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Abstract—Mobile devices are quickly becoming the most used
and abundant electronics used today. The ability to positively
identify a mobile device and associate it with a specific person
or entity is critical to deter theft and provide enhanced security
of stored data. This paper presents a novel method for providing
device identification through the use of PUF technology that
uniquely labels every supporting device. This method can alo
be leveraged to create secure communications between devices
and protection of on-board data.
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I. INTRODUCTION

Individuals are using mobile devices to accomplish an
ever-increasing number of tasks ranging from simple games
to financial transactions to controlling household appliances.
Further, mobile processors are finding their way into an
assortment of non-cellular applications, with one of the most
prevalent being automotives. Regardless of the overall use of
the electronic, there is almost always some need for interaction
with other devices and for the sharing of data.

Regrettably the security of these devices are often not
sufficiently considered until something goes wrong. A prime
example of this was exposed by Koscher et.al. [1] and Check-
oway et. al. [2] in their research on the security of embedded
systems in automotive vehicles. Their research resulted in the
discovery of a variety of serious security holes that would
allow a hacker to control or bypass safety critical system, re-
write firmware, or even steal the vehicle. Additionally, this
research was only conducted on a small number of vehicles.
It is anyone’s guess as to how wide-spread this problem is in
the automotive world at large!

Mobile devices, such as cellular telephones, are also suscep-
tible to a huge number of attack methods that can result in loss
of Personally Identifiable Information (PII), loss of service,
unauthorized financial transactions, or financial charges due to
data and/or cellular usage. This list is not intended to detail all
possible consequences, nor are such attacks confined to mobile
or automotive systems. Such concerns also exist in the areas of
health-care system, cellular infrastructure, and Digital Rights
Management (DRM). Each of these areas, as well as many
more, are affected by the security mechanisms developed and

implemented by mobile processor manufacturers and software
designers.

Mobile security is further complicated by a new method-
ology known as ”Bring Your Own Device”, or BYOD. This
concept describes the need of most people today to have some
form of mobile communication available not only for home
use, but also for use at work. Rather than requiring individuals
to carry two devices, it is usually desirous to have a single
device that can be used for both personal and work purposes.

The primary issue is that mobile devices are often personal,
in that they contain information and/or applications that are
personal to the user that may not fit well with corporate
network requirements. Corporations often employ strict con-
trols over devices connected to their networks. Such controls
on a personal device being used outside or work is fairly
impractical. While methods of enforcing corporate protocols
on personal devices are available, they must work in a fashion
that does not prohibit use of personal data or applications when
the user is not at work, nor that would result in the loss of
data if and when an employee leave the company.

In this paper, we present a novel application of a proven
capability that can provide enhanced security of mobile and
embedded devices while still providing the flexibility needed
to support a BYOD environment. Physical Unclonable Func-
tions (PUFs) provide a mechanism for generating unique-
per-device values that can be used as secret, symmetrical
keys, or can provide random seed values for asymmetric key
generation engines. Incorporation of this functionality into a
cryptographic unit for modern mobile processors can provide
a mechanism for protecting sensitive data on a device, as well
as supporting encrypted and secure communications between
devices.

In Section II, we present supporting background research
showing the viability of PUFs to create the necessary random
values for key generation, as well as various research idea
currently used in mobile security. In Section III, we present the
design of an Enhanced Cryptographic Engine (ECE) that will
facilitate the implementation of secure communications and
data security in mobile processor applications. In Section IV,
details of a software implementation of the ECE are presented
along with results of how this worked and what functionality
was possible. In Section V, we discuss future work in this



area and briefly discuss additional applications and security
concerns that can benefit from this new architecture.

II. BACKGROUND

The concept of Physical Unclonable Functions (PUFs) was
originally proposed in 1983 by D.W. Bauder at Sandia Na-
tional Laboratory as a method for identifying counterfeiting, or
alteration, of a chip design [3]. PUFs continued to be explored
as a solution to such issues but soon found an additional use:
random number generation. PUFs provide a path through a
collection of decision nodes that result in a 0 or 1 value based
upon the manufacturing characteristics of the device. A PUF
is provided with a challenge, which represents a collection of
decision values for each of the decision nodes, and produces
a set of responses. Because of variations in the manufacturing
process, each device will produce different responses to the
same challenge.

As a result, many researchers have claimed that the “device
unique” values generated by a PUF could be used as keys
for cryptographic operations. This was first proposed in 2004
by Lee et.al. [4] and then in 2007 by Suh and Devadas [5].
Their goal was to generate a key that could be used to support
device authentication. Their research provided several methods
for attempting to stabilize the results of a PUF in order to
provide consistent and repeatable results that could be used
to generate a cryptographic key. Once stabilized, the authors
proposed the ability to use this key in device authentication
mechanism, such as IC identification.

Both of these approaches made use of challenge/response
pairs to positively identify given devices. The device is origi-
nally presented with a challenge that is then encrypted using
the device specific key and returned to the challenger. This
result is called a response and is maintained somewhere for
comparison at a later time. To identify a device, one of the
previously provided challenges is again issued and the result is
compared with stored challenge/response pairs. If the response
matches what is stored, the device is authenticated. If not, the
device is not granted access to the requested resource, such as
a Wi-Fi network.

A similar approaches was proposed by Ibrahim and Nair
[6], except that the challenges where sent to a number of PUF
enabled elements on the system. These responses are combined
to provide a system-wide result, thus validating the system as a
whole rather than a single element. This approach also utilized
a third-party that would store challenge/response pairs for each
device to use for comparison at a later time.

While the feasibility of these approaches is solid, the
implementation can result is several problems. The storage
requirements for challenge/response pairs can be considerable.
To provide greater security, challenges should only be re-used
if absolutely necessary. Therefore, each device would need to
have a significant number of challenge/response pairs stored
externally. There is then a question of what happens once all
pairs have been utilized. Solutions vary from denial-of-service,
which is not very sensible, to generation of new challenge/re-
sponse pairs. While generation of new pair may sound easy,

regaining access to the processor may be impossible. Further,
leaving open access to a device such that anyone can provide
a challenge and then record the response is impractical from
a security standpoint. As a result, no feasible solution has
yet been presented for how to support these devices once all
available challenge/response pairs have been used.

A variety of software implementations and specification also
exist that are directed at addressing issues of mobile security
and providing protection for user data and transactions. ARM
Limited first presented a new security suite known as Trust-
Zone in 2003 and is currently on its 3rd version [7]. TrustZone
(TZ) encompasses a collection of modifications and support
features that provide hardware enforced, software execution
isolation on ARM core processors. This allows software to
execute in one of two execution environments: the Secure
world or the Non-Secure world. Each is provide with separate
memory structures, interrupt support, debug isolation, and a
variety of other features.

TZ can then be leveraged to implement a number of mobile
security specification, such as Global Platform’s Trusted Exe-
cution Environment (TEE) [8] [9] [10], the Trusted Platform
Group’s mobile Trusted Platform Module (mTPM) [11], and
the Open Mobile Terminal Platform’s (OMTP) Advanced
Trusted Environment [12]. Hardware manufacturers have be-
gun to pick up on these capabilities and have designed a
number of supporting architectures over the last few years.
Such architectures include Texas Instrument’s M-Shield [13]
and Qualcomm’s SecureMSM [14]. SecureMSM is even used
by a software company known as Giesecke & Devrient to
support a TEE compliant software architecture known as
MobiCore [15], which is found today in certain Samsung
Galaxy S III devices [16].

Researchers have also started to develop supporting imple-
mentations that make use of these features to address mobile
security issues. The first paper was written by Kurt Dietrich
and presents a mTPM implementation using a Java-based
application on a Suscriber Identity Module (SIM) card [17].
Johannes Winter presented a paper the following year that first
introduced the concept of using ARM TrustZone to create
a Trusted Execution Environment [18]. Building upon these
two papers, Dietrich and Winter released another paper in
2008 [19]. In this paper, the authors presented a software-only
mTPM architecture enforced via ARM TrustZone technology.

Not every researcher is convinced that these specification are
sufficient in their current state. In a paper by Grossschadl et.
al [20], the authors discussed three concerns with the mTPM
specification that they felt needed to be addressed. The first
concern was the use of a separate chip to support the TPM
functionality used by mTPMs. A second concern is the use
of out-dated cryptographic operation support, such as RSA-
2048 and SHA-1. The final concern is with mechanisms for
updating a TEE, which is a key issue that is addressed in this
paper. The development of an official policy for updating a
TEE is still in progress.

Two key issues that this research fails to address are
protection and modification of a TEE, and secure device
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Fig. 1: Generic cryptographic unit.

association/authentication with minimal overhead. While these
two problems may initially appear completely separate, a
solution discovered for one had a surprising application to
the other.

III. ENHANCED CRYPTOGRAPHIC ENGINE

In order to address the security issues presented in the
Introduction, as well as a number of additional issues not
mentioned, we propose the use of a modified cryptographic
unit called the Enhanced Cryptographic Engine, or ECE. In
addition to physical changes to the underlying hardware, a
software interface must be provided that utilizes the features
provided by the ECE to address these security issues. In this
section, we present information on both of these elements and
how they work together to provide enhanced security to mobile
and embedded systems.

A. ECE Hardware Architecture

Modern cryptographic engines, such as the one shown in
Fig. 1, are integrated into the majority of System-on-Chip
(SoC) designs used for modern processors. Cryptographic ac-
celerators were originally incorporated to provide performance
enhancements over traditional software implementations, as
well as allowing off-loading of computationally intensive
algorithms to a separate device. The cryptographic engine
generally includes a number of accelerators targeting specific
cryptographic algorithms, as well as interface elements, such
as control registers, FIFOs, or DMA controllers.

While these engines meet the purposes of their design, they
also carry the potential to provide significant security benefits
to mobile platforms. By incorporating the capability of a PUF
to generate unique-per-chip data, a cryptographic engine can
be used to provide a unique AES key and RSA or ECC
key pair that can be utilized by the engine. However, these
keys must never be directly accessible by any element in the
SoC, including the cryptographic unit. Additionally, the crypto
unit can also be used to generated random symmetric and
asymmetric keys. Such an implementation is shown in Fig.
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Fig. 2: Enhanced Cryptographic Engine.

2 and is hereafter referred to as an Enhanced Cryptographic
Engine (ECE).

As illustrated in Fig. 2, there are two primary elements that
are added to any standard cryptographic unit: a PUF-generated
secret key generator, and a PUF-generated Public/Private key
pair generator. Both key generators receive input from the
results of PUFs incorporated into the SoC design, as shown
in Fig. 3. In the case of secret symmetric keys, such as AES,
PUF-generated results can be be feed straight out as there are
no mathematical requirements placed on the value of the key
(other than randomness). For asymmetric keys, in this case
RSA, the PUF-generated results are used as a seed for key
generation logic. The resulting output is a public/private key
pair that may be used in corresponding operations.

The ECE contains two separate output channels from the
secret key generation modules, one channel that connects di-
rectly to the shared internal data bus, and a second channel that
connects directly to the corresponding cryptographic engine.
The reason for the separate channels is that while these key
generator modules are meant to generate random keys that can
be used by the system, they should also generate random, but
repeatable, keys that are not accessible by any other element of
the SoC. These keys should be generated every time the system
boots and should be consistent across reboots, regardless of
voltage or temperature variations.

The reason these keys must be regenerated and must be
protected from access is because they are used to identify
the system and to protect sensitive information. As such, they
must not be directly accessible by any SoC elements, must
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Fig. 3: Key generation method in ECE.



never be stored in any form of non-volatile storage, and must
be usable only under a very strict set of requirements. Rather
than being read or accessed directly, the value of each key
can be muxed into the key input stream for each associated
engine. Most modern cryptographic units allow multiple input
vectors for cryptographic keys, such as regular memory, e-
Fuse, Secure Read-Only Memory (SROM), or some other form
of non-volatile storage. Therefore, inclusion of an additional
input vector should require minimal changes to existing cryp-
tographic engine implementations.

Use of these key generation modules is controlled via
memory-mapped control registers for the ECE. Again, this
requires little alteration to modern designs as this is a standard
mechanism used to interact with cryptographic units. Any-
time the Applications Processor (AP) needs a new key, the
appropriate command can be written to the control registers
to generate the key. Additionally, an output address can be
provided where the ECE can write back the resulting key for
use by the AP. A full list of which operations are needed and
which are supported would be implementation dependent, with
the only requirement being that a single symmetric key and a
single asymmetric key pair must be generated and must never
be directly accessible by any SoC element.

B. ECE Software Architecture

While the hardware enhancement of the ECE provide func-
tionality that can be used to address the security concerns pre-
sented thus far, the proper access controls must be developed
and specified to prevent the ECE from being used maliciously.
Without proper controls, an attacker may be able to decrypt
secure data or add unauthorized devices to a list of associated
devices. To address this, we propose a software architecture
that uses a TEE to control access to ECE functionality. Such
a device then operates in one of four modes, as illustrated
in Fig. 4. These modes are: Uninitialized, TEE Initialization,
Discovery, and Standard.

A brand new device starts execution in the Unitialized mode,
typically executing out of the secure-ROM internal to the
SoC. From this point, the device enter the TEE Initialization
mode where it scans non-volatile memory for the existence
of a TEE. If no TEE is found, the manufacturer (presumed
to be in control of the device at this point) uploads a TEE
to the device. Once the TEE is loaded, the device can enter
either Discovery or Standard mode. Discovery mode allows the
device to associate itself with another device through a variety
of interfaces, such as Wi-Fi or Bluetooth. Once Discovery
is completed, execution moves to Standard mode. After the
device has entered Standard mode, certain TEE functionality
must be disabled to prevent unauthorized access by an attacker.

Although it is hoped that an attacker would never be able
to gain execution inside the TEE, such an idea should never
be considered absolute and should be guarded against from
day one. Fig. 4 shows the ability to move back into Discovery
Mode even after the device has transitioned to Standard mode.
While this could be possible and would be implementation
dependent, it is actually discouraged. Such a transition should
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Fig. 4: Operational modes of device incorporating an ECE.

require a re-boot with the required capabilities being locked
out until a re-boot or power cycle occur. Information is
preserved across the re-boot that allows the device to enter
Discovery mode and create the desired association prior to
re-entering Standard mode.

To better understand what happens in each mode and what
functionality is available, we created a software Application
Programming Interface (API) to provide software functions for
interfacing with the ECE. The functions listed in the API can
be divided into two distinct collections: security sensitive and
non-security sensitive. Security sensitive functions are those
used in the Uninitialized, TEE Initialization, and Discovery
modes. Non-security sensitive functions can be used from
any operating mode, but are unique in that they are still
available in Standard mode. The security sensitive and non-
security sensitive functions are shown in Listing 1 and Listing
2 respectively.

1) Software Security Sensitive Functions: The security sen-
sitive functions consist of nine functions for interacting with
the TEE. The first two functions are used to tell the ECE
to generate, or rather store, the results of the PUF generated
secret keys. Again, these values are never stored in non-volatile
memory, but instead are latched into volatile memory and
then muxed into the key input vector for their corresponding
crypto accelerator. If at any point the overall security of the
system become a concern, the next two functions allow the
device to change its secret keys. It is strongly encouraged that
such capability only be provided to the manufacturer. Further,
the manufacturer should store a public key, or hash of the



Listing 1: ECE security sensitive functions
int32_t ECE_GENERATE_SECRET_KEY( void );
int32_t ECE_GENERATE_RSA_KEY_PAIR( void );
int32_t ECE_CHANGE_SECRET_KEY( void );
int32_t ECE_CHANGE_RSA_KEY_PAIR( void );
int32_t ECE_TEE_VERIFICATION( uint32_t *

load_address );
int32_t ECE_TEE_INITIALIZATION( void );
int32_t ECE_DEVICE_AUTHENTICATION( uint8_t *key

, uint32_t method, uint8_t *address );
int32_t ECE_DEVICE_ASSOCIATION( uint32_t method

, uint8_t *address );
int32_t ECE_DEVICE_DISASSOCIATION( uint32_t

method, uint32_t *address );

Listing 2: ECE non-security sensitive function
int32_t ECE_AES_CRYPTO( uint8_t *input, uint8_t

*output, uint32_t length, uint32_t op_type
, uint8_t *key, uint8_t *iv );

int32_t ECE_RSA_CRYPTO( uint8_t *input, uint8_t
*output, uint32_t length, uint32_t op_type
, uint8_t *key );

uint8_t * ECE_AES_KEYGEN( void );
uint8_t * ECE_RSA_KEYGEN( void );

public key, in non-volatile storage that will allow the device
to authenticate the change request prior to execution. Even if
authentication of the change request is not possible, there is
no inherent security risk in the changing of the device secret
keys. An attacker does not have the ability to deterministically
set the value of the new secret keys, and all protected elements
are decrypted with the original key and then re-encrypted with
the new key, thereby preserving all data values across the
change. However, in the instance that authentication is not
performed, it is highly recommended that a cool-down time be
implemented in order to prohibit an attacker from continually
changing the secret keys in hopes of eventually guessing the
right value.

There are also two functions that may be used to provide
protection and authentication of the TEE on disk. In order
for these functions to work, it is necessary to be able to
identify a TEE when it resides on disk. To facilitate this,
we propose the use of a TEE header as outlined in Table
I. This header provides several pieces of information about
the TEE, such as manufacturer, version, location, etc. It also
provides the support for a fully encrypted TEE, for specifying
the encryption algorithm used to encrypt the TEE, and for
storing a hash of the unencrypted TEE. This header should
be store at the first available sector on the disk (though not
required) and should be encrypted in its entirety with the
device secret symmetric key. The TEE may be encrypted using
a randomly generated AES key that can also be stored in the
header, rather than just using the device secret key. This is
also implementation dependent, but for the purposes of this
paper, encryption with the device secret key is used.

The TEE Initialization mode consists of uploading a TEE
to disk, encrypting it, and then generating and encrypting

Section Size
TEE marker 4 Bytes
TEE version 4 Bytes

TEE SHA-256 hash encrypted 20 Bytes
TEE encryption routine 4 Bytes

TEE size 8 Bytes
Offset to boot-loader 8 Bytes
TEE Manufacturer 80 Bytes

Padding 384 Bytes

TABLE I: Example TEE header

this header. Each time the device boots, it will first attempt
to verify the TEE. If no TEE is present, it moves back to
initialization. If it decrypts the first section and finds a TEE
marker, it then decrypts the TEE and measures it, i.e. performs
a hash of the TEE. If the resulting hash matches what is in
the header, the boot process continues. Otherwise, the system
moves back to initialization.

This process provides a capability that no other known TEE
currently offers: upgrades and modification. Anytime a change
to the TEE is needed, all that must be done is copying the new
TEE and updating the TEE header. Because the measurements
are stored on non-volatile, writable memory, they can be
changed. Such measurements have often been stored in one-
time programmable memory, such as e-Fuses, which do not
provide for the ability to update or modify the value. In
this implementation, the measurement are changeable and
completely protected, whereas values in e-Fuses are typically
unencrypted and unchangeable.

The last three functions provide the methods necessary for
(dis)associating with another device, or authenticating to a
central location. In this paper, we are focusing on the ability
to associate with other devices and pass information between
them in a secure manner. To accomplish this functionality,
the ECE generates a random public/private key pair that can
be used to encrypt an initialization packet between the two
devices. The private key is then stored on disk and the public
key is then sent to the other device. The other device then
does the same, allowing each device to maintain their own
private key and the public key of the other device. These two
keys, along with the communications information (interface,
address, etc.) are encrypted with the device secret key and
stored in non-volatile memory. Once the initial association has
completed, all further communications can be encrypted from
start to end without any need for an intermediary key server
or key exchange. Although each device has its own secret
public/private key pair, it is highly recommended that this pair
only be used for authentication with a cellular network, rather
than communications with with other mobile or embedded
devices.

2) Software Non-security Sensitive Functions: The non-
security sensitive functions shown in Listing 2 are first used
in TEE Initialization mode. However, these functions may
still be utilized in the Standard operating mode. A number
of applications would likely benefits from the ability to
en(de)crypt data and generate random keys. Rather than having



the capabilities be restricted at this point, it is the key usage
that should be restricted. It is strongly recommended that the
device secret keys never be used while in Standard mode.
Instead, Standard mode makes use of keychains originating
from the device secret keys. For instance, the TEE can generate
a single key that is used to generate and protect all other keys.
This key is encrypted and stored on disk and then decrypted
each time the device boots, allowing for the decryption of
subsequent keys without the need for constant access to the
device secret key.

IV. IMPLEMENTATION AND RESULTS

There are two primary elements of the ECE architecture
presented that had to be shown as viable in order for this work
to succeed. The first element is the development of a PUF that
can be incorporated into a cryptographic engine and is capable
of generating the necessary values. This implementation has
already been developed and is discussed in detail in [21]. The
second element is showing that the software API will provide
the proper functionality to support our claims. In this section,
we cover a software implementation of the ECE described in
Section III, show the practicality of this solution, and then
present the results of our implementation.

A. Implementation

To provide the initial proof of concept for this idea, we have
created a software simulator based upon the openssl library
that emulates the hardware ECE and provides a mechanism
for implementing the full API. This software program consists
of two processes that run on a device: ece emulator and the
tee client. The ece emulator supports the Uninitialized and
TEE Initialization modes of operation, while the tee client
implements the Discovery and Standard modes.

Upon startup, the ece emulator is provided a file name for
a file that mimics a 128MB flash storage chip on a mobile
device. If the file does not exist, a new 128MB file is created
and a secret AES key and RSA key pair are generated. The
keys generated are store on the disk in order to maintain value
between subsequent runs of the applications. This represents
the only significant deviance from the proposed architecture.
Once the file is created and the keys are generated and stored,
the next step is initialization of the TEE.

On the initial run, no TEE is present. Therefore, the
ece emulator creates a generic TEE header and prompts the
user for a TEE executable, in this case tee client. It then reads
in the tee client application, encrypts it with the generated
secret key, and stores it in the flash file. The TEE header is then
updated with the appropriate information. The ece emulator
then launches the TEE application and opens a localhost
network socket that can be used to communicate with the
tee client.

Once the tee client is launched, it opens a network connec-
tion back to the ece emulator that can be used to request gen-
eration of keys, en(de)cryption of data using the device secret
keys, changing of the secret keys, or to provide updates to the
TEE. Additionally, the tee client opens its own network socket

ece_emulator 128MB 
Flash File

tee_client

localhost 
network 
socket

TEE 
Request 
Socket

1 2

3 4

5

5

3

STEP

2
1

4
tee_client open network socket for sending/receiving association requests

DESCRIPTION

tee_client sends requests to ece_emulator via localhost connection
ece_emulator opens localhost network socket for receiving requests

ece_emulator initializes disk file and load tee_client
tee_client is verified and spawned as a separate process

Fig. 5: ECE emulator flow.

that can be used to associate with other devices. The tee client
also has the ability to open a client connection to another
device in order to request association. Each association made
is recorded as discussed previously and is stored encrypted in
a small file. This file is read when the tee client first starts
in order to retrieve information on existing associations. This
entire flow is illustrated in Figure 5.

Although this software simulator makes certain assumptions
due to the fact that it is primarily concerned with proving
the feasibility of the architecture, a quick discussion on the
association process is necessary. While it can rarely, if ever,
be expected that a mobile device is always in a secure state
or is operating in a trusted manner, there are almost always
moments in which this is the case. For instance, it would
be assumed that a new device that has not connected to any
external communications channels and has a fully-functional
TEE running is secure. This obviously ignores the possibility
of any hardware trojan or supply-chain issues, which are too
extensive to cover in this paper.

Being able to make the determination that a device is
currently secure in terms of eavesdropping is critical for
association. The easiest mechanism for accomplishing this is
through the use of a wired, closed-network with all wireless
interfaces being disabled. This provides the highest degree
of certainty that no other entity can utilize any Man-In-The-
Middle (MITM) techniques to alter data. Once this is imple-
mented, we propose the key exchange methodology presented
in Fig. 6.

In this approached, an initiator named Alice sends a packet
to Bob requesting an association. This packet contains a nonce
plus a challenge, for instance a hash of Alice and Bob’s
interface addresses. These two values are encrypted using
Alice’s private key then joined with Alice’s public key and
sent to Bob. As long as this is done over a closed-network,
this should be secure. Further, this is a public key that is being
sent, therefore there should be no real security risk with it
being discovered. However, if this is not performed over a
closed network, there is no method for Alice to verify the
the received response originated from Bob and not an attacker
performing a MITM attack.



Alice : C = EApriv
(Tnonce + Tchallenge)) +Apub (1)

Bob : Tnonce + Tchallenge = DApub
(C) (2)

Bob : C = EApub
(Bpub +Bsecret +Bpriv(Tnonce + Tchallenge)) (3)

Alice : Bpub +Bsecret + EBpriv
(Tnonce + Tdata) = DApriv

(C)) (4)
Alice : Tnonce + Tchallenge = DBpub

(EBpriv
(Tnonce + Tdata)) (5)

Fig. 6: Public key exchange during association.

Bob then uses the received public key and decrypts the
packet. Bob now has the public key for Alice and can verify
the data packet received by simply performing the same hash.
Bob then needs to return his public key to Alice. Additionally,
Bob can take this opportunity to generate a shared secret key
that can be used for all further communications. Bob then
encrypts the original nonce and challenge with his private
key, adds it to his public key and the generated shared key,
and encrypts the entire blob with Alice’s public key. This
blob is then sent back to Alice where it is decrypted. After
the full exchange, Alice and Bob both have copies of one
another’s public keys and a secret key that can be used for
future communications. From this point on, all communica-
tions can be encrypted with the secret key regardless of the
communications mechanism used, and a closed-network is no
longer needed. All data generated and received during the
key exchange process (public keys, symmetric key, etc.) is
encrypted with the device’s secret key and stored protected on
disk.

The benefits of this approach are several. First, a secure
communications channel can be created at anytime on any
network between these two devices. Second, there is no need
to store a massive number of challenge/response pairs. Instead,
the nonce and data element exchanged between the two can
be used at anytime to verify one another’s identity if needed.
Third, if for any reason communications using the secret key
fail, or if it is simply preferred to use a different secret key
for each communication, a new shared key can be generated
at any time and exchanged securely since the public keys
are already exchanged. And fourth, should there ever be a
concern that a key is compromised, new keys can be generated
and exchanged in a safe, secure manner without significant
overhead or storage requirement. The stored data can be
removed and the process shown in Fig. 6 can be redone.

B. Results

Using the design methodology presented previously, we de-
veloped the two C++ applications described and implemented
them on a number of Apple and Linux based computers. We
were able to successfully generate unique flash files for use
by the ece emulator on each machine. Further, we were able
to successfully implement public key swaps between multiple
devices and establish a completely encrypted communications
network. This network was then used to swap files and issue
commands. While initially setup on a wired, closed-network,

we were able to continue operation even on a completely open
network without any issues.

Unsuccessful attempts were make to altered data and MITM
communications sessions. Because all communications were
encrypted between devices and there was never an open
request for a key exchange, we experienced no issues with the
security of the network communications. While an attacker
was able to maliciously attempt to initiate an association, it
was simple to detect due to the fact that all association requests
must by approved by the user.

Additionally, we were able to prove the ability to update
or modify an existing TEE in a secure fashion. This has
very strong implications for the BYOD arena discussed in the
Introduction. With the capability of uploading, removing, or
modifying a TEE, a corporation can install required software
and policies, or even their own TEE, that can be removed
when an employee leaves. This will not result in the loss
of personal information or modifications to user data. The
TEE specification details the use of Trusted Applications
(TAs) that run inside the TEE [10]. A company need only
install a TA, with its corresponding data, into the TEE of the
employee’s device. This app can then validate the phone and
enforce required policies, but can also be easily removed when
employment is terminated.

V. CONCLUSIONS

In this paper, we have presented a novel architecture that
utilizes PUF generated results to generate cryptographic keys
and values for use inside an Enhanced Cryptographic Engine.
We have proposed a software Application Programming Inter-
face that can be used to interface with the ECE in order to
provide stronger security for data and device association on
mobile devices. We also presented the results of a software
emulator of this architecture that was capable of establishing
secure communication channels between multiple computers
and using this secure channel to transfer commands and
data. Further, this emulator showed the ability to uniquely
protect TEEs and provide an mechanism for the modification,
removal, or update of TEEs on embedded systems.

As a result of the work conducted in this paper, we have
found that the architecture presented provides a viable solution
for addressing issues with device association, TEE modifica-
tions, and protection of system critical data in a unique manner.
As such, this research provides a solid starting point for further
implementation work, such as a full hardware solution that can
be used in a variety of different environments.



A. Future Work

Leveraging the research conducted in the paper, as well as
other research involving PUF implementation, the logical path
forward at this point is a full hardware platform implemen-
tation. The best platform currently available for this is the
Xilinx Zynq 7000 FPGA which contains a dual-core ARM
processor. In our previous work we were able to incorporate
our PUF design directly into the bitstream used to program an
FPGA [21]. Utilizing this same approach, we can incorporate
our PUF into the programmable logic fabric of the Xilinx
FPGA, and then interface to it via the ARM core processors
inside the FPGA. Such an implementation will be dependent
upon successful repair of a software bug on the first version
of this board that prohibited access to the cryptographic unit
on development kits [22].

Once a viable hardware platform can be found, it will be
possible to demonstrate the applicability of this approach on
a number of use cases. The first use case could be internal
automotive networks on vehicles, thereby addressing security
issues such as those discovered in [1] [2]. By creating a secure
closed-network on the automobile, the ability of an attacker
to connect to the network and overwrite firmware or issue
unauthorized commands can be removed. A second use case
for medical device networks in healthcare systems can also
be explored. Similar to automotive networks, the idea is to
prohibit snooping of network traffic and injection of malicious
commands.

A third use case could involve exchanging DRM protected
materials between authorized devices on a media account such
as iTunes. In this instance, the public key of each device should
be retrieved and stored on the iTunes servers for each user.
When a device connects to the account, a listing of all device
public keys associated with the account can be downloaded to
the device. This would allow the device to transfer authorized
media to any other device associated with the account. For
instance, even when an internet connection is not available, a
movie could be transferred between an iPod and an iPad in a
way that does not violate copyright or DRM protections.

A final use case might be association of a device with a user
on a cellular network. Cellular devices typically store user
information on a SIM card that performs the authentication
of the user to the cellular network. Although some devices
provide unique hardware numbers for chip identification pur-
poses, such as the International Mobile Station Equipment
Identity (IMEI), these numbers may or may not be used by
the carrier. Further, there is often a high chance these numbers
can be changed or spoofed by software running on the device.
Utilizing the device secret asymmetric key, it may be possible
to provide a mechanism that will work with the SIM card
to associate a user with the device on a network. This could
greatly help to eliminate the ability of thieves to steal mobile
devices and re-activate them on other networks.
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