Variations in the I-V characteristics:

The current-voltage relations deviate significantly from the ideal expressions.

The ideal expressions are:

$$I_D = \frac{1}{2} \mu_n \left(\frac{\varepsilon_{ox}}{t_{ox}} \right) \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$
 (Saturation)

$$I_D = \mu_n \left(\frac{\varepsilon_{ox}}{t_{ox}}\right) \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$
(Linear)

The most important reasons for this difference are:

- Velocity saturation effects
- Mobility degradation effects

Velocity Saturation:

We modeled carrier mobility, μ_n , as a constant.

We stated carrier velocity is proportional to the electric field, independent of its value.

This holds up to a critical value of electric field, E_c, after which the velocity of the carriers tends to saturate:

Electrons in p-type silicon:

$$E_c = 1 - 5V/\mu m$$

$$v_{sat} = 10^7 cm/sec$$

Therefore, only about 2 volts are needed for NMOS devices with a channel length of 0.25µm.

```
Holes in n-type silicon:

E_c > 10V/\mu m

v_{sat} = 10^7 cm/sec (same)
```


Velocity Saturation:

Revised linear equation:

$$I_D = \frac{\mu_n C_{ox}}{1 + \left(\frac{V_{DS}}{\xi_c L}\right)} \left(\frac{W}{L}\right) \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

$$I_D = (\mu_n C_{ox}) \left(\frac{W}{L}\right) \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] \kappa(V_{DS})$$

with $\kappa(V) = \frac{1}{1 + \left(\frac{V}{\xi_c L}\right)}$

For long-channel devices (L is large) or small values of V_{DS} , κ approaches 1, and the equation simplifies to the traditional equation.

For short channel devices, κ is less than 1 and current is reduced.

Velocity Saturation:

Revised saturation equation:

$$\begin{split} I_{DSAT} &= v_{sat} C_{ox} W (V_{GS} - V_T - V_{DSAT}) \\ I_D &= \kappa (V_{DSAT}) \mu_n C_{ox} \bigg(\frac{W}{L} \bigg) \bigg[(V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \bigg] \\ & \text{with} \quad V_{DSAT} = \kappa (V_{GS} - V_T) (V_{GS} - V_T) \end{split}$$

Further increases in V_{DS} does NOT yield more current and the transistor current saturates at I_{DSAT} .

For $V_{DSAT} < V_{GS} - V_T$ (for short channel devices), the device enters saturation before V_{DS} reaches V_{GS} - V_T . Saturation region is extended.

Secondary Effects: Velocity Saturation

This yields a *linear* relationship between the saturation current and the gatesource voltage.

5

Secondary Effects Subthreshold Conduction: The transistor is partially conducting for voltages below the threshold voltage. The region is referred to as *weak-inversion*. 10⁻² 0.25 V_{DS} is held constant VT 10^{-4} Linear at 5V. 10⁻⁶ $I_D(mA)$ $I_D(A)$ Sub-threshold 10⁻⁸ operation Subthreshold exponential 10-10 region 10⁻¹² 0 1.5 0.00.5 1.0 1.5 0.0 1.0 0.5 $V_{GS}(V)$ $V_{GS}(V)$ Right logarithmic plot shows current decays in an exponential fashion.

Subthreshold Conduction:

In the absense of a conducting channel, the n⁺ (source) - p (bulk) - n⁺ (drain) terminals actually form a *parasitic bipolar transistor*. The rate of decrease of current is described by:

$$I_{D} = I_{S}e^{\frac{V_{GS}}{nkT/q}} \begin{pmatrix} -\frac{V_{DS}}{kT/q} \\ 1 - e^{\frac{-V_{DS}}{kT/q}} \end{pmatrix} (1 + \lambda V_{DS})$$
 where I_S and n are
empirical parameters
(n ~1.5)

Ideally, I_D should fall to zero very quickly after V_{GS} falls below V_T .

The *inverse* rate of decline of the current w.r.t. V_{GS} below V_T is a quality measure of a device, and can be quantified by the **slope factor** *S*.

$$S = n \left(\frac{kT}{q}\right) \ln(10)$$
 mV/decade

S measures by how much V_{GS} has to be reduced for the drain current to drop by a factor of 10.

Subthreshold Conduction:

For an ideal transistor, with the sharpest possible roll off, n = 1 and (kT/q)ln(10) evaluates to 60 mV/decade at room temperature.

Therefore, subthreshold current drops by a factor of 10 for a reduction in V_{GS} of 60 mV.

Unfortunately, *n* is greater than 1 for actual devices and current falls at a reduced rate (90 mV/decade for n = 1.5).

The current roll-off is *further decreased* by a rise in operating temperature (most chips operate at a temperature considerably above room temp).

Minimizing these leakages is particularly important in *dynamic* circuits, which store logic values as charge on a capacitor.

The value of *n* is affected by different process technologies, e.g., SOI.

SPICE Models

The complexity of the behavior of the short-channel MOS transistor has resulted in a variety of models of different accuracy and computing efficiency.

The LEVEL parameter in the model statement selects the model:

• LEVEL 1:

Implements the *Shichman-Hodges* model, which is based on the square law long-channel expressions.

Best used to verify a manual analysis.

• LEVEL 2:

Geometry-based model, which uses **detailed device physics** to define its equations.

It handles effects such as *velocity saturation, mobility degradation* and *DIBL* but is too complex and inaccurate to handle all 3D effects.

SPICE Models

• LEVEL 3:

A semi-empirical model (depends on measured device data to define its parameters).

• **LEVEL 4**:

Berkeley Short-Channel IGFET Model (**BSIM**).

Provides an analytically simple model that is based on a small number of parameters extracted from experimental data.

It is accurate as well as simple and is the most popular model.

• LEVEL 5 - n:

There are many other models supplied by SPICE vendors and semiconductor manufacturers.

Some of the parameters on the following slides are redundant. For example, **PHI** can be computed from process model parameters. User-defined values always override those that can be computed.

SPICE Parameters LEVELs 1-3

Parameter Name	Symbol	SPICE name	Units	Default Value
SPICE Model Index		LEVEL	-	1
Zero-Bias Threshold Voltage	V _{T0}	VTO	V	0
Process Transconductance	k′	KP	A/V ²	1.0E-5
Body-Bias Parameter	γ	GAMMA	V ^{0.5}	0
Channel Modulation	λ	LAMBDA	1/V	0
Oxide Thickness	t _{ox}	TOX	m	1.0E-7
Lateral Diffusion	x _d	LD	m	0
Metallurgical Junction Depth	x _j	XJ	m	0
Surface Inversion Potential	2	PHI	V	0.6
Substrate Doping	N _A , N _D	NSUB	cm ⁻³	0
Surface-State Density	Q _{ss} /q	NSS	cm ⁻³	0
Fast Surface-State Density		NFS	cm ⁻³	0
Total Channel Charge Coef		NEFF	-	1
Type of Gate Material		TPG	-	1
Surface Mobility	μ_0	U0	cm ² /V-sec	600
Maximum Drift Velocity	υ _{max}	VMAX	m/s	0
Mobility Critical Field	E _{crit}	UCRIT	V/cm	1.0E4
Critical Field Exponent in MD		UEXP	-	0

SPICE Parameters LEVELs 1-3

Parameter Name	Symbol	SPICE name	Units	Default Value
Transverse Field Exponent		UTRA	-	0
(mobility)				
Source Resistance	R _S	RS	Ω	0
Drain Resistance	R _D	RD	Ω	0
Sheet Resistance (Source/Drain)	R/sq	RSH	Ω/sq	0
Zero-Bias Bulk Junction Cap	C _{j0}	CJ	F/m ²	0
Bulk Junction Grading Coeff.	m	MJ	-	0.5
Zero-Bias Side-Wall Junction Cap.	C _{jsw0}	CJSW	F/m	0
Side-Wall Grading Coeff.	m _{sw}	MJSW	-	0.3
Gate-Bulk Overlap Cap.	C _{gbO}	CGBO	F/m	0
Gate-Source Overlap Cap.	C _{gsO}	CGSO	F/m	0
Gate-Drain Overlap Cap.	C _{gdO}	CGDO	F/m	0
Bulk Junction Leakage Current	I _S	IS	А	0
Bulk Junction Leakage Current	J _S	JS	A/m ²	1E-8
Bulk Junction Potential	φ.	PR	V	0.8
Duik junction i Otential	Ψ0	FD	v	0.0

SPICE Individual Transistor Parameters

The following parameters are specified on the device line, not within the transistor.

Parameter Name	Symbol	SPICE name	Units	Default Value
Drawn Length	L	L	m	-
Effective Width	W	W	m	-
Source Area	AREA	AS	m ²	0
Drain Area	AREA	AD	m ²	0
Source Perimeter	PERIM	PS	m	0
Drain Perimeter	PERIM	PD	m	0
Squares of Source Diffusion		NRS	-	1
Squares of Drain Diffusion		NRD	-	1

Note that zero is assumed for many of these if left unspecified !

NRS and **NRD** multiply the sheet resistance **RSH** specified in the model to give the series source and drain resistance.

M1 2 1 0 0 NMOS W=1.8U L=1.2U NRS=0.333 NRD=0.333 + AD=6.5P PD=9.0U AS=6.5P PS=9.0U M2 2 1 5 5 PMOS W=5.4U L=1.2U NRS=0.111 NRD=0.111

+ AD=16.2P PD=11.4U AS=16.2P PS=11.4U

