Propagation Delay

Several observations can be made from the analysis:

 PMOS was widened to match resistance of NMOS by 3 - 3.5. This was done to provide symmetrical H-to-L and L-to-H propagation delays.

This also **triples** the PMOS gate and diffusion capacitances.

It is possible to speed-up the inverter by *reducing* the width of the PMOS device (at the expense of symmetry and noise margins)!

Widening PMOS reduces t_{pLH} by increasing the charging current, but it also degrades the t_{pHL} by causing a larger parasitic capacitance.

This implies that there is an *optimal* ratio that balances the two contradictory effects.

Propagation Delay

Consider two identically sized CMOS inverters. The load cap of the first gate is approximated by:

$$C_L \,=\, (C_{dp1} + C_{dn1}) + (C_{gp2} + C_{gn2}) + C_W$$

Now assume PMOS devices are made β times larger than NMOS.

$$\begin{split} C_{dp1} &= \beta C_{dn1} & \& \quad C_{gp1} &= \beta C_{gn1} \\ C_L &= (1+\beta)(C_{dn1}+C_{gn2}) + C_W \end{split}$$

Returning to:

$$\begin{split} t_p &= \frac{t_{pHL} + t_{pLH}}{2} = 0.69 C_L \Big(R_{eqn} + \frac{R_{eqp}}{\beta} \Big) \\ t_p &= \frac{0.69}{2} ((1 + \beta)(C_{dn1} + C_{gn2}) + C_W) \Big(R_{eqn} + \frac{R_{eqp}}{\beta} \Big) \\ t_p &= 0.345 ((1 + \beta)(C_{dn1} + C_{gn2}) + C_W) R_{eqn} \Big(1 + \frac{r}{\beta} \Big) \end{split}$$

Propagation Delay

r is equal to the resistance ratio of identically sized PMOS and NMOS transistors: R_{eqp}/R_{eqn} .

The optimal value of β can be found by setting

$$\frac{\partial t_p}{\partial \beta} = 0 \quad \longrightarrow \quad \beta_{opt} = \sqrt{r \left(1 + \frac{C_W}{C_{dn1} + C_{gn1}}\right)}$$

When wiring capacitance is negligable, β_{opt} equals the *sqrt(r)*, vs. *r* normally used in the non-cascaded case.

If wiring cap dominates, larger values of β should be used.

This analysis indicates that smaller device sizes (and smaller area) yield a **faster** design at the expense of symmetry and noise margins.

Example in text gives β of 2.4 (=31 k Ω /13 k Ω) for symmetrical response. β_{opt} is then 1.6 -- SPICE sims gives optimal value of β = 1.9.

Assume a symmetrical inverter (rise and fall times of inverter are identical).

Load capacitance can be divided into *intrinsic* or **self-loading** and *extrinsic* components:

$$C_L = C_{int} + C_{ext}$$

Assuming R_{eq} stands for the equivalent resistance of the gate, then propagation delay is:

$$t_{p} = 0.69R_{eq}(C_{int} + C_{ext})$$

$$= 0.69R_{eq}C_{int}\left(1 + \frac{C_{ext}}{C_{int}}\right)$$

$$= t_{p0}\left(1 + \frac{C_{ext}}{C_{int}}\right)$$
 with $t_{p0} = 0.69R_{eq}C_{int}$

So how does transistor sizing impact the performance of the gate?

C_{int} consists of the diffusion and Miller caps, both of which are proportional to the width of the transistors.

Let's use a minimum sized inverter as a *reference* gate, then:

$$C_{int} = SC_{iref}$$
 & $R_{eq} = \frac{R_{ref}}{S}$

where *S* is the *sizing factor*.

Re-writing previous expression:

$$t_{p} = 0.69 \left(\frac{R_{ref}}{S}\right) (SC_{iref}) \left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$
$$= 0.69 R_{ref} C_{iref} \left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$

Conclusions:

- Intrinsic delay of the inverter t_{p0} is *independent* of the sizing of the gate (determined by technology and layout only).
 When there is no load, the increase in drive of the gate is **totally offset** by increased cap.
- Making S infinitely large yields the max performance, eliminates the impact of any external load and reduces the delay to the intrinsic one. Bear in mind that any size greater than (C_{ext}/C_{int}) produces similar results while increasing the silicon area -- no win beyond this size.

Bear in mind that although sizing up an inverter reduces its delay, it also *increases* its input capacitance.

So the more relevant problem is determining the optimum size of a gate when embedded in a *real environment*.

Consider a chain of inverters as the first case.

To determine input loading effect, we need to determine the relationship between the *input gate capacitance*, C_g and the *intrinsic output capacitance*.

Both are proportional to gate sizing, so the following is true:

$$C_{int} = \gamma C_g$$

The gamma factor γ is only a function of technology and is close to 1 for most processes.

Substituting:

$$t_p = t_{p0} \left(1 + \frac{C_{ext}}{\gamma C_g} \right) = t_{p0} (1 + f/\gamma)$$

This shows the delay of an inverter is **only** a function of the ratio between its external load cap and its input cap, and is called **effective fan-out** *f*.

Goal is to minimize delay through the following inverter chain:

Delay for j-th inverter stage (ignoring wire cap):

$$t_{p,j} = t_{p0} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) = t_{p0} (1 + f_j / \gamma)$$

The total delay of the chain is then:

$$t_{p, j} = \sum_{j=1}^{N} t_{p, j} = t_{p0} \sum_{j=1}^{N} \left(1 + \frac{C_{g, j+1}}{\gamma C_{g, j}} \right) \quad \text{with } C_{g, N+1} = C_{L}$$

And we need to solve for N-1 unknowns $C_{g,2}$, $C_{g,3}$, $C_{g,N}$.

Solution giving the **optimal size of each inverter** (that minimizes delay) is the geometric mean of each of the inverter's neighbors:

$$C_{g,j} = \sqrt{C_{g,j-1}C_{g,j+1}}$$

So each inverter is sized up by the same factor *f* (and has the same delay).

Given $C_{g,1}$ and $C_{L'}$ the sizing factor is given as:

$$f = N_{\sqrt{C_L/C_{g,1}}} = N_{\sqrt{F}}$$

where *F* represents the **overall effective fan-out** of the circuit and equals $C_L/C_{g,1}$.

The minimum delay through the chain is:

$$t_p = N t_{p0} (1 + (\sqrt[N]{F})/\gamma)$$

First component is *intrinsic delay* of the stages while second is *effective fan-out* of each stage.

(11/10/04)

The relationship between t_p and F is a strong function of the number of stages.

The important question now is how to choose the **number of stages** so that the delay is minimized for a given value of $F(C_L/C_{g,1})$.

If too many, *intrinsic delay* dominates, if too few, *effective fan-out* dominates.

Differentiating and setting to zero yields:

$$\gamma + \sqrt[N]{F} - \frac{\sqrt[N]{F}\ln(F)}{N} = 0 \quad \text{or}$$
$$f = e^{(1 + \gamma/f)}$$

Under the condition that γ is 0 (self-loading is ignored, load cap only consists of the fan-out), the optimal number is:

 $N = \ln(F)$ effective fan-out is set to f = e = 2.71828

This indicates that the optimal buffer design scales consecutive stages in an exponential fashion (*exponential horn*).

The solution when *self-loading* is included can only be computed numerically. For a typical case with $\gamma = 1$, the optimum tapering factor is close to 3.6.

Right plot shows *normalized delay* (t_p/t_{popt}) as a function of fan-out *f* for $\gamma = 1$.

(11/10/04)

Here it is clear that choosing values for fan-out that are **higher** than the optimum does NOT effect the delay very much (and helps reduce area).

It is common to select an **optimum fan-out of 4** (FO4).

Note that the use of too few stages ($f < f_{opt}$) has a significant impact on performance and should be avoided.

Rise-Fall Time of Input Signal

It is not realistic to assume that input signal changes abruptly and only one device is on.

Reality is that both are on for some portion of time and the total charging/discharging current is directed onto/off the load caps.

Rise-Fall Time of Input Signal

Text gives a more thorough analysis.

Key design challenge is to keep the *signal rise times* <= the *gate propagation delay,* for speed and power consumption.

Wire Delay

We've ignored the wire delay so far, even though its influence can dominate the transient response.

Consider the following circuit:

Here, inverter drives a single fan-out through a wire of length *L*.

Let the driver be represented by a single resistance R_{dr} (average of R_{eqn} and R_{eqp}), and C_{int} and C_{fan} are the intrinsic cap of the driver and input cap of the fan-out gate.

Elmore delay expression yeilds the propagation delay of the circuit as:

$$t_p = 0.69R_{dr}C_{int} + (0.69R_{dr} + 0.38R_w)C_w + 0.69(R_{dr} + R_w)C_{fan}$$

Wire Delay

Rearranging yields:

 $t_p = 0.69R_{dr}(C_{int} + C_{fan}) + 0.69(R_{dr}c_w + r_wC_{fan})L + 0.38r_wc_wL^2$

The 0.38 factor accounts for the fact that the wire represents a distributed delay.

C_w and R_w stand for the total capacitance and resistance of the wire.

Here, the delay expression contains a component that is linear with the wire length, as well as a quadratic one.

The latter obviously becomes the dominant factor in the delay of longer wires.

The almost ideal VTC of the CMOS inverter is **not** the main reason that highcomplexity designs are implemented in static CMOS.

Rather, its the almost **zero** power consumption in steady-state mode.

The reversed-bias diode current is, in general, very small.

Typical values are 0.1 to 0.5nA at room temperature.

For a device at 5V with 1 million devices, power consumption is 0.5mW.

A more serious source is the subthreshold current.

The closer V_T is to zero, the larger the leakage with $V_{GS} = 0V$.

This establishes a firm lower bound on $V_{T'}$ which is > 0.5V today.

For both sources of leakage, the resulting static power dissipation is given by:

 $P_{static} = I_{leakage} V_{DD}$

The junction leakage currents are caused by *thermally generated carriers*. Their value **increases exponentially** with increasing junction temperature.

For example, 85 degrees C (a common junction temperature) results in an increase by a factor of **60** over room temperature.

Dynamic power is much larger than static power and can be broken into 2 parts.

- *Load capacitance*, C_L, power.
- Power consumed via *direct path currents* (crow-bar currents).

C_L power (we derived this previously):

Charging C_L to V_{DD} draws $C_L * V_{DD}^2$ energy from the power supply.

Half of this energy is stored on the cap ($C_L * V_{DD}^2/2$) and later dissipated through the NMOS device.

So, an energy = $C_L * V_{DD}^2$ is consumed for every L->H and H->L transition. Therefore, for a clock frequency of *f*,

$$P_{\rm dyn} = C_{eff} V_{DD}^2 f$$
 with $C_{eff} = \alpha C_L$

Technology advances decrease t_p and increase f and C_L (higher integration). For example, at 30fF/gate at 100MHz and $V_{DD} = 5V$, 75µW is dissipated per gate. With 200K gates and $\alpha = 20\%$, **3W** are dissipated. **1W** is consumed with 100 output pins at 20pF/pin and f = 20MHz.

One of the driving forces for lower supply voltages (**quadratic** effect). For example, 5V -> 3V drops **4W** to **1.44W** (assuming the same f).

$$P_{dp} = \left(V_{DD} \frac{I_{peak}t_r}{2} + V_{DD} \frac{I_{peak}t_f}{2}\right) f = \frac{t_r + t_f}{2} V_{DD} I_{peak} f$$

Avoid large values for t_f and t_r to minimize.

Direct-path power is typically only about **20**% of the dynamic power.

19

Total power is then:

$$P_{tot} = P_{dyn} + P_{dp} + P_{static} = C_L V_{DD}^2 f + V_{DD} I_{peak} \left(\frac{t_r + t_f}{2}\right) f + V_{DD} I_{leak}$$

The **Power-Delay** product was also defined previously. It is the energy consumed by the gate per switching event.

We've defined a switching event to consist of a 0 -> 1 and a 1 -> 0 event.

This results in a **PDP** of

$$PDP = C_L V_{DD}^2$$

Under the condition that the static and direct-path currents are ignored.

