low 
transition probabilities, or (ii) rare combinations. When the transition probability of Neti is very low, 
either Pi(0) >> Pi(1) or Pi(1) >> Pi(0). With q number of trigger inputs, the probability of generating a 
specific trigger vector is Ptrigger-vector = ∏Pi (i=1 to q). Here, we assume statistical independence 
between vectors applied by scan architecture. It is expected that Ptrigger−vector is very low if Pis are low. 
By increasing the transition probability of nets with low transition rate, it is possible to eliminate hard-to-
activate sites in a design. Note that scan architecture allows access to internal cells of the circuits, thereby 
improving controllability and observability for internal nodes. To remove hard-to-activate sites, dummy 
scan flip-flops, depicted in Fig. 3, can be inserted to increase transition probability of design nets with 
transition probability less than a threshold (Pth) [6]. Note that such design modifications can be done even 
if the low-level netlist is not trusted. 

 
The probabilities of ‘1’ and ‘0’ at the output of scan flip-flop and primary inputs are assumed ½ if a 

random pattern is applied. Thus, by supplying internal nets with equal ‘1’ and ‘0’ probabilities, the 
transition probabilities on target nets can be increased. In [6], it is proven that by inserting dSFF-AND, 
shown in Fig. 3, when Pi(0) of a net is much lower than its Pi(1), the transition probability of the net can 
be increased. Dummy scan flip-flop insertion can increase the ratio of Trojan to circuit power 
consumption by increasing activity in Trojan circuit, which increases the numerator of the ratio. 

 
The proposed scheme will be resilient against various tampering and removal attacks. For instance 

attacker may use the scan enable signal (i.e. test control) as trigger for Trojans. This will make the 
Trojans stay quiet during test mode. However, we can target the Trojans during capture mode of the test 
process. We have demonstrated that this technique would still be very effective in detecting Trojans if we 
were to switch between shift mode and capture mode [16]. 

 
3.2 Increasing Localized Switching 

Minimizing normal circuit switching with respect to Trojan increases Trojan-to-Circuit Activity 
(TCA) ratio, defined as the ratio of activity inside a Trojan circuit to circuit activity. This would 
significantly increase the probability of detecting smaller Trojans whose impact on circuit power is small 
or negligible. The total power consumption of the circuit under test is highly correlated with the total 
number of transitions in the scan cells during scan-based pattern application. During scan insertion, scan 
cells are grouped into a number of scan chains based on different criteria. It is possible to reorder scan 
cells based on their final physical location in the layout. Layout-aware scan-cell reordering can localize 
switching activity to one region while limiting it in other regions in a design [7]. It obtains placement 
information of scan cells and re-stitches the scan chains based on the physical information and the number 
of regions (N). Finally, the netlist is updated with re-stitched cells for routing.  
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Table III shows the effectiveness of scan-cell reordering in limiting switching activity in any target region 
for s38417 and s35932 benchmarks. Scan cells in both benchmarks are grouped into N=4 scan chains 
using layout-aware scan-cell reordering. The simulation is run four times and a total of 132 random 
patterns are applied to the circuits. Patterns apply random ‘0’ and ‘1’ to the scan chain covering the target 
region (region 4) while ‘0’ is applied to all other scan chains. The percentage of activity in each region is 
reported in the table as (Run1, Run2, Run3, Run4). The results clearly indicate that in all four runs, 
switching activity is mostly limited to region 4 while the other regions are kept fairly inactive in both 
benchmarks. This will significantly increase the TCA, thus improving the detection probability. Our 
results show that this technique is very effective for small and large Trojans as well as distributed and 
localized Trojans [15], since the reduction in circuit switching is substantially larger than the reduction in 
Trojan’s switching even if the attacker distributes the Trojan gates among different regions in the circuit. 

 
4. TROJAN DETECTION USING LOGIC TESTING  

   
The design approaches described in Section 3 facilitate Trojan detection through both functional 

testing and side-channel approaches. A functional or logic testing approach can exploit the improved 
internal node characteristics of the modified design to optimize the test length or Trojan coverage. As 
mentioned earlier, deterministic test generation for logic testing is infeasible since the Trojan space can be 
inordinately large due to its combinatorial dependence on the circuit nodes. As an example, for 4 trigger 
and single payload nodes, a small ISCAS–85 circuit c880 with 451 gates can have ~1011 distinct Trojan 
instances. This indicates that instead of an exact approach, a statistical approach can be computationally 
more tractable. 

 
We propose to use to statistical logic testing approach [5] with the objective to derive a set of test 

patterns that is compact (minimizing test time and cost), while maximizing the Trojan detection coverage 
(estimated as the percentage of random Trojan instances detected by a vector set [5]). The basic concept is 
to detect low probability conditions in the design at the internal nodes and then derive an optimal set of 
vectors than can trigger each of these nodes individually to their rare logic values multiple times (e.g. at 
least N times, where N is a user-defined parameter). By increasing the toggling of nodes that are random–
pattern resistant, it improves the probability of activating an unknown Trojan compared to purely random 
patterns. It does not require a trusted design environment – i.e. the test generation can be performed on a 
tampered design. Since the proposed detection is based on functional validation using logic values, it is 

 
                       Figure 3: The dummy flip-flop structures when (a) Pi(1) >> Pi(0) and (b) Pi(0) >> Pi(1). 
 

Table III. The percentage of switching activity in each region of s38417 and s35932 benchmark 
circuits after running four simulations.  

                 Benchmark 
     Region # 

s38417 s35932 

1 15.7%, 15.8%, 15.2%, 15% 11.6%, 11.4%, 11.9%, 11% 
2 7.1%, 7.2%, 7.2%, 7% 8.3%, 7.5%, 8.2%, 6.8% 
3 9.7%, 9.3%, 9.6%, 9.5% 10.3%, 9.9%, 10.4%, 9% 
4 67.5%, 67.7%, 69%, 68.3% 69.7%, 71%, 69.3%, 73% 
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robust with respect to parameter variations and can reliably detect very small Trojans – both 
combinational and sequential.  
 
5. SIDE-CHANNEL ANALYSIS APPROACHES 

 In this section, we propose two side-channel approaches for Trojan detection using supply current. The 
approaches aim at identifying the Trojan effect in either transient (IDDT) or static current (IDDQ) 
considering the effect of process noise.   

5.1 Transient Current Analysis  

The goal of transient current analysis is to detect switching activity inside a Trojan circuit. As the 
changes in transient current could be very small – indeed that would be the goal of an adversary – any 
detection mechanism needs to carefully consider sources of natural variations in current flow and discount 
the influence of such sources. Fig. 4(a) illustrates the device parameter variations – both die-to-die and 
within-die – in a nanometer process and corresponding impact in two side-channel parameters: IDDT and 
Fmax (maximum operating frequency). Clearly, intrinsic variations can mask the effect of a Trojan in side-
channel parameters. Hence, the variability in silicon manufacturing process as well as measurement 
process needs to be discounted to isolate the effect of small Trojans.  

 
The variability in the measurement process can be minimized by standardizing the measurement setup 

and specifying tight tolerances on the ambient environment, test harness, probes, and other equipment. 
However, regardless of the tightness of tolerances, inherent thermal noise present in the circuits still 
introduces variability that may mask contribution of a Trojan in the transient current. Fortunately, the 
thermal process is well understood and it can be modeled as a zero-mean random noise process, and 
therefore, can be eliminated by taking average of a large number of measurements from the IC under test.  

 
The variability in the manufacturing process is much more difficult to discount. As the process 

variations are intrinsic and constant for a given IC, they cannot be eliminated by averaging multiple 
measurements. Thus the observed current has variability due to two possible sources: (a) process 
variation; and (b) Trojan circuit, if any. Once the variability has been isolated (by subtracting the average 
of a large number of measurements done on different genuine circuits), the detection of a Trojan circuit 

 

   
                 (a)                                                                                               (b)  

Figure 4: (a) Die-to-die and within-die variation in device parameter (threshold voltage or Vt) and corresponding 
impact in side-channel parameters: transient supply current (IDDT) and maximum frequency (Fmax); b) side-channel 
transient current signal from a Trojan can be separated and identified using Karhunen-Lo`eve expansion. 
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becomes a standard hypothesis testing problem [10]:  

HG: np(t; I; C) 

HT: np(t; I; C) + τ(t; I; C) 

where HG (genuine circuit) and HT (circuit with Trojan) are the two hypotheses under test and np is 
the side-channel signal due to process variability and τ is the signal contributed by the Trojan. Note that 
side-channel signal is a waveform (a function of time t) and both possible components of it depend on the 
intrinsic chip characteristics I and the test calculation being performed C. 

 
The key to Trojan detection is to realize that a statistical distribution of the process noise np can be 

obtained by profiling side-channels from several genuine ICs. Thus as long as the statistical distribution 
of Trojan side-channel signal τ have components in a subspace that is not spanned by the process noise 
distribution np, then Trojan presence can immediately be detected by side-channel components that are 
orthogonal to the process noise signal. The algebra of computing these signal subspaces and components 
can be done by the standard techniques including the Karhunen-Lo`eve expansion [10]. Fig. 4(b) 
illustrates how side-channel signal from a Trojan can be separated and identified using Karhunen-Lo`eve 
expansion. The x-axis is discrete with each integer representing a signal subspace and y-axis is continuous 
denoting the strength of a signal in a particular subspace. It shows signal strengths for genuine circuits 
and circuits with Trojan using green and blue curves, respectively. Clearly, in signal subspace number 43, 
46, and 48, Trojan contributions far outstrip any genuine process noise and process noise variability and 
thus revealing existence of the Trojan. We note that the proposed analysis can identify a 3-bit 
comparator Trojan claiming 0.01% of total circuit area under 7.5% parameter variations. For a more 
detailed setup of the synthesized RSA circuits and experimental methodology used to produce these 
curves, please refer to [8]. 

 
 

5.2 Static Current Analysis  

An important requirement for Trojan detection through transient current analysis is to induce activity 
inside a Trojan circuit. While efficient test generation, as described later in Section 6, target amplifying 
activity for arbitrary Trojans, they cannot encompass Trojans of all forms and sizes. To deal with this 
challenge, we propose a side-channel approach that isolates the effect of a Trojan in static current (IDDQ) 
and hence does not require Trojan activation. Besides, it makes use of simple on-chip hardware primitive 
to mitigate the adverse effects of process variations and leverages the multiple supply ports (MSP) on a 
chip to improve signal-to-noise ratio (SNR) [9]. MSPs are incorporated because the metal defining the 
power grid has a finite resistance. One benefit of this parasitic resistance is that it creates regional current 
behavior, i.e., the current behavior through each of the supply ports is unique and is largely influenced by 
transistors that are topologically close to the supply port. Therefore, regional observability is possible by 
measuring the IDDQs from each of these supply ports separately. 

 
We have observed the effectiveness of the proposed approach using hardware experiments on a test 

chip, schematically shown in Fig. 5(a), which allowed access to the individual power ports, labeled PP00 
through PP11. The core logic of the test chip is an 80x50 array of test circuits (TCs), the details of which 
are shown in Fig. 5(b). Each TC consists of three FFs connected in a scan chain configuration, a shorting 
inverter, and a Trojan emulation transistor connected to a globally routed Trojan emulation wire.  

 
The process calibration method that we propose uses the shorting inverter to create a resistive short 

on the power grid at locations directly underneath the power ports. Details of the calibration process can 
be found in [11]. The Trojan emulation wire and transistor are used to introduce small current anomalies 
that are designed to emulate the leakage current from the Trojan gates added to the layout. By enabling 
one of the Trojan emulation transistors in the array, a current anomaly can be introduced at any point on 
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the power grid. The objective is to measure the branch currents with a Trojan emulated, calibrate the 
measured currents and apply a statistical technique to determine if the anomaly is detectable. 

 
A key benefit of calibration is that it eliminates the adverse effects of die-to-die resistance variations 

in the power grid. However, leakage variation is another major challenge to achieving high levels of SNR 
in advanced technologies. Fig. 5(c) shows the leakage profiles of two chips plotted as percentage change 
in contour plots. From the patterns, it is clear that the leakage characteristics of the two chips are very 
different. These leakage variations can appear as ‘current anomalies’ in the MSP measurements for a chip, 
producing false positives. Fortunately, the massively connected nature of the power grid tends to ‘average 
out’ the local leakage variations, reducing their adverse impact on detection strategies. 

 
In order to evaluate MSP technique in combination with calibration, we carried out three sets of 

experiments. In each experiment, 90 emulated Trojans were investigated in each chip. We have 45 copies 
of the test chips, and therefore, the total number of emulated Trojans is 4,050. The first analysis is 
designed to model the traditional application of IDDQ testing in which the global currents are used in a 1D 
statistical outlier detection technique. The analysis shows that only one chip produced outliers, and in that 

 

 

(c) 

 

(Logic)

 

(d) 

Figure 5: (a) Block diagram of the test chip and (b) details of the test circuits (TC); (c) Within-die leakage current 
contour plots, (d) an integrated validation approach to increase Trojan coverage. 
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chip, only 45 of the 90 Trojans were detected, yielding 1.1% detect ratio. On the other hand, the ratio 
using MSP and a regression-based (2D) statistical analysis is 7.2% using uncalibrated data and 53.8% 
using calibrated data. These are substantial increases in detection sensitivity over the results obtained 
using traditional IDDQ test methods. Moreover, the test chip is very small (558 x 380 µm2) in comparison 
to product chips, which would have several hundred power ports. The additional power ports would 
increase the modest 7.2% detection ratio (and correspondingly the 53.8%) substantially – with expected 
gains of about 2 and 3 orders of magnitude compared to traditional single-port methods.  

 
Fig. 5(d) compares the Trojan coverage between transient current based and logic testing based 

validation. It shows that effectiveness of post-silicon validation can be significantly enhanced by 
integrating both approaches, since they provide complementary strengths.  

 
6. TEST GENERATION: A REGION-BASED APPROACH  

The design techniques described in Section 3 help side-channel analysis based Trojan detection by 
increasing activity inside a Trojan circuit. They, however, need to combine with efficient Trojan-aware 
test generation techniques that further improve the Trojan activity to maximize the detection sensitivity. 
In this section we propose such a technique. We partition the circuit into smaller sub-circuits that we call 
regions. A radius defines the extent of a region, as shown in Fig. 6(a). For a gate, the region around it 
comprises of all the transitive fanin and fanout gates that are within the defined radius. The regions are 
restricted across clock boundary. Once we have identified the regions, we attempt to create an activity on 
a per-region basis [12]. The Trojan is most detectable when the power consumed in the entire genuine 
circuit is kept low [8], but at a non-zero value. Thus, we aim to stimulate activity within a small region 
while keeping the rest at low or zero activity. If the Trojan is connected to portions of one or more such 
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Figure 6: a) Illustration of the concept of ‘region’ and ‘radius’ in a circuit; b) power differential between Trojan-
infected and genuine circuits; c) run-time monitoring of Trojan effect using reconfigurable IP infrastructure.  
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regions, the circuit activity in the genuine chip will be different from the tampered one owing to the extra 
activity of the Trojan portion.  

 
Sustained Vector Technique: Circuit activity can be induced in two ways: (1) changing inputs and 

(2) changing state. While the primary inputs are fully controllable, the state bits are not. In order to limit 
the switching activity within the circuit, we can restrict the input variations to an extent such that the state 
bits are the only factor inducing toggles. This is achievable by sustaining the same vector at the input pins 
over multiple clock cycles [13]. In addition, we search for a sustained vector that also introduces few 
toggles in the state variables. If we ensure to avoid any toggles at the primary inputs while simultaneously 
limiting the activity in the state variables, it helps us reduce the circuit activity to a good extent. Results, 
as shown in Fig. 6(b), indicate that the approach is able to generate the right functional vectors that can 
produce much higher power differential compared with the random vectors. With these higher power 
differentials, the technique is able to detect the Trojan with very high accuracy. 

   
7. RUN-TIME MONITORING APPROACHES 

Although detecting Trojans before ICs are deployed in the field is highly desirable, the existing 
techniques cannot guarantee this ideal outcome. For example, a Trojan inserted in a soft IP core and 
designed for late activation may not be detected during pre-silicon verification or during silicon validation. 
Furthermore, Trojan detection techniques analyze different functional/physical characteristics of an IC 
with respect to its golden-reference model. However, the presence of a Trojan in the RTL model of the 
device precludes having a golden model. Even if an RTL golden model does exist, such a model covers 
only the functional logic. Insertion of infrastructure logic in the design provides many additional 
opportunities for inserting hidden Trojans. Therefore, we must complement pre-deployment techniques 
with post-deployment monitoring of ICs during normal system operation. These monitoring is intended to 
perform directed tests on critical functions to identify unexpected or illegal behavior created by a Trojan 
with Security Monitors (SMs) embedded into the IC during its design.  

The main problem is efficiently implementing a large number of security checks with limited 
hardware resources. We propose a solution that relies on reconfigurable instruments that are repeatedly 
reconfigured to dynamically implement different security checks. Each check detects an unexpected or 
illegal behavior created by a Trojan. Each reconfigurable instrument has a configuration register that 
determines its current function.  

Figure 6(c) outlines an SoC designed with SMs. An SM is a programmable transaction engine 
configured to implement finite state machines (FSMs) that check the behavior of signals of interest. 
Signal Probe Networks (SPNs) are configured to select a subset of the monitored signals and transport 
them to SMs. An SPN is a distributed pipelined MUX network designed to support multiple clock 
domains. The Configuration and Control Processor (CCPRO) reconfigures SPNs to select the groups of 
signals to monitor and reconfigures SMs to analyze the selected signals. All the configurations are stored 
in a non-volatile (flash) memory inside the CCPRO. A Signal Control block allows the CCPRO or an SM 
to override a system signal. This feature is the basis of deploying countermeasures when one of the SMs 
detects a security violation.  

The SMs perform two types of checks: 1) a set of user-specified security violations, such as an 
attempt to access a restricted address space or entering test/debug modes during normal operation; 2) 
checks consisting of the general correctness properties of the system behavior, usually expressed as 
assertions. Both type of checks can be implemented based on the design specifications and do not require 
a golden implementation model. An activated Trojan will make the system operate in an incorrect way, 
which can be detected by assertion checks. It has been shown that a small number of assertions can 
achieve very good on-line transient fault coverage [14]. This means that a large number of distinct faults 
caused the same assertion(s) to fail. This result can be generalized to incorrect or illegal operations caused 
by security violations. The security checks run continuously one-group-at-a-time during normal operation 
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of the IC. The groups are incrementally reconfigured so that most checkers are always active. Some 
checks are self-tests that validate that the monitoring logic is working correctly. 

Reconfigurability allows a large number of checks to time-share the same hardware resources. The 
number of checks is limited only by the size of memory used to store configurations. Reconfigurability 
also enables field upgrades to implement new checks to deal with newly discovered security threats. In a 
powered-off chip, the reconfigurable logic is “blank” (like an unprogrammed FPGA) and thus its function 
is concealed from attackers trying to reverse engineer the device.  

The CCPRO or an SM can initiate basic countermeasures in response to detecting an attack by 
overriding specific functional signals. Examples of countermeasures include erasing sensitive data from 
memories, disabling a block exhibiting illegal behavior (by suspending its clock or activating its reset), or 
even disabling the operation of the entire IC. Countermeasures are specified by the user at the design 
stage. The monitoring logic does not impact the performance of the circuit, and overriding a signal 
introduces a MUX delay in the path of the signal. The area overhead is user-controlled; typically, 
monitoring critical control signals and transactions can be done with less than 4% overhead.  
 
8. SUMMARY 

The threat of hardware Trojan attacks is escalating with increasing complexity of modern SoCs and 
intrusion of untrusted 3rd party tools/IPs/facilities in the IC life-cycle. At the same time, new and more 
complex attack models, such as ones which take advantage of nexus between design and fabrication 
stages, or hardware Trojans (e.g. back-door) exploited by software, are emerging. A “silver bullet” 
solution which can reliably protect against Trojan attacks of all types, forms and sizes is extremely 
difficult to achieve. On the other hand, an integrative solution which combines the complementary 
benefits of design, test and monitoring solutions can provide the highest level of trust. In this paper, we 
have analyzed the IC security issue due to hardware Trojan attacks and presented a comprehensive 
solution, which integrates a Trojan-aware design approach with a post-silicon validation consisting of a 
logic testing and supply current based side-channel analysis and online monitoring of critical circuit 
functions. We have presented effective techniques for test generation and sensitivity improvement under 
process variations. Future work would focus on developing a unified trust metric; eliminating the need for 
golden ICs for pre-deployment detection; and discovering new forms of Trojan attacks.  
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