
Abstract -- Within-die variations in path delays are increasing with scaling. Although higher levels of within-die delay variations are unde-
sirable from a design perspective, they represent a rich source of entropy for applications that make use of ‘secrets’, such as authentication,
hardware metering and encryption. Physical Unclonable Functions or PUFs are a class of circuit primitives that leverage within-die varia-
tions as a means of generating random bitstrings for these types of applications. In this paper, we present test chip results of a hardware-
embedded delay PUF (HELP) that extracts entropy from the stability characteristics and within-die variations in path delays. HELP obtains
accurate measurements of path delays within core logic macros using an embedded test structure called REBEL. REBEL provides capabili-
ties similar to an off-chip logic analyzer, and allows very fast analysis of the temporal behavior of signals emerging from paths in a core
logic macro. Statistical characteristics related to the randomness, reproducibility and uniqueness of the bitstrings produced by HELP are
evaluated across industrial-level temperature and supply voltage variations.

1  Introduction
Physical Unclonable Functions or PUFs are circuit primitives that leverage within-die variations in ICs as a means of producing random

bitstrings for applications such as authentication and encryption [1]. Each IC is uniquely characterized by random manufacturing variations,
and therefore, the bitstrings produced by PUFs are unique from one chip to the next. Cloning a PUF, i.e., making an exact copy, is nearly
impossible because it would require control over the fabrication process that is well beyond our current capabilities. A PUF maps a set of
digital “challenges” to a set of digital “responses” by exploiting these physical variations in the IC. The entropy in the responses is stored in
the physical structures on the IC and can only be retrieved when the IC is powered up. The analog nature of the entropy source makes PUFs
‘tamper-evident’, whereby invasive attacks by adversaries will, with high probability, change its characteristics.

The main distinguishing characteristic of PUF systems is the source of entropy that they leverage. Proposed entropy sources include
variations in transistor threshold voltages [2], in propagation delays in inverter chains and ROs [1][3-11], in power up patterns in SRAMs
[12], in leakage current [13], in metal resistance [14], and many others. The hardware-embedded delay PUF (HELP) that we investigate in
this paper leverages path stability characteristics and within-die delay variations in core logic macros. HELP is unique because it does not
measure and analyze within-die variations between identically designed structures, as is true for PUFs based on SRAM, ROs, delay chains,
etc. Instead, it derives entropy from a tool-synthesized circuit macro, where paths of widely varying lengths are present. Consequently, the
source of entropy for HELP is not based on raw path delays, because doing so would result in significant levels of undesirable bias. For
example, comparing a short path with a long path would always yield the same result in every chip. Instead, randomness is distilled from the
stability characteristics of the paths and the high frequency behavior of within-die variations, as we will illustrate in this paper.

The basic concepts of HELP are described in [10-11], where experimental results are presented using an instance of an Advanced
Encryption Standard core logic macro implemented on a set of FPGA boards. In this paper, we implement HELP in a 90 nm ASIC using a
IEEE-754 compliant floating point unit (FPU) as the core logic macro, and present results using data collected from multiple instances of the
test chips. Differences in the path stability and within-die variation characteristics of FPGA and ASIC implementations, as well as differ-
ences in the internal connectivity of core logic macros themselves, impact the effectiveness of our proposed bitstring generation methods. In
particular, techniques that rely entirely on path stability as the source of entropy break down in the FPU ASIC implementation, while meth-
ods based on the high frequency behavior of within-die variations improve, particularly w.r.t. reliability, over the FPGA implementation.

Although core logic macros provide a rich source of entropy, reconvergent-fanout in their connectivity structure causes significant
amounts of glitching on the path outputs, which increases the probability that bit flips will occur during the bitstring regeneration process.
Moreover, the glitching behavior is affected by supply voltage conditions (and temperature to a lesser degree). Therefore, conventional tech-
niques for measuring path delays, e.g., those that vary the launch-capture clock interval in a sequence of tests, are not effective for quickly
identifying and eliminating glitchy paths and obtaining accurate path delay measurements for stable paths. We proposed an embedded test
structure (ETS) called REBEL in [16] that is designed to deal with these challenges.

REBEL is integrated directly into the scan-chain logic already present in the core logic macro and allows the temporal behavior of a sig-
nal to be captured as a digital snapshot using a single launch-capture event1. The digital snapshot is similar to that produced by a bench-top
logic analyzer, which digitizes the voltage behavior but preserves the analog delay characteristics of a signal over time. The digital snapshots
produced by REBEL significantly improve the ability of HELP to make good decisions about which path delays to use in the bitstring gener-
ation process. REBEL also allows timing information to be obtained for very short paths in the core logic macro and, by extending the phys-
ical length of the path, REBEL improves the robustness of the delay measurement process by allowing narrow glitches to die out.

In the ASIC implementation, HELP applies random test vectors to each of the 5 pipeline stages of the FPU while REBEL is used to
time the combinational logic paths between each of the pipeline stages. We evaluate the HELP PUF at 9 temperature/voltage (TV) corners
defined using all combinations of temperatures -40oC, 25oC and 85oC and supply voltages of nominal, +10% of nominal and -10% of nomi-
nal. Inter-chip hamming distance (HD), intra-chip HD and the NIST statistical tests are used to evaluate the quality of the bitstrings. The
resilience of the HELP bitstring generation algorithms to reverse engineering and model building attacks are also discussed as appropriate.
2  REBEL ETS

In this section, we describe the modifications needed to integrate REBEL into a clocked-LSSD-style (CLSSD) scan architecture. The
macro-under-test (MUT) in Fig. 1 is the combinational logic from a core logic macro. A row of scan flip-flops (FFs) is shown along the top
which serve to launch transitions into the MUT. The bottom row is used to capture transitions that propagate through the MUT. REBEL ETS
components are integrated into the bottom row and are labeled ‘Row Control Logic’ and ‘front-end-logic’ in the figure.

1. The implementation described in [10] uses a MUX-D-style scan chain, while the ASIC chip described in this paper uses a
CLSSD-style scan chain.
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Transitions can be launched into the MUT using standard
manufacturing delay test strategies such aslaunch-off-capture
and launch-off-shift[18]. In either of these two scenarios, the
scan chain is loaded with the first pattern of the 2-pattern delay
test and the system clock (Clk) is asserted to generate transi-
tions in the MUT by capturing the output of a previous block or
by doing a 1-bit shift of the scan chain. The transitions that
propagate through the MUT emerge on some of its outputs.
REBEL allows only one of these transitions to be measured at a
time in a specificregion of the MUT, as indicated by the label
PUT for path-under-test in the figure. The PUT’s transition nor-
mally drives only the D input on the capture FF. However, the
REBEL component labeled ‘front-end’ logic (to be described)
allows this transition to be diverted to the scan input (SI) on the
FF. This special logic also converts all scan FFs to the right of
this insertion point FF into a delay chain. A digital snapshot of
the signal as it propagates along the delay chain can be obtained
by de-asserting Clk. The digital snapshot can be used to deter-
mine the timing of the PUT, and because it captures the temporal behavior of the PUT, it can also be used to determine if any glitching
occurred. This is a unique and powerful feature of REBEL that will be fully exploited in this work.

A special mode calledflush-delay (FD) can be used to implement the delay chain in CLSSD-based scan architectures. FD mode is
enabled by asserting both the scan A and B clock signals simultaneously. These signals are labeledglobal SCAandglobal SCBin Fig. 1.
With both signals asserted, both the master and slave of a scan FF are transparent, allowing any transitions on SI to propagate through both
latches after a time∆t that represents the delay.

In addition to the designer-specified functional and scan modes,
REBEL is required to implement two additional modes in the capture
scan FFs shown along the bottom of Fig. 1. In particular, the scan FFs
to the left of the insertion point need to preserve their contents during
the Clk launch-capture (LC) event, while the FFs to the right of the
insertion point need to implement the delay chain. These two modes
are realized using the RCL block, a special scan chain encoding and
the front-end logic shown in Fig. 1. The mode is controlled by config-
uring two FFs in the RCL block (to be discussed) while the scan chain
encoding serves to specify the insertion point of the PUT.

Fig. 2 shows a schematic diagram of the RCL. The top portion of
the diagram controls local (row-specific) scan clock signals, labeled
SCA_L and SCB_L (_L for local) while the bottom portion contains
two shift registers (Shift Reg) andmode select logic. A large portion of
the RCL logic is dedicated to allow the scan FFs in the capture row,
hereafter referred to asrow-FFs, to operate in functional or scan
modes. The chip-wide scan signals,global SCAandglobal SCB, are
used to control the operational mode of the chip. When both are low,
functional mode is in effect. Scan mode is implemented when these
signals are asserted in a non-overlapping fashion. The timing mode
used by REBEL, calledREBEL mode, is in effect when both of these
signals are asserted, as illustrated by the annotations in Fig. 2.

When REBEL mode is in effect, the specificsub-modeof opera-
tion of the associated row-FFs is determined by the two shift registers. Table 1 identifies the sub-modes for each of the four configurations.
Bit configuration “00” places all FFs in functional mode and is used for rows that serve to launch transitions into the MUT. Bit configura-
tions “10” and “11” specify themixed modedescribed above, where FFs to the left of the insertion point are in preserve-content mode while
those to the right are in FD mode. The bit configuration “01” (FD continuation mode) puts all FFs in the REBEL row in FD mode. This
allows the delay chain to be extended, which will be necessary in cases where we test multiple regions simultaneously, as is true for the FPU
as described below. The outputs from the RCL block shown in Fig. 2 are annotated to show the values under each of these four bit configura-
tions. Further operational details of the RCL block can be found in [16].

Fig. 3(a) shows a CLSSD FF used in the FPU macro. It consists of three latches. The functional path master-slave (MS) pair shown on
the left is driven by Clk. The slave latch is dual ported and also serves as the master in the scan path MS pair on the right. Fig. 3(b) shows the
additional ‘front-end’ logic for REBEL. The functional path’s D-input is fanned out to a 2-to-1 MUX, which allows for the insertion of a
macro’s PUT into the delay chain during the REBEL test. This is accomplished with themode select logicshown along the bottom of the fig-

Shift Reg Functionality

00 All scan FFs in row are infunctional mode

11/10 Left scan FFs in preserve-contents mode, right scan FFs in FD mode, referred to asmixed mode

01 All scan FFs in row are inFD continuation mode

Table 1: Configuration modes for REBEL rows.
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ure. A specific insertion point is selected by pre-loading the row-FFs with a pattern of all ‘1’s followed by a ‘0’ from left to right along the
row-FFs (see Fig. 1). Reference [16] elaborates on the operational details of the REBEL logic.

Note that the front-end logic adds only a small capacitive load
to the functional path and therefore the impact of REBEL on perfor-
mance is very small. The area overhead of REBEL within the FPU is
11.45%. All of the HELP bitstring generation components are imple-
mented off-chip in the ASIC experiments. However, in previous
work on FPGAs, we found the HELP engine area overhead to be
approx. 100% of the area occupied by one stage of an Advanced
Encryption Standard (AES) implementation and we expect the over-
head to be similar for an ASIC implementation [11].
3  Floating Point Unit (FPU) Macro

Fig. 4 shows a block level diagram of a floating point unit (FPU)
incorporated on the chips, as well as the insertedREBEL rows,
labeled RRx from 1 to 28. The design includes 817 FFs, which are
wired together into a single scan chain with input SI1 and output
SO1. A separate set of 70 shift registers are inserted on the inputs
(top-most row in figure) which serve to enable a launch-off-capture
testing strategy for the combinational logic in the first stage of the
pipeline.

The FPU is designed as a 5-stage pipeline, labeled P1 through
P5, with MUXes, decoders, adder/subtractors, a multiplier, etc.
inserted between the pipeline registers. Four separate configurations
are needed to test all the combinational logic between the pipeline
stages. Two of the configurations place the FFs in P1 and P3 into
functional mode while the FFs in P2 and P4 are configured into the
REBEL modes. The other two configurations place FFs in P0, P2 and
P4 into functional mode while those in P1, P3 and P5 are configured
in the REBEL modes. Within each configuration, pairs of RRs are
created to define a set ofregions, e.g., see RR10-RR11 and RR12-
RR13 in the figure. Within each region, the right-most RR block of the pair, e.g., RR13, is configured into FD continuation mode to allow FFs
on the right side of the mixed-mode row, e.g., RR12, to be used as insertion points with delay chains that extend into RR13. Otherwise, the
insertion points on the right side of, e.g., RR12 would have very small or non-existent delay chains. Each of the 4 configurations allows up to
8 paths to be timed simultaneously.

We apply a random testing strategy to the FPU where the values placed in the functional rows are generated by an pseudo-random num-
ber generator. For each random pattern, a sequence of configurations are placed into the REBEL rows, each of which changes the position of
the insertion point incrementally from left-to-right across each of the mixed-mode rows. This is necessary because REBEL allows only one

Fig. 3. (a) Modified clocked-LSSD scan FF and (b) additional
‘front-end’ logic.
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path output per region to be timed during each test. Therefore, in order to test all PUT outputs that connect as inputs to a REBEL mixed-
mode row, a sequence of tests are applied using the same random input pattern but with a different insertion point.
3.1  Clock Strobing

The timing relationship of several control signals and the
launch-capture interval (LCI) are illustrated in Fig. 5. Prior to the
LCI test, the SCA and SCB signals are asserted, which effectively
activates the delay chains in the REBEL rows. The LCI test is
defined by asserting and de-asserting the Clk signal, which launches
transitions in the combinational logic. De-assertion halts all signals
propagating along the delay chains and creates the digital snapshots.

The resolution of the measured delays is limited by the delay
through each of the master-slave FFs that implement the delay chain.
This delay is typically larger than the desired resolution, e.g., in our
chips, it is approx. 500 ps. A technique called clock strobing is
employed to increase the resolution. Clock strobing involves repeat-
ing the test sequence at incrementally longer LCIs.

The launch-capture clock sequence is generated using a digital
clock manager (DCM) on a Xilinx Zynq FPGA. Thefine phase adjust (FPA)
feature on the DCM allows the LCI to be set with a resolution of17.857 ps. A
specific FPA is configured into the DCM by a state machine running on the
FPGA which accepts an integer input parameter from a controlling C applica-
tion. Valid values of the FPA are between 0 and 1120, which corresponds to a
programmed LCI between 0 and 20.000 ns. The pulse-creation logic within
the FPGA as well as the response characteristics of the FPGA pads prevents
clock pulses narrower than approx. 2 ns from being produced on the clock
output pin of the FPGA. In our experiments, we apply a sequence of LCI tests
over the range of FPAs between 120 to 681 in FPA increments of 3. This
results in the application of (681-120)/3 + 1 = 188 LCI tests with a∆t of 53.6
ps between consecutive LCIs.
3.2  Digital Snapshots

The raw data captured in the delay chain is a string of binary bits, one
string for each of the 188 LCI tests applied to test a path1. Fig. 1 shows the
digital snapshots for the first 21 LCI tests of a path in a vertical sequence. The
insertion point in this example is FF15 of the mixed-mode row RR12 from Fig.
4. The programmed FPA for each snapshot is displayed on the left side of the
figure. The first FPA (120) shows a sequence of 6 0’s in the left portion of the
snapshot. This indicates that a falling edge propagated along 6 elements of
delay chain, i.e., through FF15 through FF20, before being halted by the cap-
ture event. In each subsequent snapshot up through FPA 126, the edge contin-
ues to propagate through FF20 but fails to reach FF21 until FPA 129 is applied.
The falling edge requires 9 more FPAs, i.e., 129 through 153, to propagate
completely through FF21.
3.3  Path Selection Criteria and Path Timing

All bitstring generation algorithms described below use timing information from paths that are deemed ‘stable’. A stable path requires
that all digital snapshots contain exactly 1 transition, with the edge proceeding in an orderly fashion from one delay chain FF to the next.
Note that the testing of paths that glitch, i.e., those that produce more than 1 transition, is immediately aborted. The subset of digital snap-
shots obtained for the path shown in Fig. 6 qualifies the path as stable (assuming the remaining snapshots exhibit similar behavior).

On the other hand, Fig. 7 shows a sequence of snapshots that exhibits
‘wobble’ where the ‘0’ reverts back to FF20 at FPA 132 after progressing to
FF21 at FPA 129. We found that including paths that exhibit wobble, particu-
larly those that wobble multiple times in the sequence of snapshots, are more
likely to exhibit glitchy behavior at other TV corners. The timing associated
with paths that glitch, in turn, can vary significantly and introduce bit flips.
HELP also classifies paths as unstable if therange of FPAs obtained from
multiple samples is larger than a threshold or if the number ofreplicated
snapshotsfor each FF is below a threshold, i.e., the transition propagated too
quickly through a FF. All of these criteria together significantly improve the
ability of HELP to identify paths that are stable at enrollment and remain sta-
ble at other TV corners. Doing so is critically important to reducing the num-
ber of bit flips caused byjumps, which are discussed below.

A user-definedtarget FF is used to determine which FPA is selected as

1. Note that paths with no transitions are only tested with the first LCI and further testing is aborted to save time.
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the timing for the path. The target FF is the FF at a fixed position from the insertion point, for example, if the target FF is 6 than FF21 in Fig.
6 is the target FF for the insertion point at FF15. The algorithm that we use to determine the timing for a path collects and parses the snap-
shots in reverse order, i.e., starting with the snapshot produced under the longest LCI and progressing to shorter LCIs. The search for the
FPA that represents the timing ends when the transition value for the path, which is ‘0’ for the snapshots in Fig. 6, is ‘pushed back’ to the FF
to the immediate left of the target FF (FF20 in Fig. 6). This happens at FPA 126 and represents the FPA where the propagating 1-to-0 transi-
tion is just about to enter the target FF.

The only remaining issue for path selection is dealing with paths that are timed by more than one test vector. We found that approx.
40% of the paths that are found to be stable in the FPU macro are timed more than once. This occurs because the random sequence of tests
applied to the macro provide no guarantee that each test pattern sequence tests only unique paths. Fortunately, it is relatively easy to identify
re-tested paths. Our algorithm stores the FPAs and insertion points for stable paths in a memory, which is searched when a new path is tested
and found stable. If a match to the FPA and insertion point is found, the path is discarded. The match criteria to the FPA includes a small tol-
erance to account for measurement noise.
4  Test Chip Results

We applied 38 random vectors to the FPU in 50 copies of the test chip and tested a total of
31,236 paths using the 4 configurations described earlier. The average number of stable paths
per chip is approx. 2,700, which represents approx. 8.6% of all paths tested. We refer to the FPA
timing value that we obtain for these stable paths as PUF Numbers orPNs. The PNs are distilled
from the FPAs described above using the formula given by Eq. 1. Therefore, the range of FPAs from 120 to 681, in steps of size 3 translates
into PNs from 0 to 187 in steps of size 1. The actual delays associated with PN = 0 is 2.143 ns and PN = 187 is 12.161 ns.

We evaluate the bitstrings produced from our bitstring generation algorithms using the standard statistical criteria that has emerged for
judging the quality of a PUF.Inter-chip hamming distance (HD) is used to determine theuniquenessof the bitstrings among the popula-
tion of chips. Inter-chip HD computes the average number of bits that are different across all pairings of chip bitstrings and expresses the
average as a percentage. The best possible result is 50%, i.e., on average, half of the bits in the bitstrings of any two arbitrary chips are differ-
ent. The NIST statistical test suite is used to evaluate therandomnessof the bitstrings produced by each chip [17]. In general, the NIST tests
look for patternsin the bit strings that are not likely to be found at all or above a given frequency in a ‘truly random’ bitstring. For example,
long or short strings of 0’s and 1’s, or specific patterns repeated in many places in the bit string work against randomness. The output of the
NIST statistical evaluation engine is thenumber of chipsthat pass thenull hypothesisfor a given test. The null hypothesis is specified as the
condition in which the bitstring-under-test is random. Therefore, a good result is obtained when the number of chips that pass the null
hypothesis is large. Third, we useIntra-chip HD to evaluatestabilityof the bitstrings, i.e., the ability of each chip to reproduce the same bit-
string time-after-time, under varying temperature and voltage conditions. It is carried out on the bitstrings produced by each chip across the
9 TV corners. Ideally, all 9 bitstrings are identical and the Intra-chip HD is 0%. An average Intra-chip HD is computed using the individual
chip results. In addition to these statistical tests, we also evaluate other security related metrics as appropriate, including, for example, how
difficult it is for an adversary to reverse engineer the bitstring and/or to model build the PUF.
4.1  Path Delay Distributions

The delay distributions for CHIP1 for each of the
TV corners are shown in Fig. 8. The PNs are obtained
with the target FF set to 8. The PN number (delay) is
plotted along the x-axis against the number of instances
on the y-axis. The graph on the left superimposes the
distributions obtained when the supply voltage (VDD) is
set to 1.20V (nominal) and the temperature is set to each
of 25oC, -40oC and 85oC, while the graph on the right
superimposes the distributions at these temperatures but
with VDD set to +/- 10 of nominal. It is clear that supply
voltage has a larger impact on delay than temperature.
All graphs show that the path distribution is skewed,
with larger numbers of shorts paths than longer paths.

Although not shown, the distributions from other
chips are similar in shape but vary in width and position
along the x-axis, which is caused by chip-to-chip process variations. More importantly, the ordering of the tested paths in each chip’s distri-
bution is unique and is determined primarily by within-die process variations, which is an important source of entropy for HELP. Two of the
bitstring generation techniques described below generate and then extract information from the delay distribution at 1.20V, 25oC (called the
enrollment distribution) as a means of improving the robustness of the bitstring regeneration process.
4.2  Path Stability and Within-Die Path Delay Variations

As mentioned in the Introduction, the entropy source for HELP is defined from two components; path stability and within-die variations
in delay. This dual source of entropy is a significant benefit to improving the randomness of the generated bitstrings, as well as increasing the
difficulty of reverse engineering attacks. In previous work, we used an FPGA implementation of the Advanced Encryption Standard (AES)
as the core macro and found that both sources of entropy provided a high degree of randomness in the generated bitstrings [10-11]. We then
developed several bitstring generation methods, one of which leverages only the path stability entropy source. We call this method ‘Univer-
sal, No Modulus’ orUNM .

Although UNM performed well in the AES implementation in previous work, it does poorly when applied to the data from the FPU. In
particular, the computed inter-chip hamming distance is only 38%. The reason it does poorly is shown in Fig. 9. The x-axis assigns a path ID
(PID), from 1 to 4650, to each path that is identified as stable in at least one chip while the y-axis gives the number of chips that each PID is
found to be stable in. Therefore, path IDs with a value of 1 are unique to one chip and are not found to be stable in any other chip. Con-
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versely, path IDs with a value of 50 are stable in every chip. The top portion of the graph, and in particular the top line, is densely populated
with points, and indicates that there is a high-level of commonality in a large fraction of the stable paths. As we show below, the dependency
of the UNM technique on requiring the opposite condition, that a large number of the stable paths for a given chip do not occur in every chip,
causes it to score poorly on the uniqueness criteria.

On the other hand, the level of within-die variations within the FPU are
sufficient to enable the generation of high quality bitstrings using bitstring gen-
eration techniques that are designed to leverage them. We refer to these tech-
niques as ‘Universal, No Modulus, Difference’ orUNMD and ‘Dual-PN Count’
or DPNC. The graphs in Fig. 10 illustrate the process we use, called regression
analysis, to quantitate the level of within-die variations across our set of chips.
Linear regression is applied to scatter plots which are constructed using the
delays from pairings of paths across the chips [19]. Fig. 10(a) depicts the scat-
terplots for 4 path pairings. We selected paths that are stable in all 50 chips as a
means of capturing the full extent of within-die variations in our sample, i.e., we
used PIDs from the top line of Fig. 9. Linear regression analysis first computes a
least squares estimate (LSE) of a best fit line through the data points of each
scatter plot. Several of the LSE lines are labeled in Fig. 10(a). The LSE line
tracks chip-to-chip process variations.

Within-die variations (and random noise) are represented by the vertical
offsets of the data points from the LSE line. The vertical offsets are called resid-
uals (several are labeled in the figure). We compute therangeof the residuals in
each scatterplot, which is given by the sum of the distances from the regression
line of the most negative and positive data points, as illustrated in Fig 10(a). Fig.
10(b) plots the within-die variation results for the 716 path pairings that are stable in all chips. The average delay of the first path (patha) is
plotted along the x-axis against the range of the residuals along the y-axis. Within-die variation varies from approx. 60 ps to almost 1.25 ns.
This information will be used to tune parameters of the bitstring generation methods described below.
4.3 Jumps, Measurement Noise and

Temperature/Voltage (TV) Noise
The termsenrollment and regenera-

tion are used in reference to bitstring gen-
eration processes associated with PUFs.
Enrollment is carried out when a new bit-
string is required, while regeneration refers
to the process of reproducing the bitstring.
The application determines whether exact
reproduction is required, e.g., encryption
requires exact reproduction while authenti-
cation typically does not. However, for any
application, the closer the regenerated bit-
string is to the enrollment bitstring, the bet-
ter. The main challenge associated with
reproducing the bitstring exactly is dealing
with measurement and TV noise. These noise sources change the measured values of the entropy source, possibly causing bits in the bit-
string toflip  or change value from ‘0’ to ‘1’ and vise versa.

Error correction is commonly used to fix errors in
regenerated bitstrings in cases where exact reproduction is
needed, e.g., encryption [1]. Our approach uses threshold-
ing to avoid errors and redundancy to fix errors introduced
by random measurement noise (methods that we discuss in the following sections). We apply a calibration method, called Temperature/Volt-
age Compensation or TVCOMP, to deal with TV noise. The principle behind TVCOMP is to derive scaling constants during enrollment and
regeneration that allow a linear transformation to be applied to the PNs obtained during regeneration. The linear transformation shifts and
scales the regenerated PN distribution and makes it similar to the distribution obtained during enrollment. Calibration is carried out by com-
puting amean PNand aPN rangeduring enrollment which are recorded asHelper Data. Helper Data is stored in a non-volatile location for
use during regeneration. During regeneration, the mean and range are again computed and the PNs are transformed as given by Eq. 2. The
transformation works well to compensate for non-random changes in the PNs such as those introduced by TV noise.

Besides measurement and TV noise, HELP has an additional source of noise calledjumps. Jumps are dramatic changes in the PN val-
ues of certain paths when the TV conditions change. The underlying cause for the jump behavior is the appearance and disappearance of
’hazards’ on off-path inputs of gates which are components of the tested path. Under some TV conditions, it is possible that an off-path
input, which normally remains at its non-dominant value, e.g., a ’1’ on an input to an AND gate, changes momentarily to a dominant value.
Depending on the relative timing between the appearance of the hazard and the actual signal transition along the tested path, it is further pos-
sible that the actual signal transition is momentarily delayed by the hazard. When this occurs, a fundamental change occurs in the path delay.
Unfortunately, there is no way to predict which path delays will be effected by jumps. We describe redundancy techniques that are effective
in dealing with this problem in the next section.
4.4  Difference Thresholding and Spatial Redundancy Techniques

HELP makes use of thresholding and spatial redundancy techniques as a means of allowing the user to trade-off reliability with bitstring

Fig. 9. Commonality in the paths that are stable
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generation time and Helper Data size for applications that require exact regeneration of the bitstring. The termspatialrefers to the multiple,
redundant copies of the bitstring that are produced across different regions of the entropy space. Fig. 11(a) illustrates one form of threshold-
ing that we propose, calleddifference thresholding, and the spatial redundancy technique. Difference thresholding is used in the UNMD
bitstring generation method. The illustration portrays the sequence of operations that are performed to generate a bitstring and the corre-
sponding set of Helper Data that is produced during enrollment.

First, TV noise thresholdslabeled +Tr and -Tr are derived from the width of the delay distribution profile for the chip, similar to the
one shown for enrollment in Fig. 8. We found that making the threshold dependent on the chip’s distribution profile works well in keeping
the size of the bitstrings across all chips approximately equal. A bit is generated under difference thresholding by computing the signed dif-
ference between a pairing of PNs, and then comparing the magnitude of the difference with the +Tr and -Tr thresholds. If the difference falls
within the +Tr and -Tr region, the PN pairing is consideredinvalid and is not allowed to generate a bit. When this occurs, the Helper Data,
labeled asvalid bitstring in the figure, is updated with a ‘0’ as a means of instructing subsequent regeneration processes that this PN pairing
is to be skipped. In contrast, we use the termstrong bit to refer to cases where the PN difference falls above +Tr or below -Tr. In this case,
the sign of the difference is used to generate the secret bit and the valid bitstring is updated with a ‘1’.

A set of example PN differences are plotted along the x-axis in Fig. 11(a) against their differences along the y-axis. The left-most 6 PN
pairings shows the process of generating a secret bitstring of length 4. The remaining sequence of PN pairings illustrate the process associ-
ated with spatial redundancy, in particular, a redundancy scheme that uses 3 copies of the bitstring (the spatial redundancy scheme extends to
any odd number of copies). The left-most bitstring labeledSecret BSis generated from the first 4 strong bits encountered in the PN pairing
sequence as discussed above. The second bitstring labeledRedundant BS1is produced from the next sequence of PN pairings but has the
additional constraint that each of its bits must match those in the first bitstring. During its construction, it may happen in the left-to-right
parsing of the PN pairings that a strong bit is encountered that does not match the corresponding position in the Secret BS. In the example,
this occurs at the position indicated by the left-most bold ‘0’ in the valid bitstring. Here, we encountered a strong bit with a value of ‘0’. But
the Secret BS requires the first bit to be a ‘1’, so this strong bit is skipped. This process continues until redundant bitstrings BS1 and BS2 bit-
strings are constructed.

The number of strong bits required to generate a secret bitstring of length 4 is approx 5x or 20. From the example, this is evaluated by
counting the number of ‘1’s and bolded ‘0’s in the valid bitstring, which is given as 19. The benefit of creating these redundant bitstrings is
the improved tolerance that they provide to bit flips. For example, during regeneration, the three bitstrings are again produced, but this time
using the valid bitstring to determine which PN pairings to consider. In cases where ajumpoccurs, it is possible that the difference from a
PN pairing for a strong bit becomes displaced from the strong bit region across the ‘0’ line in Fig. 11(a). The change in the sign of the differ-
ence would normally introduce a bit flip. However, with spatial redundancy, a bit flip can be avoided if no more than 1 bit flip occurs in a sin-
gle column of the matrix of bits created from the 3 bitstrings. For example, the first 3 rows of the matrix of bits in Fig. 11(b) are constructed
during regeneration in a similar way to those shown in Fig. 11(a) for enrollment. The bottom row represents the final secret bitstring and is
constructed by using a majority vote scheme. The bit flip shown in the third column has no effect on the final bitstring because the other two
bits in that column are ‘1’, and under the rule of majority voting, the final secret bit is therefore defined as ‘1’.
4.5  Bitstring Generation Methods

As indicated earlier, we test 31,236 paths on each chip and found 8.6%, i.e., 2,700 paths on average, pass our stability criteria per chip.
Our statistical analysis requires the number of bits to be equal in the bitstrings of all chips so we reduce the number of PNs to the smallest
number produced by one of our chips, which is2,519. The actual bitstring size is dependent on the number of PNs, the level of redundancy
and on the bitstring generation method, as described in the following three subsections.

4.5.1   Universal, No Modulus (UNM) Bitstring Generation Method
The UNM technique is the simplest of the 3 methods from an implementation point of view, and also produces the smallest amount of

Helper Data. Unfortunately, it is also the easiest to reverse engineer and, as we discussed above, the statistical quality of the generated bit-
strings is dependent on the macro-under-test. The enrollment distribution (25oC, 1.20V) in Fig. 12(a) is annotated to illustrate components of
the analysis of the UNM bitstring generation algorithm. A region in the center of the distribution labeledUNM marginidentifies PNs that are
excluded from the bitstring generation process. In contrast, the region below the left-most threshold labeledlow bin and the region above the
right-most threshold labeledhigh bin identify PNs that are valid. The algorithm creates this distribution and sweeps the two thresholds from
left to right across the distribution in discrete steps, while maintaining theUNM marginbetween them. At each step, the number of elements
in the low and high bins are counted. The position where the number of PNs in each bin is closest to being equal is saved and used in the bit-

Fig. 11. (a)Illustration of spatial redundancy during enrollment and (b) bit flip resiliency during regeneration.
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string generation process. The goal to equalize the cardinality of the two bins maximizes the chance that the generated bitstrings will have
equal numbers of ‘0’ and ‘1’s, which is an important statistical quality metric.

The distance between the vertical thresholds is fixed at a value that ensures that changes in any of the PN values at different TV corners
do not exceed half of this margin. Our experimental results show thatjumpsare the worst case condition to deal with and these force the
UNM marginto be set to approx. 3.8 ns (this margin is sufficient to prevent bit flips from occurring in any of the chips). During regeneration,
the positions of the thresholds are again determined but, in this case, the midpoint between them is used to decide whether a given PN is in
the low or highbin as shown in Fig. 12(b). The Helper Data is consulted to ensure the same PNs used in the bitstring generation process car-
ried out during enrollment are used here during regeneration. The value of these PNs in the regeneration data is likely to be different than
their value during enrollment because of TV noise. As long as none move from their original bin across themidpoint line to the other bin,
then no bit flips occur.

The bitstring is generated by pseudo-randomly
selecting pairs of PNs from the low and high bins to
compare. A linear-feedback-shift-register or LFSR
implemented with a primitive polynomial is used to
generate the pseudo-random pairings as a means of
ensuring that all possible pairings can be generated. As
an example, if the sum of cardinalities of the two bins is
1,000, then it is possible to generate up to 1,000*999/2
= 499,500 bits. An XOR-style of comparison if used to
generate each bit, i.e., if both PNs being compared are
in the low or both are in the high bin, then a ‘0’ is gener-
ated, otherwise a ‘1’. We recognize that re-using each of
the n PNs in n-1 comparisons (all combinations) sub-
jects the PUF to model-building attacks for applications
such as authentication, which, by definition, reveal the
responses to the external world. In this paper, we use all
combinations only as a means of providing a more sig-
nificant sample to the evaluation processes designed to determine statistical quality.

From this algorithm, it is clear that the bitstring for one chip would be different from the bitstring for another chip if a significant num-
ber of the PNs for each chip are associated with distinct path IDs (PIDs). Given the wide margin between the low and high bins, within-die
variations in path delays cannot effect the outcome of the bitstring generation process. In other words, if two chips select the same set of sta-
ble paths, the LFSR will select PNs in the same order and produce the same bitstring for both chips because within-die variations are not
large enough to move PIDs from the low bin to the high bin and vise versa in different instances of the chips. Therefore, UNM depends
entirely on the randomness of path stability. As indicated above, the inter-chip HD for UNM is only 38%, which is considerably lower than
the ideal of 50%. Therefore, when using the FPU as the macro-under-test, the entropy content associated with path stability is not sufficient
to produce a quality PUF.

The partitioning of the distribution into low and high bins in combination with the public Helper Data, that identifies which paths are
stable and participate in bitstring generation on each chip, increases the ease of carrying out reverse engineering attacks on UNM. If the seed
and LFSR are known, then an adversary can simulate the tested paths to determine whether the PN is in the low or high bin for a given chip,
thereby enabling the secret bitstring to be reconstructed. Obscuring the Helper Data prevents this attack but is difficult to implement. The
UNMD and DPNC bitstring generation methods described below leverage both path stability and within-die variations, making this type of
attack more difficult or impossible to carry out.

The Helper Data for UNM is apath bitstring with one bit allocated for each tested path. If a path is stable and the PN falls in either of
the low or high bins, then a ‘1’ is recorded, otherwise a ‘0’. The size of the path bitstring is related to the fraction of stable PNs and the UNM
margin. For example, we indicated that 8.5% of the paths are stable, so a bitstring of length 256 would require approx. 6 Kbits of Helper
Data, computed as 256/0.085 * 2. The factor of 2 assumes that the thresholding preserves half of the distribution in the sum of cardinalities
of the 2 bins.

4.5.2   Universal, No Modulus, Difference (UNMD) Bitstring Generation Method
UNMD uses the difference thresholding technique described in Section 4.4. Therefore, the PNs that are valid for comparisons can

appear anywhere in the distribution shown in Fig. 12(a), not just in the tails. More importantly, both path stability and within-die variations
play a key role in deciding which comparisons generate secret bits. This seemingly small change adds significantly to the entropy of the sys-
tem and dramatically improves the randomness and uniqueness quality metrics of the secret bitstring.

The drawback of UNMD over UNM is in the size of the public Helper Data. Both methods require apath bitstringthat records which
paths are stable in the sequence of applied random tests during enrollment. However, UNM can then update the path bitstring to exclude sta-
ble paths with PNs that are not in the tails of the distribution shown in Fig. 12(a), while UNMD requires a second public data bitstring, called
thevalid bitstring, to record the thresholding result as discussed in Section 4.4. The size of the valid bitstring for UNMD is dependent on the
difference threshold and the level of spatial redundancy, e.g., 3, 5, 7, etc.

Difference thresholding was described in Section 4.4 and in reference to Fig. 11. Within-die variations can change the sign of the PN
differences in different chips, thereby adding entropy to the bitstrings. However, this only occurs when the two paths of a pairing have delays
that are within the range of within-die variation1. In Section 4.2, we used regression analysis to determine that within-die process variations
introduce delay variations of less than approx. 1.25 ns, which is a range from 0 to 23 PNs (53.6 ps/PN * 23 PNs ~ 1.25 ns). Therefore, path
pairing which produce PN differences that are larger than 23 PNs are likely to have the same sign, and corresponding bit value, across chips,
which, in turn, acts to reduce the entropy in HELP.

1. The PN difference must also be larger than the TV noise threshold as we discussed in Section 4.4.
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We propose a modification to difference thresholding, calledmodulo thresholding, that addresses this problem. The scheme is illus-
trated in Fig. 13. The enrollment distribution from Fig. 12 is annotated in Fig. 13 with PN data points from 2 path pairing and their corre-
sponding PN differences labeled PNDiffa and PNDiffb. While PNDiffa is within the range of within-die variation, i.e., has value of 15,
PNDiffb is larger with a value of 30. Therefore, the bit value derived from PNDiffb, in cases where this pairing is identified as stable, is likely
to remain the same in these chips, and will adversely impact inter-chip HD. Modulo thresholding adds two more thresholds to createstripes
in which strong bits are required to fall as shown in Fig. 13(b). Striping ensures that the delay difference between 2 paths of an arbitrary pair-
ing does not exceed the within-die variation levels. We found a stripe height between 10 and 15 is effective at filtering out these biased path
pairings.

In our experiments, we experi-
mented with a variety of TV noise
thresholds between 0 and 15 as a means
of evaluating the best choices for stripe
height and spatial redundancy. We
required that 1) no bit flips occurred for
any chip at any TV corner, i.e., the
intra-chip HD is 0%, 2) the inter-chip
HD is close to the ideal of 50% and 3)
the bitstrings score well on the NIST
statistical tests. We found these condi-
tions could be met using any one of
several different combinations of the
TV noise threshold, stripe height and
spatial redundancy parameter values.
Moreover, we found that the size of the
bitstrings produced by the chips remained relatively constant under each of the parameter combinations that met the 3 requirements above.
In particular, bitstring size varied between 55 K and 65 K bits. This yields an overhead per bit of approx. 50, i.e., we need to parse 50 path
pairings for every valid bit generated. As mentioned above, thisvalid bitstringoverhead adds to thepath bitstringoverhead. So the Helper
Data for a 256-bit bitstring would be approx. 3 Kbits (assumes 8.5% of the paths are stable) + 13 Kbits (256 * 50) = 16 Kbits or 2.0 KBytes.
Another interesting result is that at a spatial redundancy setting of 17, we were able to make the threshold 0 and meet the 3 requirements.

Fig. 14 gives the inter-chip hamming distance (HD) distribution for UNMD. The indi-
vidual HDs are computed pair-wise using the bitstrings of length 64,948 bits from 50 chips,
yielding 1,225 HDs. The ideal (50%) average HD value is 32,474 bits. The value computed
is 32,478, which expressed as a percentage is 50.004%. The TV noise threshold was set
such that no bit flips occurred in any of the 50 chips at any of the 8 regeneration TV corners,
so the intra-chip HD is 0%. However, with thresholding turned off, the actual underlying
intra-chip HD is computed to be 2.6%. The size of the bitstrings before thresholding is
3,171,421. The average number of bits that survive the thresholding is approx. 2.5% (the
bitstrings used for Fig. 14 are only 2% because we truncated the bitstrings for all chips to
the smallest bitstring produced by one of the chips). These bitstrings were also subjected to
the NIST statistical test suite using the default level of significance, i.e.,α = 0.01 [17]. The
bitstrings passed the all tests applicable to bitstrings of this size, including frequency, block
frequency, cumulative sums, runs, longest run, rank, FFT, nonoverlapping template, approx-
imate entropy and serial.

4.5.3   Dual-PN Count (DPNC) Bitstring Generation Method
A third technique called the DPNC method provides several trade-offs when compared

to UNM and UNMD techniques. DPNC is the most expensive method in terms of Helper
Data bits required per secret bit but is likely to be the most secure with respect to reverse-
engineering attacks. The large number of Helper Data bits effectively restricts the size of the
secret bitstring to 256 bits or smaller from a practical perspective.

The illustration in Fig. 15 show the basic concepts of the DPNC method. Note that the version described here differs from our previous
work [10-11] and is more efficient in terms of entropy extraction. Fig. 15(a) shows the binning process used by DPNC. A segment of the
range of PNs between 0 and 41 are listed along the top and are partitioned into 5 groups. The PNs in the groups labeled ‘low bin’ and ‘high
bin’ represent valid PNs. PNs in the remaining 3 regions are invalid and are discarded when they appear in the sequence. These regions rep-
resent a safety margin between the low and high bins and account for uncompensated shifts in the PNs that occur during regeneration
because of TV noise. As indicated earlier, consecutive PNs represent a difference in path delay of approx 53.5 ps so the entire span from 0 to
41 represents approx 2.2 ns of delay variation. The difference between the two valid bins, however, is between 0.27 and 1.12 ns (in PNs,
between 5 and 21), which is within the within-die variation range from Fig.10. Fig. 15(b) shows the modulus operation. Using a modulus of
42 causes PNs larger than 41 to wrap back around into the 0 to 41 region. This effectively maps the delays of longer paths into the short path
region, while preserving the within-die variations in these longer paths.

Fig. 15(c) shows the DPNC method applied to an example sequence of PNs during enrollment. DPNC requires and odd number of cop-
ies, 1, 3, 5, 7, etc. copies of low bin or high bin PN to be found in the sequence before actually generating a secret bit. Similar to spatial
redundancy, this scheme adds resiliency to bit flip errors which can occur when PNs move into the opposite bin during regeneration because
of TV noise or jumps. The bin of the first valid PN in the sequence determines which bit value, ‘0’ or ‘1’, will be generated.

For example, the modPN given in column 1 in Fig. 15(c) is 13 and is therefore valid and in the low bin so the algorithm searches for 2
more copies of valid modPNs that also fall in the low bin. The modPN in column 2 is valid but falls in the high bin according to Fig. 15(a)
and therefore is marked invalid and skipped (header given as ‘FM’ means ‘failed to match’). The modPN in column 3 is 11, a valid low bin
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value and therefore represents the second copy. Columns 4, 5 and 6 are valid but fail to match. Columns 7, 8 and 9 fall in the safety regions
of Fig. 15(a) and are marked invalid (header given as ‘OB’ means ‘outside the bins’). Column 10 contains a valid low bin PN and represents
the third copy. Therefore, a secret bit with value 0 is generated as shown along the bottom of the figure. Regeneration is carried out by read-
ing the valid bitstring to determine which PNs to inspect. Two counters count the number of low bin and high bin values and a bit is gener-
ated based on majority vote every time an odd number of valid PNs are parsed.

We applied the DPNC method to our chip data using the
parameters given in the example, i.e., modulus of 42 and a bin width
of 16 but increased the redundancy from 3 to 7 as a means of meet-
ing the 3 requirements mentioned for UNMD, namely, 1) no bit
flips, 2) near 50% inter-chip HD and 3) good NIST results. The
average size of the secret bitstrings is 157 bits. The smallest size
used in the following statistical results is 148 bits. Intra-chip HD is
0%, inter-chip HD is 49.96% and the bitstrings passed all applicable
NIST tests including frequency, block frequency, cumulative sums,
runs, longest run and serial.

The public data size for DPNC is 31,236 bits, of which we
obtain 2,519 stable PNs and can generate bitstrings of length 157 on
average. Therefore, we must test approx. 200 paths to generate each
secret bit under DPNC. A bitstring of size 256 requires 51 Kbits or
6.4 KBytes. Clearly, DPNC is the most expensive method with
respect to Helper Data. However, the modulus operation makes a
simulation-based attack, as we described earlier for UNM, useless
because only the high frequency behavior of the path delays are pre-
served in the modPNs.
5  Conclusions

In this paper, we describe a hardware-embedded delay PUF
called HELP which leverages path stability characteristics and within-die delay variations as sources of entropy in core logic macros. We
implemented HELP in a floating point unit and fabricated multiple copies in a 90 nm test chip. Three bitstring generation methods are inves-
tigated called UNM, UNMD and DPNC. While the statistical characteristics of UNM were substandard, we obtained excellent results from
UNMD and DPNC. The poor results from UNM demonstrate that it is not possible in some macros to base the entropy source entirely on
path stability. Although aging is not studied in this work, we expect NBTI and HCI to work against the long term stability of the HELP PUF,
as is true for all delay-based PUFs.
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Fig. 15. Illustration of DPNC Method.
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