
Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 1 (9/6/12)

Skeleton of a Basic VHDL Program

This slide set covers the components to a basic VHDL program, including lexical ele-

ments, program format, data types and operators

A VHDL program consists of a collection of design units

Each program contains at least one entity declaration and one architecture

body

Design units can NOT be split across different files

Entity Declaration

entity entity_name is

port(

port_names: mode data_type;

port_names: mode data_type;

...

port_names: mode data_type;

);

end entity_name;

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 2 (9/6/12)

Skeleton of a Basic VHDL Program

The mode component can be in, out or inout (for bi-directional port)

entity even_detector is

port(

a: in std_logic_vector(2 downto 0);

even: out std_logic);

end even_detector;

A common mistake with mode is to try to use a signal of mode out as an input signal

within the architecture body

Consider:

library ieee;

use ieee.std_logic_1164.all;

entity mode_demo is

port(

a, b: in std_logic;

x, y: out std_logic);

end mode_demo;

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 3 (9/6/12)

Skeleton of a Basic VHDL Program

architecture wrong_arch of mode_demo is

begin

x <= a not b;

y <= not x;

end wrong_arch;

Since x is used to obtain y, VHDL considers x as an external signal that ’flows into’

the circuit

Since x is declared as an out signal, this generates a syntax error

One solution is to change x to inout, but x is really not a bi-directional signal

This is bad practice

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 4 (9/6/12)

Skeleton of a Basic VHDL Program

The correct solution is to declare an internal signal as follows

architecture ok_arch of mode_demo is

signal ab: std_logic;

begin

ab <= a and b;

x <= ab;

y <= not ab;

end ok_arch;

Architecture Body

The architecture body specifies the internal organization of a circuit

architecture arch_name of entity_name is

declarations

begin

concurrent_stmt;

concurrent_stmt;

end arch_name;

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 5 (9/6/12)

Skeleton of a Basic VHDL Program

The declaration part is optional and can include internal signal declarations or con-

stant declarations

There are many possibilities for concurrent_stmts, which we will cover soon

Other design units (beyond entity and architecture) include

• Package declaration & body

A package is a collection of commonly used items, such as data types, subpro-

grams and components

• Configuration

An entity declaration can be associated with multiple architecture bodies

A configuration enables one of them to be instantiated during synthesis

A VHDL library is a place to store design units

The default library is ’work’

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 6 (9/6/12)

Skeleton of a Basic VHDL Program

IEEE has developed several VHDL packages, e.g., std_logic_1164 and numeric_std

packages

To use them, you must include the library and use statements

library ieee;

use ieee.std_logic_1164.all;

The first line invokes a library named ieee

The second line makes std_logic_1164 package visible to the subsequent design units

This package is heavily used and is needed for the std_logic/std_logic_vector

data type

Processing of VHDL code occurs in three stages

• Analysis: compiler checks each design unit for correct syntax and for some static

semantic errors

If no errors are found, the compiler translates the unit into an intermediate form

and stores it in a designated library

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 7 (9/6/12)

Skeleton of a Basic VHDL Program

• Elaboration: binds architectures to entities using configuration data

Many complex designs are coded in a hierarchical manner

Compiler starts with designated top-level component and replaces all instanti-

ates sub-components with their architecture bodies to create a single flattened

description

• Execution

The flattened design is used as input to a simulation or synthesis engine

Lexical Elements and Program Format

Lexical elements are basic syntactical units in a VHDL program and include

• Comments

• Identifiers

• Reserved words

• Numbers

• Characters

• Strings

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 8 (9/6/12)

Lexical Elements and Program Format

Comments start with two dashes, e.g.,

-- This is a comment in VHDL

An identifier can only contain alphabetic letters, decimal digits and underscore; the

first character must be a letter and the last character cannot be an underscore

Also, two successive underscores are not allowed

Valid examples:

A10, next_state, NextState, mem_addr_enable

Invalid examples:

sig#3, _X10, 7segment, X10_, hi_ _there

VHDL is case INsensitive, i.e., the following identifiers are the same

nextstate, NextState, NEXTSTATE, nEXTsTATE

Use CAPITAL_LETTERs for constant names and the suffix _n to indicate active-low

signals

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 9 (9/6/12)

Lexical Elements and Program Format

VHDL Reserved Words

Numbers can be written in several forms:

Integer: 0, 1234, 98E7

Real: 0.0, 1.23456 or 9.87E6

Base 2: 2#101101#

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 10 (9/6/12)

Lexical Elements and Program Format

Character:

’A’, ’Z’, ’1’

Strings

"Hello", "101101"

Note, the following are different

0 and ’0’

2#101101# and "101101"

VHDL is ’free-format’: blank space, tab, new-line can be freely inserted

BAD
IDEA!

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 11 (9/6/12)

Lexical Elements and Program Format

Headers are a GOOD idea

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 12 (9/6/12)

VHDL Objects

A object is a named element that holds a value of specific data type; there are four

kinds of objects

• Signal

• Variable

• Constant

• File (cannot be synthesized)

And a related construct

• Alias

Signal: Declaration

signal signal_name, signal_name, ... : data_type

Signal assignment:

signal_name <= projected_waveform;

Are interpreted as wires

Ports in entity declaration are considered signals

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 13 (9/6/12)

VHDL Objects

Variable

Concept found in traditional programming languages, in which a name repre-

sents a symbolic memory location where a value can be stored and modified.

NO direct mapping between a variable and a hardware component

Declared and used only inside a process

Variable declaration:

variable variable_name, ... : data_type

Variable assignment:

variable_name := value_expression;

Contains no timing information (immediate assignment) -- no waveform is possible

Both signals and variables can be assigned initial values

Although useful in simulations, synthesis canNOT deal with them

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 14 (9/6/12)

VHDL Objects

Constant

Value cannot be changed, used to enhance readability

Constant declaration:

constant const_name, ... : data_type := value_expr;

E.g.,

constant BUS_WIDTH: integer := 32;

constant BUS_BYTES: integer := BUS_WIDTH/8;

It is a good idea to avoid "hard literals"

architecture beh1_arch of even_detector is

signal odd: std_logic;

begin ...

tmp := ’0’;

for i in 2 downto 0 loop

tmp := tmp xor a(i);

end loop;

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 15 (9/6/12)

VHDL Objects

Better way to do it

architecture beh1_arch of even_detector is

signal odd: std_logic;

constant BUS_WIDTH: integer := 3;

begin

...

tmp := ’0’;

for i in (BUS_WIDTH - 1) downto 0 loop

tmp := tmp xor a(i);

end loop;

Alias

Not a object, but rather an alternative name for an object used to enhance read-

ability

E.g.,

signal: word: std_logic_vector(15 downto 0);

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 16 (9/6/12)

VHDL Objects

alias op: std_logic_vector(6 downto 0) is

word(15 downto 9);

alias reg1: std_logic_vector(2 downto 0) is

word(8 downto 6);

alias reg2: std_logic_vector(2 downto 0) is

word(5 downto 3);

alias reg3: std_logic_vector(2 downto 0) is

word(2 downto 0);

Data type and operators

We’ll consider data types and operators in each of

• Standard VHDL

• IEEE1164_std_logic package

• IEEE numeric_std package

Data Type: defined as

• A set of values that an object can assume

• A set of operations that can be performed on objects of this data type

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 17 (9/6/12)

Data Types and Operators

VHDL is a strongly-typed language

An object can only be assigned with a value of its type

Only the operations defined with the data type can be performed on the object

Rational for doing so is to catch errors early in design, i.e., the use of a character data

type in an arithmetic operation

Data types in standard VHDL

There are about a dozen predefined data types in VHDL, but we will focus on

only the following for synthesis

• integer:

Minimal range: -(2^31-1) to 2^31-1

Two subtypes: natural, positive

• boolean: (false, true)

• bit: (’0’, ’1’)

• bit_vector: a one-dimensional array of bit

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 18 (9/6/12)

Data Types and Operators

The bit type is not versatile enough to handle other hardware values, high impedance

(tri-state) and wired-or structures (shorting)

We’ll see std_logic defined later to handle this problem

Data types such as bit and bit_vector are called enumeration data types since their

values are enumerated in a list

Operators

There are about 30 operators in VHDL

Under the rules of a strongly-typed language, only certain data types can be used

with a given operator

These are defined in the tables that follow, which are derived from VHDL-93

The shift and xnor operators are NOT defined in VHDL-87, or supported by the

IEEE 1076.6 RTL synthesis standard

The tables list ONLY the synthesis-related operators

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 19 (9/6/12)

Data Types and Operators

Not automatically
synthesizable

Highest

Precedence

Note: and and or
have SAME
precedence -- use
parenthesis!

Operator

** abs not

* / mod rem

+ - (ident/neg)

& + - (add/sub)

sll srl sla sra rol ror

and or nand nor xor xnorLowest

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 20 (9/6/12)

Data Types and Operators

IEEE std_logic_1164 package: new data types

std_logic, std_logic_vector

To use:

library ieee;

use ieee.std_logic_1164.all;

The std_logic consists of 9 possible values

’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’-’

• ’0’, ’1’: forcing logic 0 and forcing logic 1

• ’Z’: high-impedance, as in a tri-state buffer

•’’L’ , ’H’: weak logic 0 and weak logic 1, as in wired-logic

•’’X’, ’W’: unknown and weak unknown (signal reaches an intermediate voltage

value that can NOT be interpreted as either a logic 0 or logic 1)

•’’U’: for uninitialized (simulation only -- signal has not yet been assigned a value)

•’’-’: don’t-care.

Only ’0’, ’1’ and ’Z’ are used in synthesis (’L’ and ’H’ rarely used - wired logic rare)

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 21 (9/6/12)

Data Types and Operators

The std_logic_vector is an array of elements with std_logic data type

E.g.,

signal a: std_logic_vector(7 downto 0);

Most significant bit is ’labeled’ 7 -- best representation for numbers

Another form can be used in cases where you are not representing numbers, but

rather control signals

signal a: std_logic_vector(0 to 7);

Bits or a range of bits can be referenced as

a(1)

a(7 downto 3)

VHDL support overloading of operators, in which the same operator can be used

with different data types

Which standard VHDL operators can be applied to std_logic and std_logic_vector?

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 22 (9/6/12)

Data Types and Operators

The logical operators are overloaded in the std_logic_1164 package

But the arithmetic operators are NOT!

We’ll take a look at conversions between signed and unsigned, which do allow arith-

metic operations, later in this slide set.

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 23 (9/6/12)

Data Types and Operators

Several operators are defined over the 1-D array data type, including concatenation,

relational and array aggregate

Relational

Operands must have the same element type but their lengths may differ

Two arrays are compared element by element, from left to right, until a result is

established

Shorter array is considered ’smaller’ if end is reached before a decision is made

All of the following return true

"011"="011", "011">"010", "011">"00010", "0110">"011"

Be careful -- this always returns false is sig1 is shorter than sig2

if (sig1 = sig2) then

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 24 (9/6/12)

Data Types and Operators

Concatenation operator (&)

Very useful operator -- can be used to shift elements

y <= "00" & a(7 downto 2);

y <= a(7) & a(7) & a(7 downto 2);

y <= a(1 downto 0) & a(7 downto 2);

Array aggregate (is not a VHDL operator)

It is a VHDL construct to assign a value to an array-typed object

a <= "10100000";

-- positional association

a <= (7=>’1’, 6=>’0’, 0=>’0’, 1=>’0’, 5=>’1’,

 4=>’0’, 3=>’0’, 2=>’1’);

-- named association

a <= (7|5=>’1’, 6|4|3|2|1|0=>’0’);

-- useful to cover remaining possibilities

a <= (7|5=>’1’, others=>’0’);

a <= (7 downto 3 => ’0’) & b(7 downto 5);

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 25 (9/6/12)

Data Types and Operators

So we can replace the first assignment with the second and not be concerned about

changes in the length of a

a <= "00000000"

a <= (others=>’0’);

IEEE numeric_std package

Standard VHDL and the std_logic_1164 package support arithmetic ops only on inte-

ger data types:

signal a, b, sum: integer;

. . .

sum <= a + b;

But this is difficult to realize in hardware because integer does NOT allow the range

(number of bits) to be specified

We certainly don’t want a 32-bit adder when an 8-bit adder would do

The numeric_std package allows an array of 0’s and 1’s to be interpreted as an

unsigned or signed number.

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 26 (9/6/12)

Data Types and Operators

Two new data types:

unsigned and signed

Both are defined as an array of elements with std_logic data type

For signed, the array is interpreted in 2’s-compliment format, with the MSB as

the sign bit

Therefore, all of std_logic_vector, signed and unsigned are arrays of std_logic data

type

But they are treated as independent data types in VHDL

This makes sense because they are interpreted differently, e.g., the bits "1100"

represent 12 when interpreted as an unsigned number but -4 as a signed number

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

signal x, y: signed(15 downto 0);

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 27 (9/6/12)

Data Types and Operators

The goal of the numeric_std package is to support the arithmetic operations

The package overloads the operators abs, *, /, mod, rem, + and -

These operators can now take two operands with data types

• unsigned and unsigned

• unsigned and natural

• signed and signed

• signed and integer

The following are valid

signal a, b, c, d: unsigned(7 downto 0);

...

a <= b + c;

d <= b + 1;

e <= (5 + a + b) - c;

Note that the sum "wraps around" when overflow occurs, which models the physical

adder

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 28 (9/6/12)

Data Types and Operators

The relational operators, =, /=, <, >, <=, >=, are also overloaded

The overloading overrides the left-to-right, element-by-element comparison proce-

dure

Instead, the two operands are treated as binary numbers

For example:

-- return false if operands are either std_logic_vector

-- or unsigned

"011" > "1000"

-- but returns true if operands are signed because 3 is

greater than -8!

The numeric_std package also supports new functions, as in the following tables

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 29 (9/6/12)

Overload Operator and New Functions in IEEE numeric_std package

Overloaded
Operators

New
Functions

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 30 (9/6/12)

Data Type Conversion

Conversion can be accomplished by a type conversion function or by type casting

There are three type conversion functions in numeric_std package

to_unsigned, to_signed and to_integer

The function to_integer converts from data types unsigned or signed

The functions to_unsigned and to_signed convert from an integer data type to a spe-

cific number of bits (second parameter)

Type casting is also possible between ’closely related’ data types

Type casting

Type conversion

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 31 (9/6/12)

Data Type Conversion

Examples of type casting:

signal u1, u2: unsigned(7 downto 0);

signal v1, v2: std_logic_vector(7 downto 0);

u1 <= unsigned(v1);

v2 <= std_logic_vector(u2);

From the table, we note that the std_logic_vector data type is not interpreted as a

number and therefore canNOT be directly converted to an integer and vice versa

Type conversion needs to be carefully studied in VHDL -- consider some examples:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

. . .

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 32 (9/6/12)

Data Type Conversion

signal s1, s2, s3, s4, s5, s6:

std_logic_vector(3 downto 0);

signal u1, u2, u3, u4, u6, u7: unsigned(3 downto 0);

signal sg: signed(3 downto 0);

Ok

u3 <= u2 + u1; --- ok, both operands unsigned

u4 <= u2 + 1; --- ok, operands unsigned and natural

Wrong

u5 <= sg; -- type mismatch

u6 <= 5; -- type mismatch

Fix

u5 <= unsigned(sg); -- type casting

u6 <= to_unsigned(5,4); -- conversion function

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 33 (9/6/12)

Data Type Conversion

Wrong

u7 <= sg + u1; -- + undefined over the types

Fix

u7 <= unsigned(sg) + u1; -- ok, but be careful

Wrong

s3 <= u3; -- type mismatch

s4 <= 5; -- type mismatch

Fix

s3 <= std_logic_vector(u3); -- type casting

s4 <= std_logic_vector(to_unsigned(5,4));

Wrong

s5 <= s2 + s1; -- ’+’ undefined over std_logic_vector

s6 <= s2 + 1; -- ’+’ undefined

Fix

s5 <= std_logic_vector(unsigned(s2) + unsigned(s1));

s6 <= std_logic_vector(unsigned(s2) + 1);

Hardware Design with VHDL VHDL Basics ECE 443

ECE UNM 34 (9/6/12)

Data Type Conversion

Integer conversions (useful for BRAM address manipulation):

signal cur_sample: std_logic_vector(7 downto 0);

signal addra: std_logic_vector(7 downto 0);

subtype addra_type is integer range 0 to 2**8-1;

signal MED_RAM_addra: MED_addra_type;

cur_sample <= "00000011";

MED_RAM_addra <= to_integer(unsigned(cur_sample));

addra <= std_logic_vector(to_unsigned(MED_RAM_addra +

1,8))

