
Secure Design Flow of FPGA Based RISC-V

Implementation

Ali Shuja Siddiqui, Geraldine Shirley, Shreya Bendre, Girija Bhagwat, Jim Plusquellic, Fareena Saqib

Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, USA

asiddiq6@uncc.edu, gnichola@uncc.edu, sbendre@uncc.edu, gbhagwat@uncc.edu, jimp@ece.unm.edu, fsaqib@uncc.edu

Abstract—In the process of globalization, heterogeneous

SoCs play an important role in an embedded application,

security aspects of such a system are crucial. The system is

susceptible to many attacks out of which we focus on two main

attacks, namely, boot time attacks, where malware are injected

to leak information and modify the functionality and run-time

software attacks causing memory corruption. In this paper, we

propose a hardware/software-based solution to secure the

system integrity by providing secure boot which prevents

malicious and unauthorized software during startup and

Information Flow Tracking (IFT) technique to track the

spurious data during run-time and preventing buffer overflow

attacks. This proposed solution is implemented on the RISC-V

and provides a self-authentication mechanism for FPGAs using

TPM.

Keywords— Information Flow Tracking (IFT), Secure Boot,

RISC-V, TPM, Run-time attacks

I. INTRODUCTION

The major concern in today’s hardware design is the
vulnerability towards untrusted entities which results in
designing a secure architecture which is capable of firmware
integrity and tracking the flow of information during run time
and protecting the system from software-based attacks.
Internet of Things is a special purpose small-scale devices that
are typically connected in nature. Due to this nature, they may
need to communicate with untrusted nodes. These untrusted
nodes may try to exploit some software vulnerabilities that the
vendor may not be aware of at that time and when they are
deployed on the field, they become susceptible to application
level as well as firmware level attacks. This may lead to a
system compromise.

RISC-V is an open source ISA which allows optimization,
modification, and usage according to specific requirements.
This makes the system running on RISC-V more susceptible
to attacks at any point in time. The processor can be untrusted
at boot time or run time. In this paper, we propose a solution
for securing the RISC-V processor by providing Secure Boot
and Information Flow Tracking schemes for RISC-V to
mitigate boot level as well as runtime software-based attacks.

Malware cause malfunction in systems, reduce
productivity and leakage of sensitive and secret data.
Specifically, malware developers have begun to target
firmware that starts up the computer system, focusing on the
gap between firmware and when the operating system starts.
These are rootkit and bootkit attacks. Malware can attack
systems in a pre-boot environment. This happens as there is
no filter to distinguish between authentic and malware
software. The Unified Extensible Firmware Interface (UEFI)
proposes the secure boot which is a security standard which
makes sure that the system boots using only software that is
trusted. Secure boot ensures the integrity of firmware and

software running on a platform. It allows only those software
and firmware which are approved by trusted keys. It
establishes the relationship between BIOS and software which
gets launched. Secure boot prevents malicious software and
unauthorized operating system during the system startup
process. Malware may attack bootloaders in the absence of
secure boot, and this could be the reason for not booting the
system at all.

Runtime attacks are also powerful attacks. The attestation
of the firmware is a security service where device proves that
the firmware is attested with a trusted remote entity. Today,
securing of computing platforms from malicious entities is a
high priority task to protect sensitive information and data.
Information Flow Tracking (IFT) is a security technique
which tracks the untrusted data inputs during run-time and
restricts the use of such inputs along with protecting the
system from buffer overflow attacks. The main observation in
IFT is the difficulty in preventing fault injection, code
injection and protecting the system from a security breach.
Thus IFT tracks the flow of the data during execution time to
identify the malicious inputs and marks them as spurious or
tainted input.

Hardware Trojans have become a major threat to
reconfigurable devices. Trojans can be inserted in an IC
design process which can alter the design functionality or leak
secure information from the system. It is difficult to identify
the Trojans during post-manufacturing, which results in
various methodologies to detect, distinguish and mitigate such
attacks. Providing device authentication by using physically
unclonable functions or trusted platform modules can be
further used to detect and prevent Trojan attacks by measuring
the variations such as power and delay to capture anomalies
or outshoots caused by Trojans.

We demonstrate TPM based secure boot and architectural
level information flow tracking extensions to track the
information flow within a processor. It considers the system
as a logic function which has both trusted and untrusted inputs
and outputs and based on the propagation tagged or tainted
bits are added. Shadow logics are used to develop rules for
trusted and untrusted inputs and tracks the flow of the data.
Each register and memory should be shadowed to store a one-
bit tainted value. Shadow logics can be integrated with IFT to
trace the tag propagation of each operand. The RISC-V
architecture can be configured to implement shadow registers
and by adding new instructions to the architecture to access
the registers.

II. SECURITY EXTENSIONS IN RISC-V PROCESSORS

A. RISC-V

RISC-V is an open source Instruction Set Architecture
developed by UC Berkeley and is currently supported by the

mailto:asiddiq6@uncc.edu
mailto:asiddiq6@uncc.edu
mailto:gnichola@uncc.edu
mailto:gnichola@uncc.edu
mailto:gbhagwat@uncc.edu
mailto:gbhagwat@uncc.edu

RISC-V foundation. It is based on the reduced instruction set
principles and has found several applications in different
domains like IoT, embedded applications, etc. It supports 32,
64 and 128-bit instruction widths and has a fixed base integer
ISA which is mandatory for all RISC-V processor
implementations. The base integer ISA supports two primary
variants namely: RV32I and RV64I which provides 32-bit and
64-bit user-level address spaces respectively [15].

The base integer ISA has fixed-length 32-bit instructions
with variable length encoding possible. The base integer ISA
consists of 32 general purpose registers and a program
counter. The privilege levels are used to provide protection
between different components of the software stack [14]. The
three modes include machine, supervisor and reserved modes.
Machine mode has the highest privilege and is used to run
simple embedded system applications. This mode does not
provide protection to the system against incorrect or malicious
application code. The user mode is used to run secure
embedded applications and protects the system against
malicious application code. The supervisor mode is used in
systems which have Unix like OS. The RISC-V processor is
written in Chisel (Constructing Hardware in Scala Embedded
Language) which converts the code into an intermediate RTL
representation (FIRRTL) which is then converted to a Verilog
or C++ code.

B. Secure Boot with Trusted Modules

To integrate secure boot, we propose the RISC-V interface
with the secure and trusted module (TM) and demonstrate a
secure boot chain of trust, that validates firmware checks. The
firmware checks include the signature of each piece of boot
software sequentially or hierarchically verification. If the
signature is valid, the system boots and firmware gives control
to the operating system. Secure boot mechanism relies on
public/private key pairs and digest attestation to verify the
digital signatures of all firmware and software before
execution. When the boot is enabled, it checks the loading
software and checks whether this software is signed with the
trusted keys which are already present in the firmware. The
proposed scheme blocks the malicious software by using
Trusted Module (TM) which is a hardware security module or
secure co-processor that implements cryptographic functions.
These functions include encryption, data signing, and data
sealing. We consider Trusted Platform Module TPM as
Trusted module.

TPM specifications are defined by the Trusted Computing
Group (TCG) [1]. All TPM implementation must follow the
specifications however, the specifications do provide
flexibility in terms of the functionality it can implement. TPM
has tamper resistant non-volatile memory. This memory can
be used for storing cryptographic objects including keys and
other user-defined values. There are currently two
specifications that are being followed are TPM 1.2 and 2.0.
However, there is a shift from TPM 1.2 to TPM 2.0 due to the
advanced features that TPM 2.0 provides. An overview of the
differences between the two standards is given in Table 1.

TABLE I. Comparison between TPM 1.2 and TPM 2.0

Algo

rith

m

RSA

102

4

RS

A

20

48

ECC

NIST

P256

ECC

BNP2

56

AES

128

AES

256

SH

A-1

SH

A-2

TPM

1.2

Yes Yes No No Optio

nal

Opti

onal

Yes No

TPM

2.0

Optio

nal

Yes Yes Yes Yes Opti

onal

Yes Yes

 Trusted Module (TM) supports provision for
implementing measurable boot using Platform Configuration
Registers (PCR). PCRs are registers that hold cumulative hash
values. These registers are populated using
TPM_PCR_Extend and the data streaming enabled
TPM_HASH structures. 256 bits of data is hashed using either
SHA-1 or SHA-2 hashing algorithm on the TPM. Once the
process is completed, the computed SHA value is added to an
existing selected PCR value. Equation 1 shows the process of
PCR extension.

SHAnew = SHAold || SHAComputed (1)

The boot process can be divided into stages, e.g. firmware,
operating system, applications, etc. Figure. 1 shows the
different stages in the secure boot software chain of trust. For
measuring the boot process, the PCR is computed and verified
for the next layer in the process before the execution can be
passed to that layer. At the end of the process, the value of the
PCR provides sequential attestation of all the components in
the chain.

The secure boot is demonstrated on FPGA prototype of RISC-
V and the performance evaluation is discussed.

C. Information Flow Tracking

There are various hardware and software-based defense
mechanisms implemented on IFT techniques. It can be
implemented on different types of architecture along with
heterogeneous SoCs and hardware accelerators. Dynamic
Information Flow Tracking (DIFT) is a hardware technique
which protects the programs from malicious software attacks,
but these implementations result in performance overhead by
using additional physical memory to store the tag bits [8]. The
authors extended the RI5CY/PULPino to develop a prototype
for IoT applications. Tainted pointer technique is used to
protect control and non-control data inputs resulting in a non-
zero false positive rate with some synthetic false scenarios to
mitigate memory attacks, but the overall performance
overhead is high [10]. Code flow integrity and various
defensive techniques for non-control data attacks are analyzed
to develop a realistic and generic security technique for
memory attacks[9][13].

Gate Level Information Flow Tracking (GLIFT) is another
technique at gate level implementation which uses shadow
logic to track the information flow of gates and marks the
untrusted values [11]. This paper integrates the architecture
level support for implementing the Information Flow

Figure 1. Secure Boot Software Chain of Trust

 irmware

 oot oader

 erating

 ystem

 ication

 ttest then

contin e

 ttest then

contin e

 ttest then

contin e

Tracking on a RISC-V processor to detect and reduce the
impacts of various run-time attacks. This scheme protects
bare-metal applications against memory corruption by adding
tag bits to the untrusted data inputs. Figure 2 shows the register
file, data memory and tag cache for storing the one-bit tags.

A separate area in the memory is dedicated to the tags
which result in two separate accesses to the memory, one for
the actual word and the other for the tag, that is done in parallel
to not impact the performance. Additional instructions are
added to read and write tags in the memory. To support the
tagged memory the data cache is revised to store the tags
alongside data. Tag functional units are added in the Rocket
core pipeline to support the features. Fine-grained memory
protection is achieved by using tag bits and tagged memory to
mitigate buffer overflow attacks and memory corruption
attacks.

Register File

Data memory

Tag Cache to store

one bit tag

Figure 2. Separate Tag Cache with register and data memory

III. THREAT MODEL

SRAM Based FPGAs consist of a volatile memory which
holds the configuration for all logic components of the
Programmable Logic (PL) block of an FPGA. The bitstream
is loaded into the configuration SRAM as a bootup process
using a First Stage Boot Loader (FSBL) [2]. This method
requires bitstream to be stored in a non-volatile storage
medium, such as a flash, SD-card, etc. Whereas, during
runtime, the bitstream can be loaded using PL fabric interfaces
such as Internal Configuration Access Port (ICAP) [3] or
Programmable Configuration Access Port (PCAP).
Additionally, Dynamic Partial Reconfiguration can also be
used to reconfigure a target area on the fabric during runtime.
Dynamic Partial Reconfiguration allows modifying the
configuration while the system is active.

FPGAs face the threat of malicious modification of
bitstreams. An adversary can modify the bitstream to be
configured during bootup. This attack can be achieved by
modifying the source bitstream either locally or remotely
using remote update mechanisms. This forces the tainted
bitstream to be loaded the next time the FPGA is booted up or
during a complete configuration reload. An adversary has the
option to target the PL fabric during runtime. ICAP and PCAP
allow readback as well as reconfiguration during runtime. An
adversary can perform runtime modification attacks using
either of the ports. As such, the modifications performed will
last either till the next boot-up or the instant the FPGA
reconfiguration is triggered. Thus a self-authentication
mechanism is required for FPGA based designs.

Once the system boots with self-authentication, the
application code is prone to run time attacks. The malicious or
untrusted data inputs can corrupt the return address, or the
payload can inject codes to run different functions and fault
can be injected. Additionally, leakage of information is hard

to detect. Hence the information flow tracking technique is
investigated to mitigate malicious attacks and can be further
extended to detect trojan activations with minimal
performance overhead. In this paper, we assume that the
application code is vulnerable to the attackers to perform
read/write operation, inject codes or leakage of information
which causes memory corruption. In order to protect the
integrity of the system, a new fine-grained identifier called as
tags are attached to the spurious data inputs and these tags are
propagated from the input operand to the output operand on
an instruction. A straightforward, new fine-grained one-bit
tag based IFT with minimum overhead has been implemented
with RISC-V as the test bed.

IV. RUNTIME SELF AUTHENTICATION FOR RISC-V ON

FPGAS

This work presents a self-authentication mechanism for
FPGA based designs. In this paper, we demonstrate RISC-V
FPGA implementation. The secure boot scheme consists of
verifier and prover entities. The prover is the untrusted entity,
which must prove its authenticity to the verifier. Whereas, the
verifier is a trusted entity that sends a challenge to the prover.
The prover responds to the challenges and if the prover cannot
satisfy the verifier with its response, the verifier marks the
prover system as compromised.

In different kinds of literature, the verifier is implemented
either as a function of the programmable logic (PL) fabric or
occupies a part of the fabric [3][4]. This approach has two
limitations. PL Fabric based authentication frameworks
require additional fabric for implementing cryptographic
functions. Additionally, the implemented cryptographic
functions use dedicated fabric-based access-controlled
memory elements. Using configuration readback
mechanisms, such as ICAP and PCAP, an adversary may be
able to retrieve secret keys being used. This work instead
offloads security to externally established cryptosystems and
trusted modules (TM) such as the TPM.

The presented self-authentication design assumes that the
verifier consists of a processor-based design implemented on
an SoC that has trusted processing system and untrusted
bitstreams programs the PL fabric. In order to mitigate the
chances for spoofing attacks, this design assumes that PL
fabric only uses on-chip Block RAM components and not any
external memory components, e.g. DDR RAM. This
limitation is practical realizing resource-constrained
embedded system devices. The verifier can either be an off-
chip processor or a hard-core processor sharing the system
bus. The secure and trusted module (TM) is shared between
the prover and the verifier on a shared bus interconnect or a
secure network. Network security is not in the scope of this
paper. The verifier-interconnect connection must not be
visible to the verifier to mitigate eavesdropping. We assume

Figure 3. Secure boot attestation framework

a
st
e
r

 ro er

 a

e

 a

e

 ystem

 s

 nterconnect
as
te
r

a
st
e
r

 eri ier

 a

e

 t

connection

to

 ry to

 od e

that the verifier is secure and uses code stored on an isolated
non-volatile Read Only Memory (ROM). The application
bitstream is stored in a separate persistent storage medium.
This bitstream is expected to be updated in case of an update.
The verifier relates to a secure back-end update server through
a secure network connection. An illustration of the design is
given in Figure 3.

At boot-up, the verifier is booted up first. The verifier after
initializing itself performs an initial attestation of the RISC-V
design bitstream. The integrated/interfaced TM device is
initialized by the verifier. In order to initialize the TM, for the
demonstration we have integrated TPM with the verifier, the
verifier performs the following sequence of actions:

• The TPM is sent a TPM_STARTUP structure. This
command initializes the TPM. The drivers for the TPM
are written to be able to access the security co-
processor at the time of first stage boot loader is
loaded.

• The verifier requests the backend for the expected
SHA value of the bitstream. At each request, the
backend computes a new SHA value. In order to
ensure freshness, the SHA computation is initialized
with a nonce. The computed cumulative SHA and the
nonce is sent to the verifier.

• A TPM has five localities numbered 0 through 4. Each
locality can use different functions and has access to
separate memory locations on the TPM[5]. Locality 4
is used to computing Dynamic Root for Trusted
measurement (DRTM) using PCRs. The verifier using
locality 4, first sends TPM_HASH_START structure
to the TPM. This readies the TPM to accept streaming
data packets. The verifier now first pushes the nonce
 ro ided by the backend ser er into the T ’s
TPM_HASH_DATA FIFO. The verifier now
continues to push bitstream packets into the TPM. In
this process, the bit locations where any memory
element is expected is masked. This is done since the
state of the memory cannot be guaranteed during
execution.

• Once the bitstream has been pushed,
TPM_HASH_END structure is sent to the verifier to
confirm the end of data. PCR 17 on the TPM is
populated with SHA value.

• The verifier compares the computed hash value with
the SHA value sent by the back end. If the value is
different, the verifier first notifies the backend of the
change and then requests a new copy of the bitstream.

• When the bootup attestation is completed successfully,
the eri ier co ies the bitstream into the L abric’s
configuration SRAM.

• The value of the PCR is discarded, and the PL fabric is
brought up. Once this process is complete, the soft-
processor system on the PL fabric becomes
operational.

Once the PL fabric setup process completes the soft-
processor initiates its boot up sequence and resumes
application execution normally.

V. SECURING RISC-V WITH IFT

The RISC-V Rocket chip SoC contains a rocket Custom
coprocessor Interface (RoCC) which provides communication
between the rocket processor and attached co-processors.
Most of these coprocessors are crypto units and vector
processing units. The RISC-V processor is modified to
incorporate a security feature which can be used to protect the
device against run time attacks like buffer overflows and
format strings along with self-authentication mechanism. In
this implementation, we have also integrated the AES
(Advanced Encryption Standard) in order to protect the
sensitive data against any tampering or modifications and in
order to provide data integrity and confidentiality supported at
the architecture level. The AES crypto engine is a symmetric
key algorithm where the same key is used to encrypt and
decrypt the data. It has a fixed block size of 128 bits and a
variable key size of 128, 192 and 256 bits. The key size of the
AES engine specifies the number of rounds needed to
transform the plain text to ciphertext or vice versa. As the key
sizes used in AES are sufficiently large it can be used to
protect classified information up to the top level. The AES
integrated in RISC-V supports all three key sizes (128, 192,
256).

The IFT technique includes three main Tag management
mechanisms namely Tag initialization, Tag propagation, and
Tag check/update. In Tag initialization, tags are added to the
incoming sensitive input data to mark it as spurious or
authentic. Tag propagation follows a set of security policies
where the tag propagates to the defined classes in which the
authenticity of the operand is tested on the basis of the type of
instructions being executed. The processor checks whether the
spurious data is used in an unsafe manner in Tag check/ update
mechanism resulting in a security exception.

Figure 4. Modified execution stage of the processor pipeline

The IFT technique is implemented on the (SiFive) FE310
SoC which contains the E31 RISC-V core. This is done by
modifying the execution phase of the E31 core. The E31 core
is fully compliant with the RISC-V ISA specification. It is a
high-performance implementation of RISC-V RV32IMAC
architecture. Figure 4 illustrates the Modified Execution stage
of the processor pipeline in RISC-V architecture. The RISC-
V architecture consists of a collection of important Control
and Status Registers (CSRs) to manage and access the system
functionalities. Tagged memory has the ability to provide
metadata, in the form of one-bit tags with each memory
location [12]. The on-chip cache is extended to hold tags by

adding a cache tag. To protect the data from memory
corruption a one-bit tag is attached to the input data where the
data is physically stored in the memory and the one-bit tag is
stored in a tag cache.

Whenever the operands of an instruction are fetched, a 1-
bit tag value is assigned to each operand depending on

whether they are coming from malicious I/O communication
channels(1) or from a register file(0) present inside the
processor. The propagation and check rules for the tags are
stored in the Tag Propagation Register(TPR) and Tag Check
Register(TCR) which are added in the CSRs on RISC-V.
Figure 5 shows the Tag Propagation mechanism in which after
assigning the tag bits, the type of instruction is checked:
Arithmetic, Branch, Comparison, Logical, Shift, Jump,
Branch. Depending on the type of instruction and the input
operand tag value, the output tag bit value is determined.
Different classes of instructions have been added to state the
rules for tag propagation. When an instruction is identified the
tag propagation rule sets the mode with respect to that class
and under each mode, different conditions are specified for the
tags to propagate from the input operand to the output
operand.

Figure 6. Tag Check Flow

The Tag Check rule checks for the source and destination
operand tags and raises an exception when the condition is
met. It restricts the number of operations which can be
performed on spurious data. Figure 6 shows the Tag Check
flow, in which the instruction type is checked for comparison
or load/store. If it belongs to any of the two instruction types
and if both the input operands tags of these instructions are
marked as spurious, the Tag Check does not allow this
instruction to be executed and raises a security exception. To
assign the tag bits to the tag memory two new instructions

have been added to the RISC-V architecture, namely load_tag
and store_tag. The memory location is augmented with a one-
bit tag that can be accessed in parallel with the data. Tagged
memory is achieved by maintaining a shadow memory where
the load and stores are implemented with additional codes.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The design is based on the lowRISC RISC-V FPGA
implementation [6]. The lowRISC SoC is implemented on a
Xilinx Zed board which uses a Xilinx Zynq 7000
xc7020clg484-1 FPGA. The FPGA is equipped with a hard
dual-core ARM Cortex A9 (PS) processor. In the base
implementation, the RISC-V processor is implemented on the
PL fabric and has access to a serial console and a Serial
Peripheral Interface (SPI) that are also implemented on the PL
Fabric, and are a part of the bitstream. Zed board is equipped
with an external DDR RAM which is directly connected to the
PS. In order to access the RAM, the RISC-V processor
instantiates the hard processor as AXI slave. The requests for
the RAM are forwarded to the attached module by the hard
processor. In this work, since we have assumed that FPGA
implementation will not use any external memory module, no
requests are made for it in the reference implementation code.

For physical Trusted Module (TM) integration TPM is
interfaced with the setup, the hardware-based SPI port is
configured on the PS. The TPM is interfaced using dedicated
Multiplexed IO (MIO) port. This enables the TPM device to
be available before the PL is programmed with a bitstream.
This work uses the Infineon SLB 9670 TPM 2.0 module [7].
A custom driver is written for the PS and the RISC-V
processor to access the TPM and to compute the hash of the
bitstream. Additionally, a PCAP component is added to the
RISC-V design to perform runtime attestation. The PS core
also uses the onboard Ethernet port to communicate with the

backend server. The setup of our implementation is shown in
Figure 7.

The architectural level of the E31 core is modified for IFT
and two registers are added in the CSR. Two new instructions
are added and the RISC-V toolchain is extended. The TPR and
TCR registers contain the rules for the tag propagation and the
tag check respectively. Each element of the class indicates a
field in the TPR and TCR register and depending on the rules
the status of these registers is updated. Whenever an exception
is raised, the offending instruction is not committed, and an
exit routine is executed instead. In this implementation, the
modifications are made in the execution stage of the processor
pipeline. In order to incorporate the entire Information Flow

Figure 7. Experimental Test Bed

Figure 5. Tag Propagation Flow

Tracking technique, these modifications will be integrated
into the IF, ID and the WB stage of the pipeline. These
structures can enhance security capability to mitigate the
propagation of attacks during execution. AES crypto engine is
integrated into the RISC-V processor. Figure 8 shows the
results of the AES crypto engine integrated with the RISC-V
core.

Figure 8. AES integrated in RISC-V Core

Control and data flow logic is customized in the RISC-V for
the classes in the TPR and TCR rules and values are set
according to the input tag operands and type of instruction. At
the same time, the TPR register bits are also set according to
the input operands tags for a class. The modified code flash
programmed into the FPGA board.

VII. PERFORMANCE ANALYSIS

 The overhead of the interface to the hardware includes
additional rule check during the bitstream load process, that is
integrated at the FSBL. The design requires custom drives to
interface the Trusted Module and requires an addition of a PL
based PCAP interface IP. The bitstream size for XC7020 is
around 3.4 MB. On average, the total time to compute the hash
for a bitstream was measured to be approximately 32 seconds.
The area overhead of the information flow tracking is the
integration of tag cache and tag registers, inputs, and outputs.
Tag propagation register and tag check register and state
machine to update these registers.

VIII. ACKNOWLEDGEMENTS

The research is funded by NSF awards 1814420, 1819687

and 1819694

IX. CONCLUSION

Considering the threat model and the presented
architecture, the security solution put forward by our proposed
architecture is realistic and has negligible performance
overhead. The paper provides a solution for securing RISC-V
processors by implementing a self-authenticated secure boot
during startup and providing information flow tracking to
detect and stop run-time memory corruption attacks. By using
shared memory for IFT technique the performance overhead
is considered negligible.

REFERENCES

[1] “T Library eci ication ” [n ine] ai ab e:
http://www.trustedcomputinggroup.org/resources/tpm_library_specifi
cation. [Accessed: 01-Feb-2018].

[2] Xi in nc , “Zynq 7000 o Technica Re erence an a ,” 2018
[Online].Available:https://www.xilinx.com/support/documentation/us
er_guides/ug585-Zynq-7000-TRM.pdf. [Accessed: 13-Jul-2018].

[3] D wen Jr et a , “ n tonomo s, e -Authenticating, and Self-
Contained Secure Boot Process for Field- rogrammab e Gate rrays,”
Cryptography, vol. 2, no. 3, p. 15, Jul. 2018.

[4] J iegen, Rabbani, onti, and N entens, “ Ha: e -
 ttestation o on ig rab e Hardware,” in 2019 Design, tomation
& Test in Europe Conference & Exhibition (DATE), 2019,
pp. 746–751.

[5] Tr sted om ting Gro , “T G ient at orm T ro i e
(T) eci ication ami y ‘2 0’ T G b ic Re iew,” 2017

[6] “ owR · owR ”[n ine] ai ab e:htt s://www owrisc org/

[Accessed: 31-May-2019].

[7] “ L 9670 Q2.0 - n ineon Techno ogies ” [n ine]
Available:https://www.infineon.com/cms/en/product/security-smart-
card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-
9670vq2.0/. [Accessed: 03-Nov-2018].

[8] Christian Palmiero, Giuseppe Di Guglielmo, Luciano Lavagno, Luca
 ar oni, “Design and m ementation o a Dynamic n ormation
Flow Tracking Architecture to Secure a RISC-V core for IoT
a ications”, 2018

[9] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar and Ravishankar
K yer “Non-control-data attacks are rea istic threats” In In USENIX
Security Symposium

[10] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, Ravishankar
K yer, “De eating memory corr tion attacks ia ointer taintedness
detection. 2005 DSN

[11] M.Tiwari, X. Li, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T.
Chong and T herwood “Gate e e n ormation ow Tracking or
 ec re rchitect res” icro, 2010

[12] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun,
Byoungyoung Lee, Taesoo Kim, Wenke Lee and Yunheung Paek,
“HD : hardware-assisted data flow isolation. 2016 IEEE Symposium.

[13] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, Ryan Kastner,
“Register Trans er Le e in ormation ow tracking or ro ab y sec re
hardware design”, 2017

[14] RISC-V Instruction Set Manual. Volume II: Privileged Architecture

[15] RISC-V Instruction Set Manual. Volume I: User-Level ISA

http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

