
Abstract -- The magnitude of the information content associated
with a particular implementation of a Physical Unclonable Func-
tion (PUF) is critically important for security and trust in emerging
IoT applications. Authentication, in particular, requires the PUF to
produce a very large number of challenge-response-pairs (CRPs)
and of even greater importance, requires the PUF to be resistant to
adversarial attacks that attempt to model and clone the PUF
(model-building attacks). Entropy is critically important to the
model-building resistance of the PUF. A variety of metrics have
been proposed for reporting Entropy, each measuring the random-
ness of information embedded within PUF-generated bitstrings. In
this paper, we report the Entropy, minEntropy, conditional minEn-
tropy, Interchip hamming distance and NIST statistical test results
using bitstrings generated by a Hardware-Embedded Delay PUF
called HELP. The bitstrings are generated from data collected in
hardware experiments on 500 copies of HELP implemented on a
set of Xilinx Zynq 7020 SoC Field Programmable Gate Arrays
(FPGAs) subjected to industrial-level temperature and voltage con-
ditions. Special test cases are constructed which purposely create
worst case correlations for bitstring generation. Our results show
that the processes proposed within HELP to generate bitstrings add
significantly to their Entropy, and show that classical re-use of
PUF components, e.g., path delays, does not result in large Entropy
losses commonly reported for other PUF architectures.

Index terms -- Entropy Analysis, Physical Unclonable Func-
tion, Authentication.

I. INTRODUCTION

The number of independent sources of information used
to distinguish a system is a measure of its complexity, and
relates to the amount of effort required to copy or clone it.
The relationship between complexity and effort can be expo-
nential, particularly for systems designed to conceal or mask
the information and only provide controlled access to it. A
physical unclonable function (PUF) is an information system
that can meet these criteria under certain conditions. The
information embedded in a PUF is random, enabling it to
serve hardware security and trust roles related to key genera-
tion, key management, tamper detection and authentication
[1]. PUFs represent an alternative to storing keys in non-vol-
atile-memory (NVM), thereby reducing cost and hardening
the embedding system against key-extraction-based attacks.
PUFs are widely recognized as next-generation security and
trust primitives that are ideally suited for authentication in
industrial, automotive, consumer and military IoT-based sys-
tems, and for dealing with many of the challenges related to
counterfeits in the supply chain.

PUFs enable access to their stored random information
using a challenge-response-pair (CRP) mechanism, whereby
a server or adversary ‘asks a question’ usually in the form of

a digital bitstring and the PUF produces a digital response
after measuring a set of circuit parameters within the chip.
The nanometer size of the integrated circuit (IC) features and
the analog nature of stored information makes it extremely
difficult to read out the information using alterative access
mechanisms. The circuit parameters that are measured vary
from one copy of the chip to another, and can only be con-
trolled to a small, but non-zero, level of tolerance by the chip
manufacturer. This feature of the PUF makes it unclonable
and provides each copy of the chip with a distinct ‘personal-
ity’, in the spirit of fingerprints or DNA for biological sys-
tems.

Strong PUFs are a special class of PUFs that are distin-
guished fromweak PUFs by the amount of information con-
tent they possess. The traditional definition for
distinguishing between weak and strong PUFs is to consider
only the number of CRPs that can be applied. For weak
PUFs, the number of CRPs is polynomial while strong PUFs
have an exponential number, e.g., the number of challenges

for an n-binary-input weak PUF can ben2 while a strong

PUF typically has2n. Unfortunately, this traditional defini-
tion leads to a misnomer as to the true strength of the PUF to
adversary attacks. For example, the original Arbiter PUF [2-
3] is classified as strong even through machine-learning-
based model-building attacks have shown that only a small,
polynomial, number of CRPs are needed to predict its com-
plete behavior.

Therefore, a truly strong PUF must have both an expo-
nential number of CRPs and an exponential number of
unique, uncorrelated responses, i.e., a large input challenge
space is necessary but is not a sufficient condition. This
requires the PUF to have access to a large source of Entropy,
either in the form of IC features from which random infor-
mation is extracted, or in an artificial form using a crypto-
graphic primitive, such as a secure hash function. Either
mechanism makes the PUF resilient to machine learning
attacks. However, using a secure hash for expanding the CRP
space of the PUF and for obfuscating its responses consumes
additional area and increases the required reliability of the
PUF. Therefore, the former scenario, i.e., a large source of
Entropy, is more attractive but more difficult to achieve.

In this paper, we present results that support this more
attractive alternative using a hardware-embedded delay PUF
called HELP. HELP generates bitstrings from delay varia-

Analysis of Entropy in a Hardware-Embedded Delay PUF

Wenjie Che, Venkata K. Kajuluri, Mitchell Martin, Fareena Saqib* and Jim Plusquellic
University of New Mexico, *Florida Institute of Technology

2

tions that occur along paths in an on-chip macro, i.e., the
source of Entropy for HELP is within-die manufacturing
process variations that cause path delays to be slightly differ-
ent in each copy of the chip. Macros or functional units that
implement cryptographic algorithms and common data path
operators such as multipliers typically possess at least 32
inputs and therefore, HELP meets the large input space
requirement of a strong PUF.

Moreover, the wire interconnectivity within the macro
used by HELP provides a large number of testable paths, on

order of 2n for n inputs, satisfying the large output space
requirement of a strong PUF. Unlike other PUFs that meet
these conditions, the task of generating input test sequences
(challenges) that test all of the testable paths is an NP-com-
plete problem. Although this may appear to be a drawback,
it, in fact, makes the task of model-building HELP much
more difficult. For example, the adversary not only must
devise a machine learning strategy that is able to predict out-
put responses, but he/she must also expend a large effort on
generating the challenges, which is typically accomplished
using automatic test pattern generation (ATPG) algorithms.
Note that these characteristics of HELP, namely, the use of a
functional unit as a source of Entropy, paths of arbitrary
length and the ATPG requirement, distinguish HELP from
other delay-based PUFs such as the Arbiter and RO PUFs.

This paper investigates Entropy within and across
HELP-generated bitstrings using 500 instances of a func-
tional unit (the Entropy source) embedded on a set of 20 Xil-
inx Zynq 7020 FPGAs. The specific contributions of this
paper include the following:
• Strong experimental evidence that HELP leverages

within-die variations (WDV) almost exclusively as its
source of Entropy.

• A statistical evaluation of Entropy, minEntropy, Condi-
tional minEntropy, Interchip Hamming Distance and
NIST statistical test results on hardware generated bit-
strings.

• A special worst-case analysis that maximizes correla-
tions and dependencies introduced by 1)full path reuse
and 2)partial path reuse where thesame paths in dif-
ferent combinations, or paths withmany common seg-
ments, are used to generate distinct bits.
The rest of this paper is organized as follows. Related

work is presented in Section II and an overview of HELP is
given in Section III. Statistical results are described in Sec-
tion IV using FPGA-based path delay data and bitstrings. A
worst-case correlation analysis is presented in Section V and
conclusions in Section VI.

II. RELATED WORK

The source of random information varies widely among
proposed PUF architectures, and includes transistor thresh-
old voltages [4], delay chains and ring oscillators (RO) [2-6],
FPGAs [7-8], SRAMs [9], leakage current [10], metal resis-

tance [11], transistor transconductance [12], the path delays
of core logic macros [13-15], memristors [16], scan chains
[17], phase change memory [18], plus many others.

One of the earliest delay-based PUFs, called the Arbiter
PUF, usesn-bit differential delay lines and a latch to gener-
ate a 1-bit PUF response [19-20]. Because of the limited
amount of Entropy, model-building attacks are effective
against the Arbiter PUFs [21]. Ring Oscillator (RO) PUF
[22-23] measure the frequency difference between two iden-
tical ring oscillators by counting the transitions on the output
of each RO and then comparing counter values to generate a
PUF bit. The number of challenges is limited to the number

of pairings (n2) and therefore the RO PUF is a weak PUF.
The authors of [24] analyze RO frequency differences,
selecting those pairings where the frequency difference is
large enough to avoid any bit flip errors caused by environ-
mental variations. The authors of [25] propose a scheme to
produce (n-1) reliable bits, and [26] proposes a longest
increasing subsequence-based grouping algorithm (LISA)
for FPGAs that sequentially pairs RO-PUF bits and can gen-
eraten/2 reliable bits out ofn ring oscillators. In [27], the
authors proposes a regression based distiller to remove sys-
tematic variations.

PUF responses are affected by the environmental varia-
tions such as temperature and voltage variations, thus pro-
cessing is required to extract the Entropy from the noise.
Several schemes including helper data and fuzzy extractor
schemes are proposed to improve the reliability of bitstring
regeneration and improve randomness [28]. Helper data is
generated during the enrollment phase which is carried out in
a secure environment and is later used with the noisy
responses generated during regeneration to reconstruct the
key. Bosch et al. [29] demonstrated a hardware implementa-
tion of concatenated codes based fuzzy extractors that have
been used to produce bitstrings with high reliability. Refer-
ence [30] discusses a fuzzy extractor scheme based on repe-
tition codes that can limit the usable entropy and show that
such a scheme is not applicable to PUFs with small levels of
Entropy. Dodis et al [31] provided a formal definition and
analysis of Entropy loss in fuzzy extractors. The authors of
[32] evaluated the reliability and unpredictability properties
of five different types of PUFs (Arbiter, RO, SRAM, flip-flop
and latch PUFs) from an ASIC implementation.

III. HELP OVERVIEW

HELP attaches to an on-chip functional unit, such as a
portion of the Advanced Encryption Standard (AES) labeled
sbox-mixedcol on the left side of Fig. 1. The logic gate struc-
ture of the functional unit defines a complex interconnected
network of wires and transistors. This combinational data
path component includes 64 primary inputs (PIs) and 64 pri-
mary outputs (POs) and is implemented in WDDL logic-
style [33] on a Xilinx Zynq FPGA using approx. 2,900 LUTs

3

and 30K wire segments.
Path delay is defined as the amount of time (∆t) it takes

for a set of 0-to-1 and 1-to-0 bit transitions introduced on the
PIs of the functional unit (input challenge) to propagate
through the logic gate network and emerge on a PO. HELP
uses a clock-strobing technique to obtain high resolution
measurements of path delays as shown on the left side of
Fig. 1. A series of launch-capture operations are applied in
which the vector sequence that defines the input challenge is
applied repeatedly to the PIs using the Launch row flip-flops
(FFs) and the output responses are measured on the POs
using the Capture row FFs. On each application, the phase of
the capture clock,Clk2, is incremented forward with respect
to Clk1, by small∆ts (approx. 18 ps), until the emerging sig-
nal transition on a PO is successfully captured in the Capture
row FFs. A set of XOR gates connected to the Capture row
FF inputs and outputs (not shown) provide a simple means
of determining when this occurs. When an XOR gate value
becomes 0, then the input and output of the FF are the same
(indicating a successful capture). The first occurrence in
which this occurs during the clock strobe sweep causes the
current phase shift value to be recorded as the digitized delay
value for this path. The current phase shift value is referred
to as the launch-capture-interval (LCI). The Clock strobe

module is shown in the center portion of Fig. 1, which uti-
lizes features on Xilinx Digital Clock Manager (DCM).

The digitized path delays are collected by aStorage

module and stored in an on-chip block RAM (BRAM) as
shown in the center of Fig. 1. Each digitized timing value is
stored as a 16-bit value, with 12 binary digits serving to
cover a signed range between +/- 2048 and 4 binary digits of
fixed point precision to enable up to 16 samples of each path
delay to be measured and averaged. The digitized path
delays are stored in the upper half of the 16 KByte BRAM.
We configure the applied challenges to test 2048 paths with
rising transitions and 2048 paths with falling transitions. The
digitized path delays are referred to as PUFNums, orPN,
with PNR used to refer to rising path delays andPNF for
falling. Once a set of 4096 PN are collected, a sequence of
operations implemented in VHDL are started to produce the

bitstring and helper data, as shown on the far right of Fig. 1.
These operations are described below.

A. Implementation Details

We created 25 instances ofsbox-mixedcol on each of 20
chips, for a total of 500 implementations (25 separate pro-
gramming bitstreams are generated). Fig. 2 shows a screen
snapshot of Xilinx Vivado Implementation view which
depicts a completed instance of the functional unit in the
lower right corner (labeled asinstance1). The VHDL code
for sbox-mixedcol is synthesized and implemented into a
pblock, which is shown as a magenta rectangle surrounding
instance1. Once completed,tcl commands are issued that
save a set of constraints for the wire and LUT components of
the functional unit to a file called acheck-point. The basey
coordinate of thepblock is then incremented by 3 to create a
sequence ofpblock implementations, each of which is syn-
thesized into a separate bitstream. In this fashion, a sequence
of identical and overlappingpblock instances of the func-
tional unit are created and tested, one at a time. The rationale
for doing this is two-fold. First, it increases the statistical sig-
nificance of the analysis without requiring a corresponding
increase in the number of FPGAs. Second, data from over-

Fig. 1. Instantiation of the HELP entropy source (left) and HELP processing engine (right).

Logic gate
implementation
of AES
sbox-mixedcol
datapath component

Input Challenge is 2-vector sequence

Output Response are path delays
path
delays

Clock strobe
Module

Xilinx DCM

Storage module

16 KB
Block
RAM

PNDiff module

TVComp module

Offset & Modulus mod.

BitGen. module

Bitstring + helper data

Challenge selection
module

C
on

tr
ol

 m
od

ul
e

Clk1

Clk2

(BRAM)

Launch row FFs

Capture row FFs
Clk2

Clk1

Fig. 2. sbox-mixedcol functional unit instance placement in Xilinx
Zynq 7020 using Vivado implementation view.

instance1

instance25

instancex

4

lapping instances on the same FPGA implicitly eliminate
chip-to-chip process variations, and provides a basis on
which we can prove experimentally that HELP leverages
within-die variations almost exclusively.

B. PN, PND and PNDc Processing Steps

The PN processing operations shown on the far right in
Fig. 1 are designed to eliminate both chip-to-chip perfor-
mance differences and environmental variations, while leav-
ing only within-die variations as a source of entropy for
HELP. In order to accomplish this, the following modules
and operations are defined. ThePNDiff module creates
unique, pseudo-random pairings between elements of the
PNR and PNF groups using two seeded linear feedback shift
registers (LFSR). The LFSRs are used to generate 11-bit
addresses to access any of the 2048 PNR and PNF values.
The two 11-bitLFSR seeds are configuration parameters.
The PN differences are referred to asPND. The primary rea-
son for creating PND is to increase the magnitude of within-
die variations, i.e., path delay variations are doubled (in the
best case) over those available in the PNR and PNF.

Fig. 3(a) shows an example of this process using a pair-
ing of paths from the PNR and PNF sets. The graph contains
curves for 500 PNR and 500 PNF, one for each of the 500
chip-instances. Although it is difficult to distinguish between
the two groups in the figure, the PNF have a larger delay and
are displayed above the PNR. The 13 line-connected points
in each curve represent the PN measured under a range of
environmental conditions, called temperature-voltage (TV)
corners. The PN at the x-axis position given by 0 are those
measured under nominal conditions (referred to asenroll-

ment values below), i.e., at 25oC, 1.00V. The PN at positions

1, 2 and 3 are also measured at 25oC but at supply voltages
of 0.95, 1.00 and 1.05 V. Similarly, the other groups of 3
consecutive points along the x-axis are measured at these

supply voltages but at temperatures 0oC, -40oC and 85oC.
The PN measured under TV corners numbered 1 to 12 are
referred to asregeneration PN. Fig. 3(b) plots the corre-

sponding PND defined by subtracting pointwise, each PNF
from a PNR for each chip-instance.

TV-related effects on delay negatively impact bitstring
reproducibility. It is clear that subtraction alone which is
used to create the PND is not effective at removing all of the
variations introduced by different environmental conditions
(if it was, the curves would be horizontal lines). We propose
a TV compensation (TVComp) process that is applied to the
PND as a mechanism to eliminate most of the remaining
temperature-voltage variations (called TV-noise).

TVComp is applied to the entire set of 2048 PND mea-
sured for each chip-instance at each of the 13 TV corners
separately (note, Fig. 3(b) shows only one of the PND from
the larger set of 2048 that exist for each chip-instance and
TV corner). The TVComp procedure first converts the PND
to ‘standardized’ values. Eq. (1) represents the first transfor-
mation which makes use of two constants, i.e.,µchip (mean)
and Rngchip (range), obtained by measuring the mean and
range of the distribution defined by the PND. The second

transformation is represented by Eq. (2), which translates the
standardizedzvals to a new distribution with meanµref and
rangeRngref. Thereferencemean and range values are also
configuration parameters. In our experiments, we fixµref and
Rngref in the TVComp operation for all chip-instances as a
means of eliminating chip-to-chip performance differences.

Fig. 3(c) illustrates the effect of TVComp under these
conditions. ThePNDc (‘c’ for compensated) plotted in the
graph are obtained by applying the TVComp procedure to
the 2048 PND measured under each of the 13 TV corners for
each chip, i.e., 13 TV corners * 500 chip-instances = 6500
separate applications. Several featured of TVComp are evi-
dent. First, the transformation significantly reduces TV-noise
which is reflected by the flatter curves (note the scale used on
the y-axis is amplified over that shown in Fig. 3(b)). Second,

Eq. 1.zval
i

PND
i

µchip–()

Rngchip
------------------------------------=

PNDc zval
i
Rngref µref+= Eq. 2.

Fig. 3. (a) Example rising and falling path delays (PN), (b) Rise-fall delay (PND) and (c) TV Compensated PND (PNDc).

D
ig

iti
ze

d
pa

th
 d

el
ay

0 1 122 3 4 5 6 8 107 9 11 0 1 122 3 4 5 6 8 107 9 110 1 122 3 4 5 6 8 107 9 11

(a) PN

400

350

300

(b) PND

-50

10

5

0

-10

-5

-15
PNR

PNF

Temperature-Voltage Corner Temperature-Voltage Corner Temperature-Voltage Corner

(c) PNDc500

450

0

50

25

-25

75 Chip20 25
instances

Chip20 25
instances

Chip20 25
instances

TVN

WID

5

global (chip-wide) performance differences are also nearly
eliminated between the chip-instances, leaving only within-
die variations. This is illustrated nicely by the highlighted
red curves (25 instances) for chip20. The curves shown in
Fig. 3(a) and (b) for the 25 instances on chip20 are grouped
together, illustrating these instances have similar perfor-
mance characteristics as expected since they are obtained
from the same chip. However, the corresponding curves in
3(c) are distributed across most the y range, and are indistin-
guishable from the 450 curves from the other 19 chip-
instances. The dispersion of the chip20 curves across the
entire range illustrates that the random information lever-
aged by HELP is based on within-die variations (WDV), and
not on global performance differences that occur from chip-
to-chip.

The differences that remain in the PNDc are those intro-
duced by WDV anduncompensated TV noise (TVN). The
range of TVN for the bottom-most curve in Fig. 3(c) is
labeled and is approx. 3, which translates to approx. 90 ps. In
general, PNDc with larger amounts of TVN are more likely
to introduce bit flip errors. Therefore, it is desirable to make
TVN as small as possible, and is the main driver for using
the TVComp process.

The last operation applied to the PN is represented by
the Modulus operation shown on the right side of Fig. 1.
Modulus is a standard mathematical operation that computes
the positive remainder after dividing by the modulus. The
Modulus operation is required by HELP to address the path
length bias that exists in the PNDc, which acts to reduce ran-
domness and uniqueness in the generated bitstrings. The
value of the Modulus is also a configuration parameter, simi-

lar to the LFSR seeds,µref andRngref parameters, and is dis-
cussed further in the following. The termmodPNDco is used
to refer to the values used in the bitstring generation process.

C. Offset Method

An optional offset can also be applied to PNDc values
prior to the application of the Modulus to further improve the
statistical quality of the bitstrings. An offset is computed for
each PNDc separately in a characterization process. The off-
set is simply themedian value of the PNDc, derived using
PN from a sample of chips or from a nominal simulation.
The offsets are transmitted to the token and are therefore a
second component of the challenges. The token adds the
individual offsets to each of the PNDc as they are generated.
The offset shifts the PNDc upwards andcenters the popula-

tion over the 0-1 line associated with the Modulus. We use
the termPNDco to refer to the PNDc with offsets applied.
Since the offset is a population-based value, it leaks no infor-
mation regarding the bit values generated from the modP-
NDco (to be discussed).

As an example, three randomly selected PNDc are
shown in Fig. 4. The PNDc from the 500 chip-instances are
given on the left in the same format as that used in Fig. 3(c),
while the corresponding ‘shifted’ PNDco are shown to their
immediate right. The 0-1 lines associated with a Modulus of
24 are superimposed as dashed horizontal lines. The Modu-
lus creates vertical partitions of size 24, with 0-1 lines at
Modulus/2 and Modulus. The corresponding bit assignments
for each region are shown on the far right.

The shift amounts are shown between the two sets of
waveforms. The centering of the population over the 0-1
lines ensures that nearly equal numbers of chips produce 0’s
and 1’s for each of the corresponding PNDco. We restrict the
offset encoding to 4 bits, making it possible to shift the pop-
ulation by Modulus/(2*16). The additional factor of 2 in the
denominator accounts for the fact that the maximum shift
required to reach one of the 0-1 lines is half the Modulus.

D. Margining

A Margin technique is used to improve reliability by
identifying and excluding bits that have the highest probabil-
ity of ‘flipping’ from 0 to 1 or 1 to 0. As an illustration, Fig.
5 plots 18 of the 2048 modPNDco from chip C1 along the x-
axis. The red curve line-connects the data points correspond-
ing to enrollment conditions while the black curves line-con-
nects data points under the 12 regeneration TV corners. A set
of margins are shown of size 2 surrounding two strong bit
regions of size 8. Designators along the top given as ‘s0’,
‘s1’, ‘w0’ and ‘w1’ classify each of the enrollment data
points as either a strong 0 or 1, or a weak 0 or 1, resp. Data
points that fall on or within the hatched areas are classified as

0

-24

-48

-72

1 5 10 1 5 10
TV corner #

Fig. 4. Three example PNDc from 500 chip-instances (y-axis) at each of
the 13 TV corners. PNDc before 4-bit offset is added (left) and

afterwards (right), PNDco, using a Modulus of 24. Dashed lines identify
0-1 lines, with corresponding bit values associated with each region

shown on the far right. Two chip-instances are highlighted as red and
magenta to illustrate their random occurrence among different sets of

PNDc, which is caused by within-die variation effects.

LC
I

24

48

shift upwards by 6.00

shift upwards by 6.75

PNDc PNDco

shift upwards by 1.5

0

1

0

1

0

1

0

1

0

1

0

1

0

bit value

TV corner #

6

weak as a mechanism to avoid bit flip errors introduced by
uncompensated TV noise (TVN) that occurs during regener-
ation.

The Margin method improves bitstring reproducibility
by eliminating data points classified as ‘weak’ in the bit-
string generation process. For example, the data points at
indexes 4, 6, 7, 8, 10 and 14 would introduce bit flip errors at
one or more of the TV corners during regeneration because
at least one of the regeneration data points is in the opposite
bit value region, i.e., they cross one of the annotated 0-1
lines, from the corresponding enrollment value. Ahelper

data string is constructed during enrollment that records the
strong/weak status of each modPNDco which is used during
regeneration to identify which modPNDco generate bits
(strong) and which are skipped (weak).

IV. STATISTICAL RESULTS

A. Entropy Analysis

The statistical analysis is carried out using the bitstrings
generated from the 500 chip-instances. Entropy is defined by
Eq. 3 and MinEntropy by Eq. 4. The frequencypij of ‘0’s and
‘1’s is computed at each bit positioni across the 500 chip-
instance bitstrings of size 2048 bits, i.e, no Margin is used in
this analysis.

Fig. 6 plots incremental Entropy and MinEntropy for
both the original modPNDco and the 4-bit offset technique
using black and blue curves, resp, as chip-instances are

Eq. 3.H X() p
ij

log2 p
ij

()

j 0=

1

∑
i 0=

2047

∑=

H∞ X() log2 max p
ij

()()–

i 0=

2047

∑= Eq. 4.

added, one at a time, to the analysis (this method is inspired
from the technique described in [34]). The x-axis gives the
index of the chip-instance starting with 2 chip-instances on
the left and ending with 500 chip-instances on the right. The
4-bit offset technique shifts and centers the population of
chip-instances associated with each modPNDc over a 0-1
line as discussed in Section III.C. The centering has a signif-
icant impact on Entropy and MinEntropy which is reflected
in the larger values and the gradual approach of the curves to
the ideal value of 2048 as chip-instances are added.

Fig. 7(a) and (b) depict bar graphs of Entropy and
MinEntropy for Moduli 10 through 30 (x-axis). The height
of the bars represent the average values computed using the
2048-bit bitstrings from 500 chip-instances, averaged across
10 separate LFSR seed pairs. Entropy varies from 2037 to
2043, and is close to the ideal value of 2048 independent of
the Moduli. MinEntropy varies between 1862 at Moduli 12
up to 1919, which indicates that, in the worst case, each bit
contributes between 91% and 93.7% bits of Entropy.

B. Uniqueness

The InterChip hamming distance (InterChipHD) results
are shown in Fig. 7(c), again computed using the bitstrings
from 500 chip-instances, averaged across 10 separate LFSR
seed pairs. Hamming distance is computed between all pos-
sible pairings of bitstrings, i.e., 500*499/2 = 124,750 pair-
ings for each seed and then averaged.

The values for a set of Margins of size 2 through 4 (y-
axis) are shown for each of the Moduli. Fig. 8 provides an
illustration of the process used for dealing with weak and
strong bits under HELP’s Margin scheme in the InterchipHD
calculation. The helper data bitstrings HelpD and raw bit-
strings BitStr for two chips Cx and Cy are shown along the
top and bottom of the figure, resp. The HelpD bitstrings clas-
sify the corresponding raw bit as weak using a ‘0’ and as
strong using a ‘1’. The InterchipHD is computed by
XOR’ing only those BitStr bits from the Cx and Cy that have

MinEntropy, 4-bit offset

Entropy, No offset

MinEntropy, No offset

2043

0
2 500

Incremental Entropy as

chip-instance number

E
nt

ro
py

/M
in

E
nt

ro
py

Fig. 6. Entropy (black) and MinEntropy (blue) change as chips are
added to the analysis along the x-axis. Maximum value is 2048 bits.
Top curves show result using 4-bit offset while lower curves show

analysis with no offset using a Modulus of 24.

1915

chip-instances are added

Entropy, 4-bit offset

1528

901

1 5 10 15 18
0

12

24

m
od

P
N

D c
o

s s w w w s sw ws w
0 1 1 1 0 1 1

w
0

s
0 0

s
1 10

w
0

s
0

w
0

s
0 0

strong 0 reg.

strong 1 reg.

weak 0 reg.
weak 1 reg.

weak 1 reg.

weak 0 reg.

Index of modPNDco for chip C1
Fig. 5. Strong and weak bits associated with modPNDco from chip C1

using margining.

0-1
lines

7

BOTH HelpD bits set to ‘1’, i.e., both raw bits are classified
as strong. This process maintains alignment in the two bit-
strings and ensures the same modPNDc from Cx and Cy are
being used in the InterchipHD calculation.

InterChip HD, HDInter, is computed using Eq. 5. The

symbolsNC, NBa and NCC represent ‘number of chips’,
‘number of bits’ and ‘number of chip combinations’, resp.
(NCC is 124,750 as indicated above) This equation simply
sums all the bitwise differences between each of the possible
pairing of chip-instance bitstringsBS as described above and
then converts the sum into a percentage by dividing by the
total number of bits that were examined.Bit cnter from the
center of Fig. 8 counts the number of bits that are used for
NBa in Eq. 5, which varies for each pairing of chip-instances
a. The HDInter is computed separately for each of the 10
seed pairs and the average value is given in Fig. 7(c). The
HDinter vary from 49.4% to 51.2% and therefore are close to
the ideal value of 50%.

C. NIST Test Evaluation

The NIST statistical test suite is used to evaluate ran-
domness of the bitstrings [36]. The bitstrings are constructed
as described above for Interchip HD. All tests are passed

HDinter
1

NCC

BS
i k, BS

j k,⊕()
k 1=

N B
a

∑

N B
a

--

j i 1+=

NC

∑
i 1=

NC

∑

100×=

Eq. 5.

with at least 488 bitstrings passing of the 500 bitstrings as
required by NIST except for CummulativeSums (NIST test
#4) under two Moduli. The two failing cases failed with 487
and 482 bitstrings passing, resp., so the failures were only by
at most 6 chips in the worst case.

V. CORRELATION ANALYSIS

Correlation analysis measures whether a relationship
exists between modPNDco in which the bit response from
one allows the response from a second to be predicted with
probability greater than 50%. All strong PUF architectures to

date have potential to exhibit correlation because the 2n

response bits are generated from a much smaller set ofm

components, with them components representing the under-
lying random variables. For the case of a 64-stage Arbiter
PUF, the 256 path segments are all reused in every challenge,
and therefore, the potential for correlation introduced by
path segment reuse is very high. HELP also reuses path seg-
ments but, unlike the Arbiter, the probability of two paths
sharing a large number of path segments is very small. The
following analysis focuses on the reuse of path segments
within HELP despite the fact that, in practice, it is statisti-
cally rare.

Our correlation analysis of path segment reuse (called
Partial Reuse) is carried out using a set of ‘unique’ paths,
and therefore, it ensures that at least one path segment is dif-
ferent in any pairing of PN used to create PND, PNDc,
PNDco and modPNDc. (Note: we refer to PNDc in the fol-
lowing because the analysis focuses on how the Offset and
Modulus operations affect the results). An example of partial
reuse is shown in Fig. 9. The highlighted red wire on the left
indicates that the two paths, labeled ‘path #1’ and ‘path #2’,
share all of the initial path segments, and are only different at
the fanout point where they diverge into LUTa and LUTb.
The two paths then reconverge at the next gate and form a
‘bubble’ structure.

It is also possible to pair thesamePN in different com-
binations to produce a much larger set of PNDc (on order of

n2 with n PN). We refer to this asFull Reuse. Full path reuse

Fig. 8. Hamming distance illustration for results shown in Fig. 7.

0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1

1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0

0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1

0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0

HelpD

BitStr

Cx

HelpD

BitStr

Cy

InterchipHD 0 01 0 1
1 2 3 4 5Bit cnter:

(b) MinEntropy (c) InterChip HD(a) Entropy

Fig. 7. (a) Entropy, (b) MinEntropy and (c) InterChip hamming distance (HD) computed as average values across 10 seeds of 2048 bits each using
500 chip-instances with TVCOMP reference set to ‘Mean’ scaling. Bars of zero height for InterChip HD are invalid combinations of Margin and

Modulus. Entropy varies over the range 2037 to 2043, and MinEntropy from 1862 to 1919, with 2048 as the ideal value. InterChip HD varies from
49.4% to 51.2% with ideal at 50%.

%

10 12 14 16 18 20 22 24 26 28 30 10 12 14 16 18 20 22 24 26 28 30

8

can result independent bits, i.e, bits that are completely
determined by other bits. Reference [26] investigates these
dependencies in the RO PUF and proposes schemes
designed to eliminate and/or reduce the number of depen-
dent bits.

We show in the following that theOffset and Modulus
operations break the correlations found in classic depen-
dency analysistypically exemplified using RO frequencies
as f(ROA) > f(ROB) and f(ROB) > f(ROC) implies f(ROA) >
f(ROC). Therefore, partial reuse and full reuse of paths have
a smaller penalty in terms of Entropy and minEntropy when
they occur within HELP.

A. Preliminaries

As indicated earlier, the HELP algorithm creates differ-
ences (PND) between PNR and PNF using a pair of LFSR
seeds, which are then compensated using TVComp to pro-
duce PNDc. A key objective of our analysis is to purposely
create worst case conditions for correlations by crafting the
PND such thatpartial reuse andfull reuse test cases are cre-
ated. The analysis of correlations requires the set of PND
that are constructed to be adjacent to each other in the arrays
on which the analysis is performed. Therefore, the LFSRs
used in the HELP algorithm are not used to create the PND
and instead a linear, sequential pairing strategy is used.

The Offset and Modulus operations in the HELP algo-
rithm are the key components to improving Entropy. As an
aid to help with the discussion that follows, Fig. 10 illus-
trates how these two operators modify the PNDc. The figure
shows 4 groups of 10 vertical line graphs, with each line
graph containing 500 PNDc data points corresponding to the
500 chip-instances. The line graph on the left and bottom
illustrates that the vertical spread in the line-connected
points is caused by within-die delay variations.

TheReference PNDc shown on the left are the compen-
sated differences before the Offset and Modulus operations
are applied. The DC bias introduced by differences in the
lengths of the paths changes the vertical positions of the line
graphs, which spans a range from -72 to +40 launch-capture

intervals (LCIs)1. The Offset and Modulus operations are

1. Recall that 1 LCI = 18 ps, and represents the phase
adjustment resolution of the Xilinx DCM.

designed to increase the Entropy in the PNDc by eliminating
this bias. For example, theNo Offset, Mod group show the
PNDc from theReference PNDc group after a Modulus of 24
is applied. Similarly, theOffset, No Mod group show theRef-

erence PNDc after subtracting the median value from each
line graph, which effectively centers the populations of 500
PNDco over the 0 horizontal line. Finally, theOffset, Mod

group shows the PNDc with both operations applied, and
represents the values used in the HELP algorithm. Here, an
Offset is first applied to center the populations over the clos-
est multiple of 12 and then a modulus of 24 is applied (the
boundaries used to separate the ‘0’ and ‘1’ bit values are 12
and 24 for a Modulus of 24, see Fig. 5). We analyze the
change in Entropy and minEntropy as each of the operations
are applied. Note that HELP processes 2048 PNDc at a time
during bitstring generation, of which only 10 are shown in
Fig. 10.

B. Partial Reuse

Although we definedpath segment reuse above as a pair
of paths with at least one path segment that is different for a
given PNDc, we do not want to restrict our analysis to these
types of specific physical characteristics but instead want to
analyze the actual worst case. Xilinx Vivado implementation
view does not provide information that directly reflects the
chip layout, and therefore, a broader approach to correlation
analysis is required to ensure the worst case correlations are
identified.

We use Pearson’s correlation coefficient (PCC) [35] to
measure the degree of correlation that exist among PNDc and
then select a subset of the most highly correlated for Entropy
and minEntropy analyses. Fig. 11 depicts the construction
process used to create an exhaustive set of PNDc, from
which the most highly correlated are identified. In order to
simplify the construction process, the TVComp operation is
applied to a set of 2048 PNR and 2048 PNF separately for

24

0

-24

-48

-72
1 5 101 5 10 1 5 10 1 5 10

Reference
PNDc Mod

No Offset
No Mod
Offset

Mod
Offset

12

Fig. 10. A sample of 10 PNDc from 500 chip-instances illustrating four
experimental scenarios. (a)Reference represents PNDc that have no

Offset or Modulus applied. Scenarios (b)No Offset, Mod (c) Offset, No
Mod and (d) Offset, Mod show how the PNDc change as each of these

operatons are applied individually or in combination.

Within-die variations across 500 chip-instances

global mean
Fig. 9. Partial reuse worst-case example of two paths forming a

‘bubble’. The path segments which define the bubble are unique to
each path while the remaining components are common to both paths.

LUT 1 LUT 2 LUT 3 LUT n-2

LUTa

LUT b

fanout “Bubble”

LUT n

path #1

path #2

LC
Is

(a) (b) (c) (d)

9

each of the 500 chip-instances1. Note the ‘c’ subscript is not
used in the PNR/PNF designation for clarity. TVComp elim-
inates chip-to-chip delay variations and makes it possible to
compare data from all chips directly in the following analy-
sis.

Only one of the PNR, PNR0, is used to create a set of
2048 PNDc by pairing it as shown with each of the PNF.
Correlations that occur in the generated bitstring are rooted
in correlations among the PNDc. Therefore, the 2048 PNDc
are themselves paired, this time with each other under all
combinations for 2048*2047/2 = 2,096,128 pairing combi-
nations. The same process is carried out using the first PNF,
PNFo, with all of the PNR (not shown) to create a second set
of PNDc, which are again paired under all combinations. We
use only one rising reference PN, PNR0, and one falling ref-
erence PN, PNF0, because the value of the PCC is identical
for other choices of these references.

For each of the 2 million+ PNDc pairings, the Pearson
correlation coefficient (PCC) given by Eq. 6 is computed
using enrollment data from the 500 chip-instances. PCC can
vary from highly correlated (-1.0 and 1.0) to no correlation
(0.0). The absolute value of the PCC in each group of 2 mil-

lion+ rising and falling PNDc are then sorted from high to
low. Scatterplots of the most highly and least correlated
PNDc pairings are shown in Fig. 12 from the larger set of
more than 4 million pairings. The most highly correlated
1024 PNDc pairings (for a total of 2048 PNDc since each
pairing contains two PNDc) are used in the bitstring genera-

1. HELP normally applies TVComp only once, and
to the PND as discussed in Section III.B, for
processing efficiency reasons but the results
using either method are nearly identical.

Eq. 6.PCC
X

i
X–() Y

i
Y–()∑

X
i

X–()
2

Y
i

Y–()
2∑∑ 1 2⁄

---=

where 1– PCC 1≤ ≤

tion process for the Entropy and Conditional minEntropy

(CmE) evaluation below. Highly correlated PNDc are stored

as adjacent values to facilitate analysis of the corresponding

2-bit sequences.

The 2048 PNDc are processed into bitstrings under four

different scenarios as shown in Fig. 10. For example, the

PNDc are compared to aglobal mean under theReference

scenario (see annotation in figure). The global mean is the

average PNDc across all chip-instances and all 2048 PNDc

(500 * 2048). A ‘0’ is assigned to the bitstring for cases in

which the PNDc for a chip-instance falls below theglobal

mean and a ‘1’ otherwise. Given the large DC bias associ-

ated with the PNDc under the Reference scenario, the

Entropy and CmE statistics are expected to be very poor.

The No Offset, Mod andOffset, Mod bitstring genera-

tion scenarios use the value 12 as the boundary between ‘0’

and ‘1’ (for Modulus 24 as shown in the figure), i.e., PNDc

>= 0 and < 12 produce a ‘0’ and those >= 12 and < 24 pro-

duce a ‘1’. The ‘0’-’1’ boundary for theOffset, No Mod sce-

nario is 0 and the sign bit is used to assign ‘0’ (for negative

PNDc) and ‘1’ (for positive PNDc). The Offset, Mod sce-

nario represents the operations performed by the HELP algo-

rithm. The analysis is extended for this scenario by

evaluating Entropy and CmE over Moduli between 14 and

30 to fully illustrate the impact of the Modulus operation.

The PNDc from a normal use case are also analyzed

using these four bitstring generation scenarios to determine

how much Entropy/CmE is lost when compared to thehighly

correlated case analysis. For the normal use case, no attempt

is made to correlate PNDc and instead random pairings of

PNR and PNF are used to construct the PNDc. Table 1 pro-

Fig. 12. Scatterplot showing the most highly correlated and least
correlated rising and falling PNDc under the partial reuse analysis.

Rise PCC = 0.99

Fall PCC = 0.0

0

25

50

-100 -50 0

Fall PCC = 0.99

Rise PCC = 0.0

LC
I

LCI

-25

-50

-25-75 25

PNR0 PNR1 PNR2 PNR3
1

rise PN

0 1

PNF0 PNF1 PNF2 PNF3 PNF2047
All

fall PN
0 1

PND0 PND1 PND2 PND3 PND2047

0 1

2047

PND

Pair all PNDx in 2048*2047/2 combinations and compute
Pearson’s correlation coefficient for each pairing

Fig. 11. PND pairing creation process forpartial reuse analysis using
Pearson’s correlation coefficient. Note: all PNR and PNF are

TVComp’ed but subscript ‘c’ is removed for clarity.

PNR2047

Create a set of 2048 PNDc

2 3 2047

2047
2047

10

vides a summary of the 8 scenarios investigated.

Fig. 13 provides a graphic that depicts the process used
to compute Entropy and Conditional minEntropy (CmE),
(modeled after the technique proposed in [32]). As indicated
earlier, highly correlated PNDc and the corresponding bits
that they generate are kept in adjacent positions in the array.
The bitstrings are of length 2048. Therefore, each chip-
instance provides 1024 sets of 2-bit sequences.

Eq. 7 is used to compute the Entropy of the 1024 2-bit
sequences for each chip-instance, which is then divided by
1024 to convert into Entropy per bit. Thepi represent the fre-
quencies of the four 2-bit patterns as given in Fig. 13. The
Entropy per bit value reported below is the average of 500
chip-instance values. CmE is computed using Eq. 8 (also

from [32]). The expressionmax(pX/pW) represents the maxi-
mum conditional probability among the four values com-
puted for each 2-bit sequence. Again, the sum over the 1024
2-bit sequences is converted to CmE per bit for each chip-
instance and the average across all 500 chip-instances is
reported.

The Entropy and CmE results are plotted in Fig. 14 for
both the highly correlated and normal use cases. The x-axis
represents the experiment, with 0 plotting the results using
theReference bitstring generation scenario (from Fig. 10), 1
representing theNo Offset, Mod, 2 representingOffset, No

Mod and 3 through 11 representing theOffset, Mod scenario
for Moduli between 30 and 14, resp. The maximum Entropy

Table 1: Summary of Scenarios for Partial Reuse
Analysis.

Cases Scenarios

Highly Cor-
related

No Offset
No Modulus
(Reference)

No Offset
Modulus

Offset
No Modulus

Offset
Modulus
(HELP)Normal use

H X() pilog2 pi()
i 0=

3

∑–= Eq. 7.

H∞ X W〈 | 〉 log2 max
pX

pW

 –= Eq. 8.

per bit is 2 while the maximum CmE is 1. From the trends, it
is clear that both Offset and Modulus improve the statistical
quality of the bitstrings over the Reference. However, Modu-
lus appears to provide the biggest benefit, which is captured
by the drops in Entropy and CmE for experiment 2 in which
the Modulus is not applied. Moreover, the loss in Entropy is
almost zero between the normal use and highly correlated
cases and CmE drops on average by only 0.2 bits for experi-
ments 3 through 11 for theOffset, Mod scenario. Therefore,
partial reuse under highly correlated conditions introduces
only a small penalty on the quality of the bitstrings generated
by the HELP algorithm.

C. Full Reuse

Full reuse refers to therepeated use of the PNin multi-
ple PNDc as shown for the 2-PN reuse example in Fig. 15.
Here, two rise PN, PNR0 and PNR1 are paired in all combi-
nations with two fall PN, PNF0 and PNF1. A traditional anal-
ysis predicts that because of correlation, only a subset of the
16 possible bit patterns can be generated when using PNDA

through PNDD to produce a 4-bit response. In particular, pat-
terns “0110” and “1001” are not possible. However, as indi-
cated earlier, the Modulus and Offset operations break the
classical dependencies and allow all patterns to be generated,

PNR0 PNR0 PNR1 PNR1

0 1

PNR1023PNR1023

2 3 2046 2047

PNF0 PNF1 PNF0 PNF1 PNF1023PNF1022

Rise PN

Fall PN

PNDc PNDA PNDB PNDC PNDD

4-bit column for ‘2-PN’ experiment
Fig. 15. PNDc construction process for full reuse analysis, called 2-PN.

Every column of 4-bits, with first one labeled PNDA through PNDD,
are correlated because the same two PNR and PNF are subtracted

under all combinations to create PNDc.

PND2046 PND2047

PND = (PNR-PNF)

pairings

2.0

1.0

0.0

1.5

0.5

0 1 2 3 4 5 6 7 8 119 10

Fig. 14. Entropy and Conditional minEntropy results under various
scenarios (Fig. 10) and cases as given in Table 1.

0: Reference

1: No Offset, Mod

2: Offset, No Mod
3-11: Offset, Mod

w/ Moduli 30-14

Entropy: Normal use case
Maximum
Entropy is 2

Maximum
CmE is 1

Entropy: Highly correlated case

CmE: Highly correlated case
CmE: Normal use case

bi
ts

Experiment

0 0 1 0 0 1

1 0 1 1 0 0

chip1

chip2

chip 5001 1 1 0 1 1

pX

pW

1 1

1 0

1 0

Sum across 1024 2-bit tuples

Fig. 13. Conditional minEntropy (CmE) expression and illustration of
its application.

pX: Frequency of pattern “00”, “01”, “10”, “11” across

pW: Frequency of a ‘0’ for patterns “00” and “10” or ‘1’ for

1024 2-bit sequences in bitstring

patterns “01” and “11” in 2nd bit position of 2-bit pattern

H∞ X W〈 | 〉 log2 max
pX

pW

 –=

11

as we show below.

The frequency of the 16 patterns for the 2-PN experi-
ment are shown in Fig. 16. Here, PNDc are created for each
of the 500 chip-instances according to the illustration in Fig.
15. With 2048 bits per chip-instance, there are 512 4-bit col-
umns each with 500 instances. The graph simply plots the
percentage of each pattern across this set of 500*512 =
256,000 samples for each of the PNDc scenarios described
earlier with reference to Fig. 10. The ideal distribution is
uniform with the percentage equal to 1/16*100 = 6.25% for
each ‘Pattern Bin’ along the x-axis.

The distributions associated with theReference (black)
and Offset, No Mod (red) experiments are clearly not uni-
form. Pattern bins 6 and 9 are zero forReference, as pre-
dicted by the classical dependency analysis. Although the
differences are small, theOffset, No Mod distribution is
slightly better with non-zero values in pattern bins 6 and 9
and most of the other pattern bins closer to the ideal value of
6.25%. The Modulus operation, particularly in combination
with the Offset operation, produce much better results. The
percentages for theOffset, Mod experiment (yellow curve)
vary by at most 1.2% from the ideal value of 6.25%.

The positive impact of the Offset and Modulus opera-
tions on Entropy is further supported by an analysis carried
out in a 3-PN experiment, where 3 rise and 3 fall PN are
combined under all combinations to produce a 9-bit column
(analogous to 2-PN illustration in Fig. 15). With 9-bit col-
umns, there are 512 possible pattern bins. Using the 2048
bitstrings from 500 chip-instances, we were able to construct
227 full 9-bit columns (left over columns were discarded),
for a total sample size of 113,500. A scatterplot showing the
results for the 3-PN experiment is given in Fig. 17 usingOff-

set, Mod PNDc bitstring data (black dots). The ideal percent-
age is 1/512*100 = 0.195%. As a reference, the results using
PNDc constructed without reusing any rising or falling PN
(referred to as the normal use case above) are superimposed

in blue. The smaller variation of the frequencies under the
normal use case, when compared with the 3-PN full reuse
case, clearly shows that there is a penalty associated with
reuse, but none of pattern bins are empty and most of the fre-
quency values are within 0.1% of the ideal value at 0.195%.

Table 2 presents the minEntropy computed using Eq. 4
for each of the PNDc scenarios (rows) for the 2-PN and 3-PN
experiments described above, and an additional 4-PN experi-
ment. For the 4-PN experiments, all combinations of 4 PN
are used and the frequency of the 65536 possible patterns in
the set of 128 16-bit columns are analyzed. The correspond-
ing minEntropy values under the normal use case (with col-
umn labeled ‘Normal’) are also given for reference.

In all cases except for row 3, column 2, the minEntropy
values in the last row are larger than those in the first 3 rows.
Moreover, the drop in minEntropy over the normal use case
in the last row is 0.19, 1.45 and 1.9 bits, resp., illustrating the
penalty associated with reuse is very modest.

VI. CONCLUSIONS

An analysis of the statistical characteristics of a Hard-
ware-Embedded Delay PUF (HELP) are presented in this
paper, with emphasis on Interchip Hamming Distance,
Entropy, minEntropy, conditional minEntropy and NIST sta-
tistical test results. The bitstrings generated by the HELP
algorithm are shown to exhibit excellent statistical quality.

Table 2: minEntropy for PNDc and x-PN experiments.

2-PN Normal 3-PN Normal 4-PN Normal

No Offset,
No Mod

2.11 of 4 3.05 of 4 3.17 of 9 6.15 of 9 4.3 of 16 7.0 of 16

No Offset,
Mod

3.92 of 4 3.81 of 4 6.10 of 9 7.89 of 9 8.3 of 16 10.2 of 16

Offset,
No Mod

2.02 of 4 2.82 of 4 3.05 of 9 5.34 of 9 4.1 of 16 8.5 of 16

Offset,
Mod

3.73 of 4 3.92 of 4 6.95 of 9 8.40 of 9 9.2 of 16 11.1 of 16

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500
Pattern Bins

F
re

qu
en

cy
 (

%
)

Fig. 17. Frequency of 9-bit patterns for bin 0 with pattern
“000000000” through bin 512 with pattern “111111111” under 3-PN

reuse case (black) and normal use case (blue). The distribution should
be uniform with each bin percentage at 1/512 = 0.195% as shown by

the dotted line.

Blue: Offset, Mod: Normal use case
Black: Offset, Mod: 3-PN full reuse case

0.195%

Fig. 16. Frequency of 4-bit patterns for bin 0 with pattern “0000”
through bin 15 with pattern “1111” under 2-PN reuse case and four

scenarios from Fig. 10. Ideal frequency value is 1/16 = 6.25%.
Reference PNDc exhibits the worst case behavior with frequencies of

0% for patterns “0110” and “1001”, while Offset, Mod exhibits the best
behavior.

Black: Reference (No Offset, No Mod)
Blue: No Offset, Mod

0

25

20

15

10

5

0 156 9 123

Red: Offset, No Mod
Yellow: Offset, Mod

6.25%

Pattern Bins

F
re

qu
en

cy
 (

%
)

12

An experiment focused on purposely constructing worst case
correlations among path delays is also described as a means
of demonstrating the Entropy-enhancing benefit of the Offset
and Modulus operations carried out by the HELP algorithm.
Special data sets are constructed which maximize physical
correlations and dependencies introduced by reusing compo-
nents of the underlying Entropy. Although statistical quality
is reduced under these worst case conditions, the reduction is
modest. Therefore, the Modulus and Offset operations
harden the HELP algorithm against model-building attacks.

A quantitative analysis of the relationship between
Entropy as presented in this paper and the level of effort
required to carry out model-building attacks on HELP is the
subject of a future work. Developing a formal quantitative
framework that expresses the relationship between Entropy
and model-building effort is inherently difficult because of
the vastly different mathematical domains on which each is
based. Best practice relating Entropy to security properties
that predict attack resilience is focused on correlating results
from separate analyses of Entropy and model-building resis-
tance. A thorough treatment of model-building resistance
requires a wide range of machine-learning experiments.
Work on this topic is on-going and will be reported in a sep-
arate paper in the near future.

VII. REFERENCES

[1] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib and
J. Plusquellic, “A Privacy-Preserving, Mutual PUF-Based
Authentication Protocol”,Cryptography, Nov. 2017.

[2] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Controlled
Physical Random Functions”,Conference on Computer Secu-
rity Applications, 2002.

[3] B. Gassend and D. E. Clarke and M. van Dijk, S. Devadas, “Sil-
icon Physical Unknown Functions”,Conference on Computer
and Communications Security, 2002, 148-160.

[4] K. Lofstrom, W. R. Daasch, D. Taylor, “Identification Circuits
using Device Mismatch”,International Solid State Circuits
Conference, 2000, pp. 372-373.

[5] A. Maiti, P. Schaumont, "Improving the quality of a Physical
Unclonable Function using Configurable Ring Oscillators",
FPLA, 2009.

[6] Y. Meng-Day, R. Sowell, A. Singh, D. M’Raihi, S. Devadas,
“Performance Metrics and Empirical Results of a PUF Cryp-
tographic Key Generation ASIC”,Symposium on Hardware-
Oriented Security and Trust, 2012, pp. 108-115.

[7] E. Simpson and P. Schaumont, “Offline Hardware/Software
Authentication for Reconfigurable Platforms”,Cryptograph-
ic Hardware and Embedded Systems, Volume 4249, Oct.,
2006, pp. 10-13.

[8] B. Habib, K. Gaj and J.-P. Kaps, “FPGA PUF Based on Pro-
grammable LUT Delays”,Euromicro Conference on Digital
System Design, 2013, pp. 697 -704.

[9] J. Guajardo, S. S. Kumar and G. Schrijen and P. Tuyls, “Brand
and IP Protection with Physical Unclonable Functions”,Sym-
posium on Circuits and Systems, 2008, pp. 3186-3189.

[10] Y. Alkabani and F. Koushanfar and N. Kiyavash and M. Pot-
konjak, “Trusted Integrated Circuits: A Nondestructive Hid-
den Characteristics Extraction Approach”,Information
Hiding, 2008.

[11] R. Helinski, D. Acharyya, J. Plusquellic, “Physical Unclonable
Function Defined Using Power Distribution System Equiva-
lent Resistance Variations”,Design Automation Conference,

2009, pp. 676-681.
[12] R. Chakraborty, C. Lamech, D. Acharyya and J. Plusquellic,

“A Transmission Gate Physical Unclonable Function and On-
Chip Voltage-to-Digital Conversion Technique”,Design Au-
tomation Conference, 2013, pp. 1-10.

[13] J. Aarestad, J. Plusquellic, D. Acharyya, “Error-Tolerant Bit
Generation Techniques for Use with a Hardware-Embedded
Path Delay PUF,” Symposium on Hardware-Oriented Securi-
ty and Trust (HOST), 2013, pp. 151-158.

[14] F. Saqib, M. Areno, J. Aarestad and J. Plusquellic, “An ASIC
Implementation of a Hardware-Embedded Physical Unclon-
able Function”,IET Computers & Digital Techniques, Vol. 8,
Issue 6, Nov. 2014, pp. 288-299.

[15] W. Che, F. Saqib, J. Plusquellic, "PUF-Based Authentication,"
ICCAD, Nov, 2015.

[16] G. S. Rose, N. McDonald, Y. Lok-Kwong, B. Wysocki and K.
Xu, “Foundations of Memristor Based PUF Architectures”,
International Symposium on Nanoscale Architectures, 2013,
pp. 52-57.

[17] Z. Yu, A. R. Krishna and S. Bhunia, “ScanPUF: Robust Ultral-
ow-Overhead PUF using Scan Chain”,Asia and South Pacific
Design Automation Conference, 2013, pp. 626-631.

[18] S. T. C. Konigsmark, L. K. Hwang, C. Deming, M. D. F.
Wong, “CNPUF: A Carbon Nanotubebased Physically Un-
clonable Function for Secure Low-Energy Hardware Design”,
Asia and South Pacific Design Automation Conference, 2014,
pp. 73-78.

[19] M. Majzoobi, F. Koushanfar, S. Devadas, “FPGA PUF using
Programmable Delay Lines”,Workshop on Information Fo-
rensics and Security, 2010, pp.1-6

[20] Y. Hori, T. Yoshida, T. Katashita, A. Satoh, “Quantitative and
Statistical Performance Evaluation of Arbiter Physical Un-
clonable Functions on FPGAs”,Conference on Reconfig-
urable Computing and FPGAs, 2010, pp. 298-303.

[21] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas,
“Identification and Authentication of Integrated Circuits”,
Concurrency Comput., Practice Exp., Vol. 16, No. 11, pp.
1077-1098, 2004.

[22] M. Majzoobi, F. Koushanfar, S. Devadas, “FPGA PUF using
Programmable Delay Lines”,Workshop on Information Fo-
rensics and Security, 2010, pp. 1 -6.

[23] X. Xin, J. Kaps, K. Gaj, “A Configurable Ring-Oscillator-
Based PUF for Xilinx FPGAs”, Conference on Digital System
Design, 2011, pp. 651-657.

[24] E. Suh, S. Devadas, “Physical Unclonable Functions for De-
vice Authentication and Secret Key Generation”,Design Au-
tomation Conference, 2007, June 4-8, 2007, pp. 9-14.

[25] A. Maiti, K. Inyoung, P. Schaumont, “A Robust Physical Un-
clonable Function With Enhanced Challenge-Response Set”,
Trans. on Information Forensics and Security, Volume: 7, Is-
sue: 1, Part: 2, 2012, pp. 333-345.

[26] Chi-En, Daniel Yin, Gang Qu, “LISA: Maximizing RO PUF’s
Secret Extraction”,Sym. Hardware-Oriented Security and
Trust, 2010, PP 100-105.

[27] Chi-En Yin and Gang Qu, “Improving PUF Security with Re-
gression-based Distiller”,Design Automation Conference,
2013.

[28] J. Delvaux, D. Gu, D. Schellekens, I. Verbauwhede, “Helper
Data Algorithms for PUF-based key generation: Overview
and analysis”,Trans. on Computer-Aided Design of Integrat-
ed Circuits and Systems, Vol. 34, No. 6, p 889-902, 2015.

[29] C. Bosch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P.
Tuyls. “Efficient Helper Data Key Extractor on FPGAs”,
Workshop on Cryptographic Hardware and Embedded Sys-
tems, Vol. 5154 of LNCS, pp. 181-197, 2008.

[30] P. Koeberl, J. Li, A. Rajan and W. Wu, “Entropy Loss in PUF-
based Key Generation Schemes: The Repetition Code Pit-
fall”, Sym. on Hardware-Oriented Security and Trust, 2014,
PP 44-49.

[31] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Ex-
tractors: How to Generate Strong Keys from Biometrics and

13

Other Noisy Data”,SIAM Journal on Computing, 38(1): 97-
139, 2008.

[32] S. Katzenbeisser1, Ü. Kocabas, V. Rozic, A.-R. Sadeghi, I.
Verbauwhede, C. Wachsmann, “PUFs: Myth, Fact or Busted?
A Security Evaluation of Physically Unclonable Functions
(PUFs) Cast in Silicon”, CHES, 2012.

[33] K. Tiri and I. Verbauwhede, "A Logic Level Design Method-
ology for a Secure DPA Resistant ASIC or FPGA Implemen-
tation,” DATE, 2004, pp. 246-251.

[34] M. Claes, V. van der Leest and A. Braeken, “Comparison of
SRAM and FF PUF in 65nm Technology”,Nordic Confer-
ence on Secure IT Systems, 2011, pp. 47-64.

[35] https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
[36] http://csrc.nist.gov/groups/ST/toolkit/rng/

documentation_software.html

