
Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 1 (9/6/12)

Concurrent Signal Assignment Statements

This slide set covers the concurrent signal assignment statements, which include the

conditional signal assignment and selected signal assignment stmts

Topics include

• Simple signal assignment statement (conditional assign. without a condition)

• Conditional signal assignment statement

• Selected signal assignment statement

• Conditional vs. selected signal assignment

Simple signal assignment statement

signal_name <= projected_waveform;

For example

-- y changes after a or b changes + 10 ns

y <= a + b + 1 after 10 ns;

Timing info ignored in synthesis and δ-delay is used for

signal_name <= value_expression;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 2 (9/6/12)

Simple Signal Assignment Statements

Other examples:

status <= ’1’;

even <= (p1 and p2) or (p3 and p4);

arith_out <= a + b + c - 1;

Implementation of last statement

Note that this may be simplified during synthesis and that the size of the synthesized

circuit can vary significantly for different stmts

Also note that it is syntactically correct for a signal to appear on both sides of a con-

current signal assignment

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 3 (9/6/12)

Simple Signal Assignment Statements

For example:

q <= ((not q) and (not en)) or (d and en);

Here, the q signal takes the value of d when en is ’1’, otherwise it takes the inverse of

itself

Although this is syntactically correct, the statement forms a closed feedback loop and

should be avoided

It may synthesize to an internal state (memory) in cases where the next value of q

depends on the previous value, e.g.,

q <= (q and (not en)) or (d and en);

Or it may oscillate (as is true of the statement above)

This is REALLY BAD PRACTICE because the circuit becomes sensitive to internal

propagation delay of its elements

It also confuses the synthesis tools and complicates the testing process

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 4 (9/6/12)

Conditional Signal Assignment Statements

Simplified syntax:

signal_name <=

value_expr_1 when boolean_expr_1 else

value_expr_2 when boolean_expr_2 else

value_expr_3 when boolean_expr_3 else

...

value_expr_n

The boolean_expr_i return true or false and are each evaluated from top-to-bottom

until one is found to be true

When this occurs, the value_expr_i is assigned to the signal_name signal

This type of statement can be represented by a multiplexer circuit

This is the truth table for an 8-bit, 4-to-1 multiplexer

Here, a, b, c, and d are input signals

s is also an input, i.e., a 2-bit signal the input data to route
to the output

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 5 (9/6/12)

Conditional Signal Assignment Statements

library ieee;

use ieee.std_logic_1164.all;

entity mux4 is

port(

a, b, c, d: in std_logic_vector(7 downto 0);

s: in std_logic_vector(1 downto 0);

x: out std_logic_vector(7 downto 0)

);

end mux4;

architecture cond_arch of mux4 is

 begin

 x <= a when (s="00") else

 b when (s="01") else

 c when (s="10") else

 d;

end cond_arch;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 6 (9/6/12)

Conditional Signal Assignment Statements

Note that the use of std_logic data type, which has 9 possible values, makes the last

statement assign d to x under more conditions than the expected s = "11" case

In fact, since each bit of s can assume 9 values, there are actually 9*9 = 81 conditions

for the two bit sequence including "0Z", "UX", "0-", etc

Therefore, the last statement assigns d to x under 77 (81-4) additional conditions, but

these conditions are ONLY possible in simulations

Except for the limited use of ’Z’, the metavalues are ignored by synthesis software

Some synthesis software allows the following alternative expression

 x <= a when (s="00") else

 b when (s="01") else

 c when (s="10") else

 d when (s="11") else

 ’X’;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 7 (9/6/12)

Conditional Signal Assignment Statements

Binary decoder: An n-to2n decoder has an n-bit input and a 2n-bit output, where

each bit of the output represents an input combination

library ieee;

use ieee.std_logic_1164.all;

entity decoder4 is

port(

s: in std_logic_vector(1 downto 0);

x: out std_logic_vector(3 downto 0)

);

end decoder4;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 8 (9/6/12)

Conditional Signal Assignment Statements

architecture cond_arch of decoder4 is

 begin

 x <= "0001" when (s="00") else

 "0010" when (s="01") else

 "0100" when (s="10") else

 "1000";

end cond_arch;

Both the MUX and decoder are a better match to selected signal assignment (later)

Priority encoder: Checks the input requests and generates the code of the request

with highest priority

There are four input requests, r(3), ..., r(0)

The outputs include a 2-bit signal (code), which

is the binary code of the highest priority request
and a 1-bit signal active that indicates if there is
an active request

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 9 (9/6/12)

Conditional Signal Assignment Statements

The r(3) has the highest priority, i.e., when asserted, the other three requests are

ignored and the code signal becomes "11"

When r(3) is not asserted, the second highest request, r(2) is examined

The active signal is to distinguish the last case, when r(0) is asserted and the case in

which NO request is asserted

library ieee;

use ieee.std_logic_1164.all;

entity prio_encoder42 is

port(

r: in std_logic_vector(3 downto 0);

code: out std_logic_vector(1 downto 0);

active: out std_logic

);

end prio_encoder42;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 10 (9/6/12)

Conditional Signal Assignment Statements

architecture cond_arch of prio_encoder42 is

 begin

 code <= "11" when (r(3)=’1’) else

 "10" when (r(2)=’1’) else

 "01" when (r(1)=’1’) else

 "00";

 active <= r(3) or r(2) or r(1) or r(0);

end cond_arch;

The priority structure of the conditional signal assignment matches well this func-

tionality

A simple ALU

Input signals include ctrl, src0 and src1

Output signal is result

ALU performs 5 functions, 3 arithmetic and 2 Boolean

The input and output are interpreted as signed

integers when arithmetic ops are selected

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 11 (9/6/12)

Conditional Signal Assignment Statements

We will use std_logic data type for portability reasons and convert it to the desired

data type, e.g., signed, in the architecture body

Once the arithmetic operation is performed, the result is converted back to std_logic

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity simple_alu is

port(

ctrl: in std_logic_vector(2 downto 0);

src0, src1: in std_logic_vector(7 downto 0);

result: out std_logic_vector(7 downto 0)

);

end simple_alu;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 12 (9/6/12)

Conditional Signal Assignment Statements

architecture cond_arch of simple_alu is

signal sum, diff, inc: std_logic_vector(7 downto 0);

 begin

-- note conversion to signed and back to std_logic

 inc <= std_logic_vector(signed(src0)+1);

 sum <= std_logic_vector(signed(src0)+signed(src1));

 diff <= std_logic_vector(signed(src0)-signed(src1));

 result <= inc when ctrl(2)=’0’ else

 sum when ctrl(1 downto 0)="00" else

 diff when ctrl(1 downto 0)="01" else

 src0 and src1 when ctrl(1 downto 0)="10"

else src0 or src1;

end cond_arch;

The conditional signal assignment statement implements a priority structure

This type of structure is naturally realized easily by the sequential execution of a

CPU when expressed in a traditional programming language (temporal)

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 13 (9/6/12)

Conditional Signal Assignment Statements

In hardware, a priority-routing structure implements the priority structure (spatial)

signal_name <=

value_expr_1 when boolean_expr_1 else

value_expr_2 when boolean_expr_2 else

value_expr_3 when boolean_expr_3 else

...

value_expr_n

In order to construct a conditional signal assignment statement, three groups of hard-

ware are needed:

• Value expression circuits

• Boolean expression circuits

• Priority routing network

The boolean expression circuits are used to control the priority routing network

which determines which of the value expression circuits are connected to the output

The priority routing network is implemented by a series of 2-to-1 multiplexers

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 14 (9/6/12)

Conditional Signal Assignment Statements

A 2-to-1 abstract MUX

With sel = true, the n-bit signal i1 is routed to the output, otherwise i0 is routed

Consider the statement

signal_name <= value_expr_1 when boolean_expr_1 else

 value_expr_2;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 15 (9/6/12)

Conditional Signal Assignment Statements

signal_name <= value_expr_1 when boolean_expr_1 else

 value_expr_2 when boolean_expr_2 else

 value_expr_3 when boolean_expr_3 else

 value_expr_4;

Basically, for each statement, another level is added

Bear in mind adding too many creates a long combinational delay

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 16 (9/6/12)

Conditional Signal Assignment Statements

Actual implementations

Consider

signal a, b, y: std_logic;

...

y <= ’0’ when a=b else ’1’;

How is the condition part actually implemented?

2-to-1 MUX

3-bit version

o sel i0• sel i1•+=

1-bit version

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 17 (9/6/12)

Conditional Signal Assignment Statements

The input type of a=b is std_logic and the output type is Boolean

Although signals of type std_logic has nine values, during synthesis only ’0’ and

’1’ matter

Logic ’0’ is used for false and logic ’1’ is used for true

Consider

signal a, b, c, x, y, r: std_logic;

...

r <= a when x=y else

 b when x>y else c;

y a b⊕()=
simplifies to

y a b⊕() 1• a b⊕() 0•+=

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 18 (9/6/12)

Conditional Signal Assignment Statements

Conceptually

Consider

signal a, b, r: unsigned(7 downto 0);

signal x, y: unsigned(3 downto 0);

...

r <= a+b when x+y>1 else

 a-b-1 when x>y and y!=0 else

 a+1;

...

Synthesize tools apply optimizationsx > y x y•

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 19 (9/6/12)

Conditional Signal Assignment Statements

Value and Boolean expressions are more involved

We can continue to refine the blocks on the left to gate-level components

Good coding practice can improve the implementation carried out by the synthesis

tool dramatically (as we will see later)

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 20 (9/6/12)

Selected Signal Assignment Statements

Syntax

with select_expression select

 signal_name <= value_expr_1 when choice_1,

 value_expr_2 when choice_2,

 value_expr_3 when choice_3,

 ...

 value_expr_n when choice_n;

Similar to a case stmt in a traditional programming language

The select_expression must produce a value of a discrete type or 1-D array

It can only have a finite number of possibilities

choice_i must be value of the data type, e.g., if bit_vector(1 downto 0) used in

select_expression, then choices must be "00", "01", "10" and "11"

Choices must be mutually exclusive and all inclusive

others can be used as last choice_n

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 21 (9/6/12)

Selected Signal Assignment Statements

We saw this earlier in the conditional signal assignment material -- entity is the same

architecture sel_arch of mux4 is

 begin

with s select

 x <= a when "00",

 b when "01",

 c when "10",

 d when others;

end sel_arch;

Remember std_logic has 9 possible values so it’s not possible to list the last entry as

 d when "11";

Alternatively (last line ignored during synthesis)

 x <= a when "00",

 b when "01",

 c when "10",

 d when "11",

 ’X’ when others; -- can also use ’--’

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 22 (9/6/12)

Selected Signal Assignment Statements

For the binary decoder (2-to22) we saw earlier

architecture sel_arch of decoder4 is

 begin

with s select

 x <= "0001" when "00",

 "0010" when "01",

 "0100" when "10",

 "1000" when others;

end sel_arch;

For the priority encoder (4-to-2)

architecture sel_arch of prio_encoder42 is

 begin

with r select

 code <= "11" when "1000"|"1001"|"1010"|"1011"|

 "1100"|"1101"|"1110"|"1111",

 "10" when "0100"|"0101"|"0110"|"0111",

 "01" when "0010"|"0011",

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 23 (9/6/12)

Selected Signal Assignment Statements

 "00" when others;

 active <= r(3) or r(2) or r(1) or r(0);

end sel_arch;

Recall that "11" is assigned to code if r(3) is ’1’

The shortcut taken in the conditional assignment stmt, i.e.,

 code <= "11" when (r(3)=’1’) else

can NOT be taken here and all 8 values that have a ’1’ for r(3) must be listed, e.g.,

"1000", "1001", "1010", "1011", ... "1111"

You might be tempted to make this more compact by using the ’-’ (don’t-care) as

with r select

 code <= "11" when "1---",

 "10" when "01--",

 "01" when "001-",

 "00" when others;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 24 (9/6/12)

Selected Signal Assignment Statements

But this doesn’t work since the ’-’ value never occurs in a real circuit

Because of this, the first three stmts are never executed and the whole clause becomes

equivalent to

code <= "00";

The simple ALU:

architecture sel_arch of simple_alu is

signal sum, diff, inc: std_logic_vector(7 downto 0);

begin

 inc <= std_logic_vector(signed(src0)+1);

 sum <= std_logic_vector(signed(src0)+signed(src1));

 diff <= std_logic_vector(signed(src0)-signed(src1));

with ctrl select

 result <=

 inc when "000"|"001"|"010"|"011",

 sum when "100",

 diff when "101",

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 25 (9/6/12)

Selected Signal Assignment Statements

 src0 and src1 when "110",

 src0 or src1 when others; -- "111"

end sel_arch;

Truth Table: A new application that selected signal assignment can implement

library ieee;

use ieee.std_logic_1164.all;

entity truth_table is

port(

 a, b: in std_logic;

 y: out std_logic

);

end truth_table;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 26 (9/6/12)

Selected Signal Assignment Statements

architecture a of truth_table is

signal tmp: std_logic_vector(1 downto 0);

 begin

 tmp <= a & b; -- concatenate a and b

with tmp select

 y <= ’0’ when "00", -- rows of the truth table

 ’1’ when "01",

 ’1’ when "10",

 ’1’ when others; -- "11"

end a;

The conceptual implementation can be realized by a multiplexing circuit

Abstract (k+1)-to-1 MUX

Instead of true and false as sel signal choices,

sel is a data type of (k+1) values, c0 through ck

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 27 (9/6/12)

Selected Signal Assignment Statements

Consider a select_expression with a data type of 5 values: c0, c1, c2, c3, c4

with select_expression select

 signal_name <= value_expr_0 when c0,

 value_expr_1 when c1,

 value_expr_n when others;

All selected signal assignment statements have similar conceptual diagrams

You just need to be careful because the number of select items may become

large and there are limitations here

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 28 (9/6/12)

Selected Signal Assignment Statements

Examples, 4-to-1 MUX

Here, the port names for the sel signal are assigned "00", "01, "10" and "11"

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 29 (9/6/12)

Selected Signal Assignment Statements

signal a, b, r: unsigned(7 downto 0);

signal s: std_logic_vector(1 downto 0);

...

with s select

 r <= a+1 when "11",

 a-b-1 when "10",

 a+b when others;

Let’s compare and look at how to convert between conditional and selected signal

assignment stmts

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 30 (9/6/12)

Conditional and Selected Signal Assignment Statements

Although the two statements imply a different routing structure (priority vs. non-pri-

ority), it is always possible to convert between the two

Consider

with sel select

 sig <= value_expr_0 when c0,

 value_expr_1 when c1 | c3 | c5,

 value_expr_2 when c2 | c4,

 value_expr_n when others;

The choices can be described using Boolean expression

sig <= value_expr_0 when (sel=c0) else

 value_expr_1 when (sel=c1) or (sel=c3) or

 (sel=c5) else

 value_expr_2 when (sel=c2) or (sel=c4) else

 value_expr_n;

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 31 (9/6/12)

Conditional and Selected Signal Assignment Statements

To convert in the other direction requires a little more work

signal_name <=

value_expr_0 when boolean_expr_0 else

value_expr_1 when boolean_expr_1 else

value_expr_2 when boolean_expr_2 else

value_expr_n

We create a 3-bit auxiliary selection signal where each bit represents a Boolean

expression as a means of preserving the desired priority

sel(2) <= ’1’ when bool_expr_0 else 0;

sel(1) <= ’1’ when bool_expr_1 else 0;

sel(0) <= ’1’ when bool_expr_2 else 0;

with sel select

 sig <= value_expr_0 when "100"|"101"|"110"|"111",

 value_expr_1 when "010"|"011",

 value_expr_2 when "001",

 value_expr_n when others;

This same structure works for any 3-when clause conversion

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 32 (9/6/12)

Conditional and Selected Signal Assignment Statements

Use selected signal assignment statement for circuits described by truth tables or

truth-table like functions, such as decoders and multiplexers

Using it for priority structures can be inefficient

with r select

 code <= "11" when "1000"|"1001"|"1010"|"1011"|

 "1100"|"1101"|"1110"|"1111",

 ...

Here, 8 of the 16 ports of the multiplexer are connected to an identical expression

Use conditional signal assignment for circuits that need to give preferential treat-

ment for certain conditions or to prioritize operations

pc_next <=

 pc_reg + offset when (state=jump and a=b) else

 pc_reg + 1 when (state=skip and flag=’1’) else

 ...

As you can see, it can handle complicated conditions

Hardware Design with VHDL Concurrent Stmts ECE 443

ECE UNM 33 (9/6/12)

Conditional and Selected Signal Assignment Statements

Using conditional signal assignment for truth tables if not efficient because it over-

specifies the function

x <= a when (s="00") else

 b when (s="01") else

 c when (s="10") else

 d;

But this can be written as

x <= c when (s="10") else

 b when (s="01") else

 a when (s="00") else

 d;

Or in any other combination

This is overspecified because the conditional signal assignment gives priority to the

first when clause but it is not needed

This may cause additional circuitry to be added during synthesis (BAD PRACTICE)

