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Fundamental CAD Algorithms

Melvin A. Breuer, Fellow, IEEE Majid SarrafzadehFellow, IEEE and Fabio Somenzi

_ Abstract—Computer-aided design (CAD) tools are now making problem as a whole. In this framework, the objective is to view
it possible to automate many aspects of the design process. This haghe VLSI design problem as a collection of subproblems; each

mainly been made possible by the use of effective and efficientalgo-g, )50 hlem should be efficiently solved and the solutions must
rithms and corresponding software structures. The very large scale be effectively combined

integration (VLSI) design process is extremely complex, and even . . . .
after breaking the entire process into several conceptually easier ~ Given a problem, we are to find efficient solution methods.

steps, it has been shown that each step is still computationally hard. A data structure is a way of organizing information; sometimes
To researchers, the goal of understanding the fundamental struc- the design of an appropriate data structure can be the foundation
ture of the problem is often as important as producing a solution ¢ g efficient algorithm. In addition to the design of new data
of immediate applicability. Despite this emphasis, it turns out that - : - . .
results that might first appear to be only of theoretical value are structures, we are interested in the design of efficient solutions
sometimes of profound relevance to practical problems. for complex problems. Often such problems can be represented
VLSI CAD is a dynamic area where problem definitions are in terms of trees, graphs, or strings.
continually changing due to complexity, technology and design  Once a solution method has been proposed, we seek to find a

methodology. In this paper, we focus on several of the fundamental \jq4r6ys statement about its efficiency; analysis of algorithms

CAD abstractions, models, concepts and algorithms that have had hand-in-hand with their desi b lied t
a significant impact on this field. This material should be of great ©@1 90 hand-in-hand with their design, or can be applied o

value to researchers interested in entering these areas of research Known algorithms. Some of this work is motivated in part by
since it will allow them to quickly focus on much of the key the theory of NP-completeness, which strongly suggests that
material in our field. We emphasize algorithms in the area of test, certain problems are just too hard to always solve exactly and
physical design, logic synthesis, and formal verification. These affiiantly. Also, it may be that the difficult cases are relatively
algorithms are responsible for the effectiveness and efficiency of a : . .
variety of CAD tools. Furthermore, a number of these algorithms rare, _SO we attempt to Inve_stlgate the behaylor of PrOb'e_mS and
have found applications in many other domains. algorithms under assumptions about the distribution of inputs.
. . . Probability can provide a powerful tool even when we do not as-
Index Terms—Algorithms, computer-aided design, computa- - L .
tional complexity, formal verification, logic synthesis, physical SUMe @ probability distribution of inputs. In an approach called
design, test. randomization, one can introduce randomness into an algorithm
so that even on a worst case input it works well with high prob-
ability.

Most problems that arise in VLSI CAD are NP-complete or
HE TECHNOLOGICAL revolution represented by veryharder; they require fast heuristic algorithms, and benefit from
large scale integration (VLSI) has opened new horizons @fror bounds. Robustness is very important—the program must

digital design methodology. The size and complexity of VLSNork well even for degenerate or somewhat malformed input.

systems demands the elimination of repetitive manual opel#erst case time complexity isimportant, but the program should

tions and computations. This motivates the development of also be asymptotically good in the average case, since invariably
tomatic design systems. To accomplish this task, fundamenpalbple will run programs on much larger inputs than the devel-

understanding of the design problem and full knowledge of tlpers were anticipating. It is also important that the program

design process are essential. Only then could one hope to «ffin well on small inputs. Any algorithms used must be simple

ciently and automatically fill the gap between system specificanough so that they can be implemented quickly and changed
tion and manufacturing. Automation of a given design procekder if necessary.

requires its algorithmic analysis. The availability of fast and In this paper, we describe fundamental algorithms that have
easily implementable algorithms is essential to the disciplinebeen proposed in the area of test, physical design, logic syn-

Because of the inherent complexity of the VLSI desigthesis, and formal verification. This paper is organized as fol-

problem, it is partitioned into simpler subproblems, the andbws. In Section Il, we review fundamental algorithms in the
ysis of each of which provides new insights into the originarea of test. Then, in Section Ill, we address physical design
problems and review various techniques. In Section IV, we study

Manuscript received January 31, 2000. This paper was recommended by l&sgic. synthesis and formal verification. Finally, we conclude in

sociate Editor M. Pedram. Section V.

M. A. Breuer is with the Department of Electrical Engineering - Systems,

University of Southern California, Los Angeles, CA 90089 USA (e-mail:
mb@poisson.usc.edu).

M. Sarrafzadeh is with the Computer Science Department, the University'&f Introduction
California, Los Angeles, CA 90095 USA (e-mail: majid@cs.ucla.edu). '

F. Somenzi is with the Department of Electrical and Computer Engineering, |n this section, we focus on several issues related to post-man-
University of Colorado, Boulder, CO 80302 USA (e-mail: Fabio@Col- . . . . .
orado.edu). ufacturing testing of digital chips. One comprehensive test oc-

Publisher Item Identifier S 0278-0070(00)10450-6. curs after packaging, and often involves the use of automatic

. INTRODUCTION

Il. FUNDAMENTAL ALGORITHMS IN TEST

0278-0070/00$10.00 © 2000 IEEE



1450 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

test equipment (ATE). Another involves testing of chips in thiechniques for reducing the number of faults that need be ex-
field. A major part of these tests are carried out using nonfunglicitly considered by a test system. These techniques fall into
tional data, at less than functional clock rates, and where orthe general category éult pruning and include the concepts
static (logic level) voltages are measured. This aspect of the tekfault dominance and equivalence.
problem has been highly automated and is the focus of our at\ery often the efficiency of a test system is highly dependent
tention. The major subareas of test that lie within the scope @ the data structures and value system employed. In test gen-
CAD include test generation for single stuck-at-faults (SSF®)ation, acompositdogic system is often used so one can keep
diagnosis, fault simulation, design-for-test (DFT) and built-irack of the logic value of a line in both a fault-free and faulty
self-test (BIST). The latter two topics deal primarily with testircuit.
synthesis and will not be dealt with in this paper. For a generalfinally, the test algorithm itself must deal with complex is-
overview of this topic, the reader is referred to [1]. sues and tradeoffs related to time complexity, accuracy and fault
Initially, we restrict our attention to combinational logic. Acoverage.
testfor a stuck-at fault in a combinational logic circuit C con- 1o give the reader a flavor of some of the key results in this
sists of an input test pattern that 1) produces an error at the §igd, we focus on the following contributions: 1) the D-algo-
of the fault and 2) propagates the error to a primary OUBK. rithm test generation methodology for SSFs, 2) concurrent fault

an algorithm for constructing a test patténmat detects a fault

f. Diagnosisdeals, in part, with 1) generating tests that differ-

entiate between a subset of faults and 2) given the resultsBsf Test Generation for Single Stuck-At Faults in Combinational
applying a test and observing its response, determining wi&gic

faults can or cannot exists in €ault simulationdeals with de- . )

termining which faults out of a class of faults are detected by a ' '® D-Algorithm: The problem of generating a test pattern
test sequence. In addition, the actual output sequence of a fafilf§r @ SSF/ in a combinational logic circui€’ is an NP-hard
circuit can be determined. problem, and is probably the most famous problem in testing. In

To automatically generate fault detection and diagnostic tedf260, J- Paul Roth published his now famous D-algorithm [2],

for a sequential circuit is quite complex, and for most large cit¥hich has remained one of the center pieces of our field. This
rk employed many important contributions including the use

cuits is computationally infeasible. Thus, designers have devéP ) ¢ -
opeddesign-for-testechniques, such as scan design, to simpli the cubical complex notation, backtrack programming to ef-

test generation. Going a step further, test engineers have de{lél€ntly handle implicit enumeration, and the unique concepts

oped structures that can be embedded in a circuit that either@hP-Cubes, error propagation (D-drive) and line justification.
tally or to a large extent eliminate the need for ATPG. These The D-algorithm employs a five-valued composite logic
structuregyenerateests in real or near real time within the cir-System wher&X = z/z, 1 = 1/1,0 = 0/0, D = 1/0 and
cuit itself, andcompact(compress) responses into a fisig- D = 0/1. Here,a/b implies thata is the value of a line in
nature Based upon the signature one can determine whethefl# fault free circuit, and is its value in the faulty circuitX

not the circuit is faulty, and in some cases can actually diagnd§@resents an unspecified logic value. Initially all lines in a

the fault. This area is referred to bsilt-in self-test circuit are set taX. A D(D) represents an error in a circuit.

Two key concepts associated with test generatiocangrol- 10 create an initial error one sets a line thatig—0 to a 1,
lability andobservability For example, to generate a test for &€Presented by B, or if s—a—1to a 0, represented byla.
line A that is stuck-at-1, it is necessary that the circuit be set intoA form of forward and backward simulation is carried out
a state, or controlled, so that in the fault free circti= 0. This by a process known asiplication, where a line at valuX is
creates an error on line A. Next it is necessary that this error @ganged to one of the other line values. Fig. 1(b) shows the truth
propagated to an observable signal line such as an output. Siédre for aNAND gate. It is easy to extend this table to include
design makes test generation much easier since flip-flops carepgposite line values. So if = 0 andb = X, then forward
easily made to be pseudoobservable and controllable. implication would set = 1. Fig. 1(c) illustrates some examples

There are five key components associated with most test @f-backward implicationDs andDs are implied forward and
gorithms or related software systems; namely, 1) a fault modefckward in the same manner based on the truth table shown
2) a fault pruning process, 3) a value system and data structufefig. 1(d). Note that for any cube, such @éc) = (1DD)
and 4) the test procedure itself. The test procedure may deal wiith* D" entries can be complement to form another logically
test generation, fault simulation or diagnosis. correct cube, such g4DD).

Manufacturing tests deal with the problem of identifying de- The D-algorithm employs the concept dffrontier and
fective parts, e.g., a defective chip. Defects, such as extra mé@afrontier to keep track of computations to be done as well as
or thin gate oxide are oftemodeledusing functional concepts, lead to an orderly backtrack mechanism. Thieontieris a list
such as a line stuck-at one or zero, two lines shorted togetttbat contains the name of each gate whose output is assigned
or a gate or path whose delay is unacceptably high. In gemdogic value that is not implied by the input values to the
eral, the number of faults associated with many models is eyate, and for which no unique backward implications exists.
tremely high. For example, if there aresignal lines in a cir- For example ife = b = X andc¢ = 1, then there are two
cuit, the number of multiple stuck-at faults is bounded3jy ways (choices) for satisfying this assignment, nanaety 0 or
In many cases, researchers have developed quite sophisticated0. These gates are candidateslfioe justification
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The D-frontier is a list of all gates whose outputs aXeand
which have one or mor® or D input values. These gates are
candidates fob-drive. E

A proceduramply-and-checks executed whenever a line is
set to a new value. This procedure carries out all forward anc )
backward (unique) implications based on the topology and gate
in a circuit. The version oimply-and-checlpresented here is 12) {>¢G 0)

|

12)

an extention of the original concepts and makes the procedur® .
somewhat more efficient. m'
Example 1: As an example, consider the circuit shown in
Fig. 2(a). Since all gates have a single output we use the sarg
symbol to identify both a gate and its output signal. Also, wec

denote lineX s—a—1(0) by X (Xo).
Consider the faulty. We can consider a pseudoelemétit

placed on this line whose inputisand output iD. We use the ¢ Dc | )’_Il\fl)
notationV (i) to denote a line valu® assigned in stepof the f
algorithm. We also use the symbols, < to denote forward ©

and backward implication, respectively, aiido denote justifi-
cation. Sincel” = 1(0), thenB = C = 1(0). The D-frontier
= {K, L}, andJ-frontier= {¢}.

To drive aD or D to a primary output, we can select an } S
element from theD-frontier and carryout a process known as_ Example 2: To illustrate the concept of line justification con-
D-drive. If we select gate, then by assigningl = 1(1) we Sider the faultl,. Here, we have™ = D(0) and/ = 1(0) as
get K = D(1), and implications results i = 0(1) and shown in Fig. 2(c). A]_‘ter wé-drive through gateV we have
I = 1(1). Now D-frontier = {~, L} and theJ-frontieris still V = D(1) andJ-frontier= {I, X, L, M}. Assume we chose
empty. If we next drive the errofD) through gateN to the to remqve{ from thgeJ—frontlerto be progessed flrst: Then one
primary output, we requird = M = 1(2). Again, carrying ?Nay.IOJl.,IStIfyI =1is tp setd ='0(2?,W.h.|ch results in severall
outimply-and-checkve getd = 0(2) andI = 1(2) which in |mpl|ca_1t|ons. We contlnue_solvmg justification prob_lems L_lntll
turn impliesL = D(2). But sinceL has already been assigned]'front'er = {¢}. If a conflict occurs, backtracking is carried
the valuel (2) a conflict exists. Conflicts are dealt with by back2Ut: =
tracking to the last step where a choice exists and selecting a difFFig. 3 shows the pseudocode for the D-algorithm. If no test
ferent choice. Naturally, this must be done in an orderly way sxist for a fault, the fault is said to beedundantand the al-
that all possible assignments are implicitly covered. In our cagmrithm terminates in FAILURE. Backtracking is automatically
we undo all assignments associated with step 2 and sélectaken care of via the recursive nature of the procedure calls. The
rather thanV from theD-frontier. This results i/, = D(2) and  controlling value foND andNAND gates is zero, and farand
eventually withV = D(3)and atesd = B = C =D = 1.0 NORitis one. In additionaAND andoRr have an inversion parity

This example illustrates the need fowultiple-path sensitiza- of zero, whileNOT, NOR, andNAND have an inversion parity of
tion. Note that the test also detects additional faults sudB,as one.
Cy andN,. Later, we see that fault simulation is an efficientway There are numerous other test generation algorithms for SSFs
of determining all the SSFs detected by a test pattern. many of which deal with further refinements of the D-algorithm,

Fig. 2. Circuit for Example 1.
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E’“l‘g() Since afaultin a circuit produces a different circuit, it too can
egimn be simulated using a conventional logic simulator. If its response
if Implyandcheck() = FAILURE then return FAILURE edusing 9 s resp
if(error not at PO) then to a testl” is different from that of the fault-free circuit, we say
that 7" detects the fault. Tests having SSF coverage above 98%

beg;?D_fmntier — ¢ then return FAILURE are often sought. Since a fault-free and faulty circuit differ in a
repeat very minor way, e.g., one line may be stuck-at 0 or 1, the same
begin circuit description is used for both. In some cases, a “patch” in
select an untried gate (G) from D-frontier the description or code is used so that when a signal line is being
c= controlling value of G processed, a check is made as to whether or not it is associated
assign € to every input of G with value z with a fault. If so an appropriate action is taken.

if D-alg() = SUCCESS then return SUCCESS
end
until all gates from D-frontier have been tried

return FAILURE

For a circuit withn signal lines, the number of SSFi§n),
and hence simulating these faults one at a time can@ke
times longer than a good circuit simulation. So the primary em-
phasis in fault simulation is on efficiency.

/f mer propagated to a PO */ There are two major classes of circuits addressed by fault sim-

if J-frontier = ¢ then return SUCCESS ulators, namely sequential circuits (including asynchronous cir-

select a gate (G) from the J-frontier cuits), and those employing full scan and/or logic BIST. For the

¢ = controlling value of G latter category the circuit is considered to be combinational and

repeat delay is generally ignored. In all cases, numerous faults need to
begin be processed. Because the order in which faults are processed

select an input (j) of G with value z
assign c to j
if D-aly() = SUCCESS then return SUCCESS

assign € to j /* reverse decision */

appears to be a third order effect on efficiency, we ignore it in

this presentation. For sequential circuits, test patterns must be
processed in their natural order, i.e., in the order they occur in a
test sequence. For combinational circuits, however, test patterns

end
until all inputs of G are specified can be processed in an arbitrary order if we ignore the concept
return FAILURE of fault droppingt
end To appreciate and help identify the key concepts in fault sim-

ulation one must understand the attributes that researchers have
combined in the evolution of these systems. Some of these con-
cepts are listed in Table I.

such as PODEM [3] and FAN [4]. ATPG algorithms have also In the area of accelerating simulation time, developers have
been developed for other fault models such as multiple stuckt@ted that computers are word oriented, and when employing

faults, bridging faults (shorts) and delay faults. logic operators, all bits of a word are processed simultaneously
and independently. So, for exampleparallel fault simulation

a unique fault can be processed simultaneously (concurrently)
in each bit position of a word. Seshu [5] exploited this tech-

Fault simulation is the process of simulating a circiivith  nique when simulating sequential circuits. On the other hand
respect to an input sequerifeand set of faultg”. This process Waicukausket al.[6] focused on simulating combinational cir-
is normally done for a variety of reasons, such as 1) to determg@igits and hence simultaneously processed a unique test pattern
which faults inF are detected b¥’, i.e., produce an erroneousin each bit position of a word.
output, or 2) determine the responseSdab T for each faultf € Another important observation related to fault simulation is
F. In more general terms, fault simulation is done to determiri@at the logic state of most faulty circuits very closely tracks the
fault coverage, i.e., the percent of faults detectedhwith re-  state of the fault-free circuit, pattern by pattern. That is, the bi-
spect toS and a class of faults. We focus on the class of singh&ry value of a flip-flopz at simulation clock cycle is usually
stuck-at faults. Techniques for determining the fault covera$fge same in the fault-free circuit as in some arbitrary faulty cir-
with respect to certain class of delay faults require substantiafiyiit. Hence one could consider simulating the “difference” be-
different techniques. Other applications for fault simulation at&een each fault circuit and the fault-free circuit. We refer to this
to guide ATPG in selecting a fault to process, and to providesstrong temporal correlationsThis observation is the kernel
data for fault diagnostic, such as fault dictionaries. Most fauehind Deductive [7] and Concurrent [8] fault simulation.
simulators employ a zero or unit delay gate level model. We useln the next few paragraphs, we describe the concept of con-
the term good circuit and fault-free circuit interchangeably. ~ current fault simulation.

Gate level good circuit logic simulation technology is quite Concurrent Fault Simulation:Concurrent fault simulation
mature, and includes mechanisms such as compiled-drivexplicitly simulates a fault-free circuit using classical table-
table-driven and event-driven simulation. In addition, logiéfiven event-direct techniques. In addition, since most faulty
simulators can handle 1) complex timing models, 2) bidire€ircuits are strongly temporarily correlated to the fault-free
tional devices, and 3) multivalued logic including unknown,
transitions and high-impedance states. Many fault Sir‘nUI""-torsFault droppingrefers to the technique of not simulating a fault once it is
are built as extensions to good circuit logic simulators. detected by a test pattern.

Fig. 3. The D-algorithm.

C. Fault Simulation
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TABLE |
A DESIGN SPACE FORFAULT SIMULATORS

Acceleration Techniques:
Word parallel
Strong temporal correlations
Implicit fault relations
Problem Characteristics:
Sequential vs combinational logic
Multiple patterns
Multiple faults
Versatility:
Logic values
Delay models

Fig. 4. Example circuit.

circuit, they are simulatetplicitly, i.e., events that occur in

the fault-free circuit also occur in most faulty circuits. Those

cases where this is not the case are simulaxgicitly.
Let S be a logic circuit andS; the same circuit except it

contains a faultf in some signal line. We associate with each

elementz in S, such as a gate or flip-flop,@ncurrentfault list,

denoted byC'L,. CL, contains entries of the forrgf, V.. ,),

wheref is afaultand/,, is a set of signal values. Let; denote
the replica or image of in S;. Note that in generaf is not

related tox. For example, referring to Fig. 4, faull; defines a
circuit Sp,, and the image of gatg in this circuit isFp, .

Let V,(Vz,) denote the ensemble of input, output, and

possibly internal state values @fz ;). Note that ifz were a
flip-flop or register it would have a state. A fayltis said to be
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r —- 1/0 good event
|
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b . 1/0 event in circuit B
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B

Fig. 5. Changes in fault lists and creation of events during simulation.

alocal fault of z if it is associated with either an input, output,

or state ofz. Referring to Fig. 4, the local faults df are Fy,
Fy, Dy, Do, E{, andEy. At a specific point in simulation time,

in C'L,, until they are detected, and subsequently are dropped.
During simulation new entries 'L, represent elementsy

assume the signal values are as shown in Fig. 4. In the fawmhose values become different from the values.ofhese are

free circuit, gatel” would be associated with the pdis, V4),
whereVy, = (D, E, F) = (0,1, 1), were the fault-free
circuit is denoted by the index zero. The elemé&htvould be

said todivergefrom =. Conversely, entries removed froff,,
represent elements; whose values become identical to those
of z. These are said wonvergdo x. Efficient dynamic memory

associated with several entities, including the local fault entriesanagement is needed in order to process lists quickly and not
(Do, (0,0, 1)), and(Cy, (1, 1, 0)), where the fault’; forces waste storage space.

line £ to a one. The patl®—FE—-F is a sensitized pathand Before presenting the algorithm for concurrent simulation,
there exist one stuck-at fault on each segment of this path tha illustrate the major concepts with an example.

is detected by the input pattern.

During simulationC L, contains the set of all elements
that differ fromz at the current simulated time. W, # V.,
then(f, V.,) € CL,. Also, if f is a local fault ofz, then
(f, Va,;) € CL, evenifV,, = V,.

Afaultis said to bevisibleon a linei when the valuéin S and

Example 3: Consider the circuit shown in Fig. 5(a). Here,
only two elements (gates) ifi are depicted, namely ande.
The fault list are shown symbolically as gates linked together.
Hence, the first element i®’L. is (a1, V,,), whereV,, =
(1, 1, 0)). Note thata; is a local fault, whilex is not. The entry
(o, (1,0, 1)) € CL. since(l, 0, 1) # (1, 1, 0). To process

S differ. Concurrent simulation employs the concept of evente current event “line changes from a one to a zero in the fault
and simulation is primary involved in updating the dynamic dafeee circuit,” we turn to Fig. 5(b). Here, we see that because line

structures and processing the concurrent fault lists.

The initial content of eaclCL, consists of entries corre-

sponding to the local faults of. Concurrent simulation nor-
mally employs fault dropping and, thus, local faultscalemain

a has a new value, when gates evaluated we must schedule
the future event “line in fault free circuit changes from zero to
one at present time plus delay of gateNote that the event on
line a occurs not only in the fault free circut but implicitly in
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L ] 1\'\/’ — 0
. i r if ¢ changes in the good circuit then
: A @ N begin
. B |— set ¢ to v’ in the good circuit
\L for every feCL,
\L begin
CL, if feL then
CLp begin
set i to vy in circuit f
Fig. 6. Elements A and B. if Vi, = V4 then delete f from C'L4
end
else /* no event in circuit f * /
all fault circuits that do not have entries@iL.. The entries in if vy = v then add newly visible fault f to NV
CL. are processed explicitly. Note that the event on times else if V4; = V4 then delete f from ('L4
not effect the first entry inlC’L.., since it corresponds to line end
s—a—1. Evaluating the entry corresponding to gatedoes not end

result in a new event since the output of gatendc,, will be else /+ no good event for i + /
the same once is updated. f°rbe“?ry fel
When the value of is eventually updated, fault; is identi- eg::t i to o/, in circuit f
fied as being newly visible on line iV, = {A then delete f from ' 4
The good event on line does not produce an event on line end
e. As seen in Fig. 5(c), the newly visible fault produces an
entry inCL,. The new value ot also produces the following Fig. 7. Processing of a composed eventL) at the source element A.

changes t&@’L.: for entryd; (), the output changes from one

to zero that in turn produces an event tied#¢/3) only. Itis, |t o event in the fault-free circuit is generated, any activated
thus, seen that there are two types of events, namely good CirhimentB ; that does not generate an event should be compared

events that apply to not only the fault-free circuit but also aj}, the fayit-free element, and if their values agréshould be
faulty circuits, except for those that attempt to set a line that i§,eted fromCL .

s—a—o6 10 a value other thaf, and events that are specific to a In summary, concurrent simulation has many important at-

faulty circuit. _ . tributes, such as the ability to 1) accommodate complex delay
We now describe the concurrent simulation procedure, UsiRgygels for the elements being simulated, 2) employ multivalued
the elements A and B shown in Fig. 6. logic; 3) except for local faults it explicitly simulate only el-
At a specific scheduled time, we can have an eventonilime ements that differ (in logic values) from the fault-free circuit,
the fault-free circuit and/or in several faulty circuits. The set gfnq implicitly simulate all other elements; 4) accommodate a
scheduled simultaneous events is callemposed evemind ide range of circuit structures including combinational, syn-
is denoted by, L), whereL is a list of pairs of th&f, v%), f  chronous and asynchronous logic, and 5) employ a wide range
is the name (index) of a fault and, is the scheduled value.  of primitive elements such as gates, ALUs and memories. Its pri-
Fig. 7 describes how the composed eventias processed. mary disadvantages are 1) implementations complexity, 2) large
Here,u(wvy) is the current value of lingin the circuitSo(S). If  storage requirements, and 3) need for efficient list processing
an eventin the fault-free circuit occurs of the form lirghanges and memory management.
from v to +/, then all entries irC'L 4 are processed; otherwise Critical path tracing[9] is a technique that is radically dif-
only the pertinent entries i6'L 4 are analyzed. ferent from concurrent fault simulation. It is intended for com-
At the termination of this procedure NV contains the list obinational circuits, borrows on techniques from test generation,
all newly visible faults. Next it is necessary to schedule futurgnd employs special procedures to efficiently handle fan-out
events created by the processind©fL) with respectta”L,4. free regions of a circuit as well as cones (single output) of logic.
This is done by processing every element on the fan-out list of

¢, such as. D. Logic-Level Fault Diagnosis
If an event occurs in the fault-free circuit, théhis processed g 9
in a normal way. The processing of an eleméht € CLp Fault diagnosis deals with the process of identifying what is

depends on which list§' Lz, L and/orN'V containf. For the wrong with a circuit given the fact that the circuit produced the
sake of completeness the appropriate actions are summarizeghiong response to a test. It is often assumed that the fault is an
Table I1. element of a well-defined class, such as the SSFs. Faulty circuits
In some of these cases, we refer to the concept of “activatentain defects and often these defects do not correspond to the
B;.” Activated elementsare individually evaluated and anysimple fault model assumed, in which case fault diagnosis can
events produced are merged into composed events. If an eveatl to ambiguity or misdiagnosis. Also, since some faults are
is produced in the fault-free circuit, then the process of deletirgjuivalent to others, without probing inside a circuit, fault res-
entries from the fault lists will be done when the composealution is sometimes not precise.
event is retrieved from the events list and processed, as seen i@ne of the most common forms of diagnosis is carried out
Fig. 7. using a fault dictionary [5]. Here, using a fault simulator one
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TABLE I
PROCESSINGELEMENT B; € C'Lg

Case 1: (By exists in CLp and no independent event on # occurs in Ny). If a good event exists and it can propagate
in Ny, then activate By. The good event on line ¢ can propagate in the circuit f if vy = v and f is not the local s-a-v
fault on the input ¢ of By.

Case 2: (By exist in CLp and an independent event on ¢ occurs in Ny). Activate By.

Case 3: (An independent event on i occurs in Ny, but f does not appear in CLg). Add an entry f to CLp and
activate By.

Case 4: (f is newly visible on line 7 and does not appear in CLg). Add an entry for f to CLp.

Case 5: (f is a newly visible fault on line 7, but an entry for f is already present in CLp). No action.

can build an array indicating test pattern number, fault numberWe assume a line i is either normals—a—0 or s—a—1. A

(index) and response. Given the response from a circuit unaermal pathis a sequence of normal lines separated by fault-free

test (CUT) one can search this dictionary for a match whidates.

then indicates the fault. This diagnostic methodology leads to . (Norma| Path): The |ogic values of an internal lihean

very large dictionaries and is not applicable to multiple faults.  pe deduced from an 1/O experiment only if there exists at

This form of diagnosis is referred to aause—effect analysis least one normal path connectigvith some PO.

where the possible causes (faults) lead to corresponding effectgve assume a natural lexicographic ordering of the lines in

(responses). The faults are explicitly enumerated prior to caf-and of test patterns ifi”. Therefore, we do not distinguish

structing the fault dictionary. between a signal liné and thefth line in a circuit, nor the test
Effect-Cause Analysistn this section, we briefly describe patternt and thetth test pattern.

the effect—cause analysisnethodology [10], [11]. This diag-  Let v}, be the value of signal linéin C* when test patterh
nosis technique has the following attributes: 1) it implicitly emis applied.

ploys a multiple stuck-at fault model and, thus, does not enu-| et matrixV* = [v5,]. In C, the signal values are denoted by
merate faults; 2) itidentifies faults to within equivalence classeg? — [9,].
and 3) it does not require fault simulation or even the response (PO): Ifline £is s—a~6, 6 € {0, 1}, thenu, = 6 V¢ € T

from the fault-free circuit. « (P1): Let/ be the output of gate. If £ is normal then for

Let C be a model of a fault-free circuif;* an instance of’ all+ € T, v}, and the values of the inputs tomust cover
being tested?’ the test sequence, aft{ R*) the response of a primitivetcube ofy.
C(C*)to T In effect-cause ana_llysis, we process the actual re- (P2): If k is a fan-out branch (FOB) of. then linesk and
sponseR* (the effect) to determine the faults @t (the cau;e). 7 have the same values in every test.
The responsét is not used. Effect-cause analysis consists of , (P3): If line 4 is a normalPI, thenv; = v%, V¢ € T.
two phases. In the first phase, one execute®tduction Algo- « (P4): Consider the basic primitive gatesid, OR, NAND,
rithm, where the internal signal valuesdii are deduced. In the NOR, andiNVERTER. Then for every pair of primitive cubes
second phase, one identifies the status of lin€s*in.e., which in which the output of a gate has complementary values,
are fault-free or norméfn), which only take on the values 0 or there exists an input with complementary values.
1, and which cannot be-—-0 or s—~1, denoted by and1, * (Complete Normal Path): If a PO linew has comple-
respectively. mentary values irt and#, then there exists at least one

Note that by carrying out a test where only the primary output complete normal path i0* between somé”I andw,

lines are observable, it is not feasible to always identify a fault 54 every line on this path has complementary valugs in
to a specific line. This occurs for reasons such as fault equiva-  gnq+.

lence and fault masking. A few examples will help clarify the
complexity of this problem.
Example 4: Consider a single output cone of lodit'.

The process of analyzing andi results in conclusions that
are referred to a$orced-values(£'V's). Determining forced
values is similar to carrying out an implication process based

a) Ifthe outputline is—a—6, wheres € {0, 1}, thenallother on 7. Forced values are determined as a preprocessing step to

faults in C* are masked, i.e., cannot be identified by athe Deduction Algorithm.
input/output (I/O) experiment and have no impact on the pefinition 1: Line ¢ hasproperty F'V¢ in testt, wherec €
output response. {0, 1}, iff either v}, = c or elsev},, = ¢ V¢ € T. A shorthand

b) _ASSUT_G the C;]l_ltpu'f is (:]rivgn byoa’_‘ND gé}te-l The(n Z{ny notation for this concept is to write'V,, = c. O

input line to this gate that is—a—0 is equivalent (indis- . . ; _ 0 ; :

tinguishable) from the output-a—0 as well as any other éii{ég?,;?::sry;) ';)} :;Zt its F‘fg vi e T, le, the ex

Input s—a—0. « (P6): If k is a FOB ofj, thenFVy, = FV;; Vit € T, ie.,
O a fan-out branch has théV's of its stem.

Effect—cause analysis relies on many theoretical properties of ¢ (P7): Let ¢ be the output of a noninverting (inverting)
logic circuits, several of which were first identified during the gate having inputs1, z, ..., x,. ThenFV,, = ¢(e) iff
evolution of this work. We next list those results that are most  FV;,, =cfore=1,2, ..., p.
important for understanding the development and correctness ofere, we see that we can deduce information about the output
the Deduction Algorithm. of a gate if all the inputs of the gate hatd “ for testt.
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A B C D E FGHTIIJKTLIM Fig. 9. Decision tree for Example 5.
(0 110 0 1 11 010 010
L1 1 0|1 1.0 00 100 010 A°B C| D EFGHTIIJKTL M
31t 0 1 {1 1 0 00 100 0160 1y |0 0 1 0o o |o
(1 1 1|1 1 1 11 001 0|1 |1 1 1
/0 0 1 [0 0 0 O0O0 110 1|1 |1 1 1
(b) fy |1 1 1 1 0|1
ts |0 0 0 0|0
A B C|DEFGHTIIJKTL(M (a)
o 1 1o 0o 1 11 01
L1l 1 0 1 1 0
51 0 1 11 0 A B C D E FGHTIIJIKUL|M
(|1 1 1| 1 1 1 11 0010 |0 1 1| 0 1 11 010 010
510 0 110 0 1 Ll 1 0] 1 0 0 11 1|1
t3 |1 1 1 1 1 11 011 0|1
© |1l 1 1 1 1 11 011 0|1
ts [0 1 1| 0 1 11 010 010
Fig. 8. (a) Circuit to be analyzed. (b) Expected values. (c) Forcedvalues. Y =n | n #n  n 1 n n I n u n_
. . . . )
Notation: Let7y be the set of tests in whighhasI'V ¢, i.e.,
Fi={t: FVy = c}.
» (P8): If for somet’' € T, U;ZIC, thenv;*é:thej’-"f. A B C D E F G HTIIJTIKTL IM
This result represent vertical (between tests) implication
and will be illustrated later. t |0 0 1 0 010
Properties P5—-P7 allow one to determin€'s at theP’/s and th |1 1 1 1 1
move F'V's forward through a circuit. t3 |1 1 1 I 0|1
As stated previously, iFV;, = ¢, thenf has property#'ve ty |1 1 1 1 0|1
in testt independent of the fault situation &* and, thus, in- ts |0 0 0 010
dependent of the status of other line<ih. However, thereare v _-7— — —% — T — V&% 0 i
situations when the status of a line may depend on the valut ©)
of other lines. This leads to the concept of conditional forced
values CF'Vs) [10]. Fig. 10. Computations associated with Example 5, (a) values deduced prior to

Example 5: Consider the circuit shown in Fig. 8(a). Ir]firstdecision point, (b) first solution, (c) second solution.
Fig. 8(b), we show the expected (fault-free) values in response
to the testty, to, ..., t5. While only the values applied att requires justification. Branching can occur at decision nodes
A, B, andC are used in the deduction process, the other valueben choices of an assignment, represented by a square node,
are of interest for comparison. Fig. 8(c) shows the forced valuesist. A terminal node is represented by a square and contains
resulting from using properties P5-P7. Note that the forceah integer which is an index for a solution, or &rthat denotes
value are a subset of the values obtaine@' ifvere simulated an inconsistency and results in backtracking.
for each test patterm;. These values are determined by a Assume the response 6f to 7" is R* = 01110, as shown
preprocessing step. The steps in the Deduction Algorithm aneFig. 10(a). Since liné{ has both zero and one values it is
guided by the use of a decision tree (see Fig. 9). normal and hence there exist one or more normal paths from
The contents of a decision node, represented by a circle, lfaks to M (Complete Normal Path). For ar gate, an output
the form (¢; ¢) where/ is a normal line whose value in testof O implies all inputs are zero. Thus, for andt;, M =0
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implies L = K = 0. SinceL hasFV° in ¢, and a 0 value e @
has been deduced fdr (in ¢; andt;), thenL = 0 in 4. This \
is an example of &ertical implication, i.e., values in one test 0
implying line values in another test. This concept is unique 1 ‘ e
the deduction algorithm. Knowing = 0 andM = 1 int, e
implies K = 1 sinceM is anoR gate. This is an example of 0
horizontal implication. Thus,K is normal! Continuing K =
lints impliesD =1 andG = 1 in t4, which generate the @ @
vertical implicationsD = 1 int, and¢s, andG = 1 in#;. Now @
G =1int; impliesD = 0inty, which impliesD = 0int¢;. At
this point all the values of D can be assigned to its stem A (PZ,. (a) (b
No more implications exists.

We next attempt to justify the value 81 in ¢, andz;. We first
selectts as shown in the decision tree in Fig. 9. We initially try
the assignmenk. = 1. Carrying out the resulting implicationsno values have been deduced forAny fault situation/” ob-
results in a conflict, i.e., linel is assigned both a zero and a ondained from aY” by replacingus with zero, one, o satisfy
SinceK = X in this analysis, we can reverse our decision and” (I") = R*.
setL = 0 andK = 1 as our next decision (see decision tree). Referring to our previous example we obtain two solutions,
Going from the terminal node labeled and the new decision shown in the lower part of Fig. 10(b) and (c). To obtain finer res-
node is done via backtracking. Naig = 1 in ¢; impliesG = olution on the fault sites one can apply additional test patterns.
1int3. Again there are no more implications possible, so a ne@nce the subset of lines are identified where faults may exists,
decision node is created, labelgd’; ¢»). The two assignments specific tests that activate these faults can be constructed.
L = K =1 lead to two solutions shown in Fig. 10(b) and (c), Finally, probing can be used to access internal lines and hence

@w

Fig. 11. (a) Graph. (b) Hypergraph.

respectively. increase observability [12].
Note that linesC, F, H, I and L are identified as being
normal with reSpeCt to the first solution Only. The lines I1l. FUNDAMENTAL ALGORITHMS IN PHYSICAL DESIGN

A, D, K, andM are normal in both solutions and, therefore L
are actually normal (fault-free) lines i6*. Note also that A. Partitioning
A, D, K, M designate a path betweerd and aPO. O A chip may contain tens of millions of transistors. Layout of
The reader is referred to [10] and [12] for details of the Ddhe entire circuit cannot be handled in a flat mode due to the lim-
duction Algorithm. itation of memory space as well as computation power available.
The second phase of effect—cause analysis deals with detaren though fabrication technologies have made great improve-
mining the states of the lines &*. A complete analysis of the ments in packing more logic in a smaller area, the complexity
mapping of the results generated by the Deduction Algorithm & circuits has also been increasing correspondingly. This ne-
potential failures inC' is again beyond the scope of this papecessitates partitioning a circuit and distributing it across several
A brief overview, however, will be presented. regions in a chip or across several chips. Thus, the first step in
We represent the statdgsof a line£ by zero, one, on, where the physical design phase is partitioning which can significantly
zero(one) representsa—0(1), andn represents normal. Theninfluence the circuit performance and layout costs.
a fault situationis defined by the vectoF' = [s/]. Recall that  Partitioning is a complex problem which is NP-complete. The
C is the fault free circuit. LeCF denote the circuitC in the nature of the partitioning problem along with the size of the cir-

presence of fault situatiof’. Clearly, if ¥ = [n,n, ..., n] cuit makes it difficult to perform an exhaustive search required
thenC* = C. C¥ realizes the Boolean switching functigff’.  to find an optimal solution.
If ZF+ = ZF: then we say thaf} and F, areindistinguish- To study the partitioning problem clearly, graph notations are

able Let F(F;) = {F,|z¥" = ZFi}. Thus, the fault situa- commonly used. A grapli = (V, E) consists of a set’ of
tions can be partitioned into equivalence classes. The faultsviertices, and a sdf of edges. Each edge corresponds to a pair
F(F = [n, n, ..., n]) are undetectable and, therefore, redurof distinct vertices [see Fig. 11(a)]. A hypergraffh= (N, L)

dant. LetZ¥(T) be the response @ff to 7". Then we say that consists of a seV of vertices and a st of hyperedges, where

F, and F, areequivalent undef iff Z#1(T) = Z¥=(T). Let each hyperedge corresponds to a subgeof distinct vertices

F* = {F|Z¥(T) = R*}. Our goal in fault analysis (phase 2)with |N;| > 2 [see Fig. 11(b); e.g., the connection intercon-
is to identify one or more members of the get. For each so- necting vertices:, b, andc is a hyperedge]. We also associate
lution generated by the deduction algorithm we deriv@m@nel a vertex weight functiorw: V' — IN with every vertex, where
fault that corresponds (covers) a family of faults that may aé# is the set of integers. Thus, a circuit can be represented by
tually exist inC*. LetY = [y,] be a kernel fault, wherg; € a graph or a hypergraph, where the vertices are circuit elements
{0, 1, n, u}, andy, = u means that the state éfs unknown. and the (hyper)edges are wires. The vertex weight may indicate
Note thaty, = 0, 1 andn have the same meaning &s= 0, 1 the size of the corresponding circuit element.

andn. Y can be constructed as follows: i) = n iff both zero A multiway partition of a (hyper)graphH is a set of

and one values have been deduced/fd) y, = 0(1) iff only nonempty, disjoint subsets & = {Ny, ..., N..}, such that
zero(one) values have been deduced/fcand 3)y, = v iff |J,_, N, = N andN, N N; = 0 for¢ # j. A partition is
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acceptablef b(:) < w(N;) < B(2), wherew(N;) is the sum of begin-3

the weight of vertices itV;, B(7) is the maximum size of pait find a pair of unlocked vertices

andb(¢) is the minimum size of paut for: =1, ..., r; B(i)s 1., € V1 and v, € Vo whose exchange

and b(i)s are input parameters. A special case of multiway makes the largest decrease or

partitioning problem in whichr = 2 is called thebipartition smallest increase in cut-cost;

problem. In the bipartition problenB(¢) is at leastv times the mark w,,, wv,, as locked and store

sum of the weight of all vertices, for somag (1/2) < o < 1. the gain ¢;

Typically, « is close to 1/2. The numberis called thebalance end-3

factor. The bipartition problem can also be used as a basis for find k&, such that Ef:l g; = Gaing

heuristics in multiway partitioning. Normally, the objective is maximized,;

is to minimize the number ofut edge, that is, the number of if Gaing > 0 then

hyperedges with at least one vertex in each patrtition. move v,,, ..., U, from Vi to V5 and
Classic iterative approaches known Kernighan—Lin (KL) and Upyy --., v, from Vi to Vi

Fiduccia—Mattheyses (FM) begin with some initial solutionand  until-2 Gaing < 0;

try to improve it by making small changes, such as swappingend-1.

modules between clusters. Iterative improvement has become

the industry standard for partitioning due to its simplicity and

flexibility. Recently, there have been many significant improve- Thefor-loop is executed)(n) times. The body of the loop
ments to the basic FM algorithm. Multilevel approaches are vei§quiresO(n”) time. Thus, the total running time of the algo-
popular and produce superior partitioning results for very largéhm is O(n?) for each pass of the repeat loop. The repeat loop
sized circuits. In this section, we discuss the basic FM algorithigually terminates after several passes, independentTdfus,
and hMetis, a multilevel partitioning algorithm, which is one othe total running time i©)(cn?), wherecis the number of times
the best partitioners. the repeat loop is executed.

The KL and FM Algorithms:To date, iterative improvement  Fiduccia and Mattheyses [14] improved the Kernighan-Lin
techniques that make local changes to an initial partition adgorithm by reducing the time complexity per passQg),
still the most successful partitioning algorithms in practice. Ongheret is the number of hyper-edge ends ¢@rminalg in G.
such algorithm is an iterative bipartitioning algorithm proposeldV added the following new elements to the KL algorithm:

by Kernighan and Lin [13]. 1) only a single vertex is moved across the cut in a single
Given an unweighted grapR = (V, E), this method starts move;

with an arbitrary partition of into two groupsl; andV; such 2) adding weights to vertices;

that |[Vi| < « - |V|and|V2| < « - |V], where« is the bal- 3) a special data structure for selecting vertices to be moved

ance factor as defined in the previous subsection |&fjcdle- across the cut to improve running time (this is the main

notes the number of vertices in 3ét A passof the algorithm feature of the algorithm).

starts as follows. The algorithm determines the vertex pair ( We shall first discuss the data structure used for choosing the

w), v, € V1 andv, € Vs, whose exchange results in the largeghext) vertex to be moved. Let the two partitions heand B.

decrease of the cut-cost or in the smallestincrease if no decreflse data structure consists of two pointer arrdyst A and

is possible. A cost increase is allowed now in the hope that théfet B indexed by the setduax - Wmaxs Tmax - Wmax] [SEE

will be a cost decrease in subsequent steps. Then the varjiceFig. 12]. Hered,,.... is the maximum vertex degree in the hyper-

andw; are locked. This locking prohibits them from taking pargraph, ando,, . is the maximum cost of a hyperedge. Moving

in any further exchanges. This process continues, keeping adigt vertex from one set to the other will change the cost by at

of all tentatively exchanged pairs and the decreasing gain @ostd,,,.. - wmax. INdexes of the list correspond to possible

cut-cost), until all the vertices are locked. (positive or negative) gains. All vertices resulting in gaiare

A value k is selected to maximize the partial sunstored in the entry of the list. Each pointer in the arrdyst A

E?:l g; = Gain,, where g; is the gain of theith ex- pointsto a linear list of unlocked vertices insidawith the cor-

changed pair. If Gaipn > 0, a reduction in cut-cost can beresponding gain. An analogous statement holdsifarB.

achieved by movinguei, ..., vex} to Vo and{vy1, ..., vpi } Since each vertex is weighted, we have to define a maximum

to V1. This marks the end of one pass. The resulting partitionyertex weighti’ such that we can maintain th&lanced par-

treated as the initial partition, and the procedure is repeated fition during the processi¥V must satisfyW > w(V)/2 +

the next pass. If there is riosuch that Gaip > 0 the procedure max .,y {w(v)}, wherew(v) is the weight of vertex. A bal-

halts. A formal description of KL algorithm is as follows. anced partitionis one with either side of the partition having a
total vertex weight of at mod¥, that is,w(A), w(B) < W. A
balanced partition can be obtained by sorting the vertex weights

Procedure: KL heuristic( Q); in decreasing order, and placing themdrand B alternately.
begin-1 This algorithm starts with a balanced partitigh B of G.
bipartition G into two groups V1 and Note that a move of a vertex across the cut is allowable if such a
Vo, with  |Vi| = |Va] £ 1; move does not violate the balance condition. To choose the next
repeat-2 vertex to be moved, we consider the maximum gain vertex

for ¢=1 to n/2 do in list A or the maximum gain vertéx,,, in list B, and move
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listA

listB

Fig. 12. The data structure for choosing vertices in FM algorithm.

them across the cut if the balance condition is not violated. Asrther improve the bisection. The various phases of multilevel
in the KL algorithm, the moves are tentative and are followdaisection are illustrated in Fig. 13. During the coarsening phase,
by locking the moved vertex. A move may increase the cut-co#ite size of the graph is successively decreased; during the initial
When no moves are possible or if there are no more unlockedrtitioning phase, a bisection of the smaller graph is computed;
vertices, choose the sequence of moves such that the cut-coahis$ during the uncoarsening and refinement phase, the bisec-
minimized. Otherwise the pass is ended. tion is successively refined as it is projected to the larger graphs.
Further improvement was proposed by Krishnamurthy [15During the uncoarsening and refinement phase the dashed lines
He introduced dook-aheadability to the algorithm. Thus, the indicate projected partitionings, and dark solid indicate parti-
best candidate among such vertices can be selected with respentngs that were produced after refinemefit, is the given
to the gains they make possible in later moves. graph, which is the finest grapf¥; 1 is next level coarser graph
In general, the obtained bipartition from KL or FM algorithmof G, vice versa(s; is next level finer graph of7; 1. G4 is the
is a local optimum rather than a global optimum. The perfocoarsest graph.
mance of KL-FM algorithm degrades severely as the size of cir-The KL-FM algorithm becomes a quite powerful iterative
cuits grows. However, better partitioning results can be obtainegfinement scheme in this multilevel context for the following
by using clustering techniques and/or better initial partitions toeason. First, movement of a single vertex across partition
gether with KL-FM algorithm. The KL-FM algorithm (and itsboundary in a coarse graph can lead to movement of a large
variations) are still the industry standard partitioning algorithmumber of related vertices in the original graph. Second, the
due to its flexibility and the ability of handling very large cir-refined partitioning projected to the next level serves as an
cuits. excellent initial partitioning for the KL-FM refinement algo-
hMetis—A Multilevel Partitioning Algorithm:Two-level rithms. Karypis and Kumar extensively studied this paradigm
partitioning approaches consist of two phases. In the first phasg]19] and [20]. They presented new graph coarsening schemes
the hypergraph is coarsened to form a small hypergraph, dodwhich even a good bisection of the coarsest graph is a pretty
then the FM algorithm is used to bisect the small hypergraph.dood bisection of the original graph. This makes the overall
the second phase, they use the bisection of this contracted imgdtilevel paradigm even more robust. Furthermore, it allows
pergraph to obtain a bisection of the original hypergraph. Sintiee use of simplified variants of KL-FM refinement schemes
FM refinement is done only on the small coarse hypergraptiyring the uncoarsening phase, which significantly speeds up
this step is usually fast. However, the overall performandbke refinement without compromising the overall quality.
of such a scheme depends on the quality of the coarseningvietis [20], a multilevel graph partitioning algorithm based
method. In many schemes, the projected partition is furthen this work, routinely finds substantially better bisections and
improved using the FM refinement scheme. is very fast. In [21] and [22], Karypis and Kumar extended
Multilevel partitioning approaches are developed to cope witheir graph partitioning algorithm to hypergraph and developed
large sized circuits [16]-[18]. In these approaches, a sequeihdéetis. When comparing different partitioning tools on large-
of successively smaller (coarser) graph is constructed. A bissezed circuits, Alpert [23] found that hMetis performs the best.
tion of the smallest graph is computed. This bisection is now The notion ofratio cutwas presented to solve the partitioning
successively projected to the next level finer graph, and at egaoblem more naturally. The ratio cut approach can be described
level an iterative refinement algorithm such as KL-FM is used &5 follows: Given a grapliy = (V, F), (V1, V) denotes a cut
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Multilevel Graph Bisection

projected partition l
refined partition l

oun

Coarsening Phase

I8

oseyd JUSWOUTISY pue Hurtussaeo

Initial Partitioning Phase

Fig. 13. The various phases of the multilevel graph bisection.

that separates a set of nodgsfrom its complement; = V —  and a netlist, that describes the terminals which have to be con-
V1. Letc;; be the cost of an edge connecting ne@d@d node/.  nected. At this stage, good estimates for the area of the single
Thecut-costis equal toCv, v, = > ;cv, 2 ey, Ciy- Theratio  macro cells are available, but their exact dimensions can still
of this cutis defined a&y, v, = Cy,v, /(|V1]*|V2|), where|Vy|  vary within a wide range. Consider for example a register file
and|V»| denote the size of subsdts andVa, respectively. The module consisting of 64 registers. These alternatives are de-
objective is to find a cut that generates the minimum ratio amosgribed by shape-functions. A shape-function is a list of fea-
all cuts in the graph. By using the ratio cut as the cost functiosiple height/width-combinations for the layout of a single macro
most iterative partitioning heuristics including KL—FM can beell. The result of the floorplanning phase is the sized floorplan,
modified to handle the ratio-cut problem (e.g., see [24]). which describes the position of the cells in the layout and the
The following extensions and variations of the partitioninghosen implementations for the flexible cells.
problem are of particular interest. In this stage, the relative positions of the modules to be laid
%ut are determined. Timing, power, and area estimations are

» By adding different constraints, the partitioning problem i - . .
usefulin various areas. However, how to effectively handee factors guiding the relative placement. Floorplanning can
c

more constrainted partitioning problems is still an ope e usgd to verify the. feasibility OT Integrating a de3|gn onto a
issue ip without performing the detailed layout and design of all

* Bisection has been studied extensively for over thrége %IOC(I;S E}Pdtf#nchnS' If (;ontr(;l logic is |31fletmhente(LV\lnth_
decades. How to efficiently solve a multiway partitioningi anadard cefis, then the number of rows used for the modules 1S
: ot necessarily fixed. Many rows will produce a block that is
problem is yet an open problem. d skinnv- f ill orod block that is short and
« How to handle cost functions other than cut, e.g., wiréc-).ng and skinny, few rows will produce a block that IS shortan
. wide. As other examples, folding and partitioning of a PLA can
length and congestion. i g
be used to modify the aspect ratio of the module, or the number
of bits used for row and column decoding in a RAM or ROM
B. Floorplanning module can also modify their aspect ratio.
Automatic floorplanning becomes more important as auto-
In the floorplanning phase, the macro cells have to be poshatic module generators become available which can accept as
tioned on the layout surface in such a manner that no bloaksnstraints or parts of the cost functions, pin positions, and as-
overlap and that there is enough space left to complete the infeect ratios of the blocks. Typically, floorplanning consists of the
connections. The input for the floorplanning is a set of modulefllowing two steps. First, the topology, i.e., the relative posi-
a list of terminals (pins for interconnections) for each modul&gons of the modules, is determined. At this point, the chip is
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viewed as a rectangle and the modules are the (basic) rectanglestioned above. A system developed at the IBM T.J. Watson
whose relative positions are fixed. Next, we considerdie Research Center and use the simulated annealing algorithm to
optimization problemi.e., we determine a set of implementaproduce a floorplan that not only gives the relative positions of
tions (one for each module) such that the total area of the cliig modules, but also aspect ratios and pin positions.
is minimized. The topology of a floorplan is obtained by recur- Simulated Annealing:Simulated annealing is a technique to
sively using circuit partitioning techniques. gfartition divides  solve general optimization problems, floorplanning problems
a given circuit intok parts such that: 1) the sizes of theparts being among them. This technique is especially useful when
are as close as possible and 2) the number of nets connectinglieesolution space of the problem is not well understood. The
k partsis minimized. Ik = 2, arecursive bipartition generates adea originated from observing crystal formation of materials.
slicing floorplan A floorplan is slicing if it is either a basic rec- As a material is heated, the molecules move around in a random
tangle or there is a line segment (called slice) that partitions thetion. When the temperature slowly decreases, the molecules
enclosing rectangle into two slicing floorplans. A slicing floormove less and eventually form crystalline structures. When
plan can be represented bgl&cing tree Each leaf node of the cooling is done in a slower manner, more crystal is at a min-
slicing tree corresponds to a basic rectangle and each nonieaim energy state, and the material forms into a large crystal
node of the slicing tree corresponds to a slice. lattice. If the crystal structure obtained is not acceptable, it may
There exist many different approaches to the floorplannirmge necessary to reheat the material and cool it at a slower rate.
problem. Wimeret al. [25] described a branch-and-bound ap- Simulated annealing examines tleenfigurations of the
proach for the floorplan sizing problem, i.e., finding an optimagdroblem in sequence. Each configuration is actually a feasible
combination of all possible layout-alternatives for all modulesolution of the optimization problem. The algorithm moves
after placement. While their algorithm is able to find the best sfrom one solution to another, and a global cost function is used
lution for this problem, it is very time consuming, especially foto evaluate the desirability of a solution. Conceptually, we can
real problem instances. Cohoenal. [26] implemented a ge- define aconfiguration graphwhere each vertex corresponds
netic algorithm for the whole floorplanning problem. Their alto a feasible solution, and a directed edgg v, ) represents a
gorithm makes use of estimates for the required routing spacetmssible movement from solutian to v;.
ensure completion of the interconnections. Another widely usedThe annealing process moves from one vertex (feasible solu-
heuristic solution method is simulated annealing [27], [28]. tion) to another vertex following the directed edges of the con-
When the area of the floorplan is considered, the problem figuration graph. The random motion of the molecules at high
choosing for each module the implementation which optimizésmperature is simulated by randomly accepting moves during
a given evaluation function is referred to as fluwrplan area the initial phases of the algorithm. As the algorithm proceeds,
optimization problenj29]. temperature decreases and it accepts less random movements.
A floorplan consists of an enveloping rectangle partitioneegardless of the temperature, the algorithm will accept a move
into nonoverlapping basic rectangles (or modules). For evewy,, v;) if cost(v;) < cost(v;). When a local minimum is
basic rectangle a set of implementations is given, which haxeached, all “small” moves lead to a higher cost solution. To
a rectangular shape characterized by a widtind a heighf:. avoid being trapped in a local minimum, simulated annealing
The relative positions of the basic rectangles are specified by tiecepts a movement to higher cost when the temperature is high.
floorplan tree the leaves are the basic rectangles,the root is thg the algorithm cools down, such movement is less likely to
enveloping rectangle, and the internal nodes aretimposite be accepted. The best cost among all solutions visited by the
rectangles Each of the composite rectangles is divided ihto process is recorded. When the algorithm terminates, hopefully
parts in ahierarchical floorplanof orderk: if & = 2(slicing it has examined enough solutions to achieve a low cost solu-
floorplan), a vertical or horizontal line is used to partition théion. Typically, the number of feasible solutions is an exponen-
rectangle; ift =5, a right or leftwheelis obtained. The general tial function of the problem size. Thus, the movement from one
case of composite blocks which cannot be partitioned in two splution to another is restricted to a very small fraction of the
five rectangles can be dealt with by allowing them to be conetal configurations.
posed ofL-shaped blocks. Once thmplementatiorfor each A pseudocode for simulated annealing is as follows:
block has been chosen, the size of the composite rectangles can
be determined by traversing through upwards the floorplan tree;
when the root is reached, the area of the enveloping rectanglélgorithm  Simulated annealing
can be computed. The goal of the floorplan area optimizationinput : An optimization problem.
problem is to find the implementation for each basic rectangleOutput : A solution s with low cost.
such that the minimum area enveloping rectangle is obtainedbegin-1
The problem has been proven to be NP-complete in the general s := random initialization.
case, although it can be reduced to a problem solvable in poly- 7 := 1. /* initial temperature */

nomial time in the case of slicing floorplans. while  not frozen(T) do
Since floorplanning is done very early in the design process, begin-2
only estimates of the area requirements for each module are  count := 0.
given. Recently, the introduction of simulated annealing algo- while  not equilibriwm(count, s, T) do
rithms has made it possible to develop algorithms where the op- begin-3

timization can be carried out with all the degrees of freedom count = count + 1.
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nexts := generate(s). operation of the chip, and reduce area. These goals are closely

if ( cost(nexts) < cost(s)) or related to each other for standard cell and gate array design

( feost(s), cost(nexts), T) > random(0, 1)) styles, since the total chip area is approximately equal to the

then s := nexts. area of the modules plus the area occupied by the interconnect.
end-3 . Hence, minimizing the wire length is approximately equivalent
update (7). to minimizing the chip area. In the macro design style, the
end-2 . irregularly sized macros do not always fit together, and some
end-1 . space is wasted. This plays a major role in determining the

total chip area, and we have a tradeoff between minimizing
area and minimizing the wire length. In some cases, secondary

generate() is a function that selects the next solution fToMye rformance measures may also be needed, such as the prefer-
the current solutiors following an edge of the configuration ential minimization of wire length o€ritical nets, at the cost

graph.cost() is a function that evaluates the global cost of 8¢ o jncrease in total wire length. Module placement is an

solution. /() is a function that retums a value between zerQp_cmpjete problem and, therefore, cannot be solved exactly
and one to indicate the desirability to accept the next solutigp, polynomial time [Donath 1980]. Trying to get an exact
Tdm”ﬁfmo rztgrns ? random nlémberlFEtweenéelro and ong, tion by evaluating every possible placement to determine
possible cand aticlj?ftgﬁ Is the we “Known oltzmann w,q hest one would take time proportional to the factorial of the
probaAbch:t)qunctmne " whereﬁg IS thﬁ COST change number of modules. This method is, therefore, impractical for
(i.e., AC = cost(s) — cost(ncats)) andky is the Boltzmann oo\ i< \ith any reasonable number of modules. To efficiently

constant. The combined effect §f) andrandom() is to have ooy, through a large number of candidate placement configu-
high probability of accepting a high-cost movement at high terPéltions, a heuristic algorithm must be used. The quality of the
perature equilibrium() is used to decide the termination con-

i fih d q h placement obtained depends on the heuristic used. At best, we
ition of the random movement,_am@date() re ucesfc etem- .an hope to find a good placement with wire length quite close
perature to cool down the algorithrfirozen() determines the

o . ; ) , to the minimum, with no guarantee of achieving the absolute
termination condition of the algorithm. The algorithm is usually; vimum

frozen after an allotted amount of computation time has beeng| o mant algorithms are typically divided into two major

cons_umed;asufflc_lently good solution has b_een reached, Or th€sses: constructive placement and iterative improvement.
solutions _ShOW No Improvement over many iterations. In constructive placement, a method is used to build up a
A solution of the floarplanning problem can be represent cement from scratch; in iterative improvement, algorithms
by a floorplan tree. The cost of the solution can be comput fgrt with an initial placement and repeatedly modify it in
via this tree representation. We can use the simulated annea| B9rch of a cost reduction. If a modification results in a

technique to find a good floorplanning solution which CorTez,y,ction in cost, the modification is accepted; otherwise it
Sponds toa low cost. . is rejected. Constructive placement algorithms are generally
Itis quite often that certain macro cells need to be pre-plac%ry fast, but typically result in poor layouts. Since they take a
A.reas ogcup|ed by these .c.ells become'b.lockages for ﬂ‘?orplq{é’gligible amount of computation time compared to iterative
ning. Thls.adds compIeX|t!es to the original floorplanning al|'mprovement algorithms, they are usually used to generate an
gorithm. Simulated annealing based approaches can handleimﬁ’al placement for iterative improvement algorithms. More

p“’k_"em with mOd'f'(_:at'OnS' _ recent constructive placement algorithms, such as numerical
Simulated annealing has been very successful in ﬂoorplaébtimization techniques [30], [31], integer programming

ning. As the design and module library grow in size, the perfofs jjation [32], and simulated annealing-based methods [33]
mance of simulated annealing degrades drastically. The O petter layouts but require significantly more CPU time.
guestion is: can we find a more effect'lve heuristic than sim ne of the biggest challenge for placement tools is the rapid
lated annealing to solve the floorplanning problem? growth in circuit size. A good placement algorithm has to be
more effective than ever in finding a good layout as quickly as
possible.

The placement problem can be defined as follows. Given anQuadratic Algorithm: One of the objectives of the placement
electrical circuit consisting of modules with predefined inpytroblem is to reduce the total wirelength. Assume cefiad j
and output terminals and interconnected in a predefined waye connected by a netThe physical location of celland is
construct a layout indicating the positions of the modules celi$(x;, y;) and(z,, y;), respectively. The linear wirelength of
such that some performance measures such as estimated isile. = |x; — x;| + |y; — y;|, and the quadratic wirelength of
length and/or layout area are minimized. The inputs to thes Q. = (z; — z;)? + (y; — y;)°. The total linear wirelength
problem are the module description, consisting of the shape$a layoutisW L =3 _ L. and the total quadratic wirelength
sizes, and terminal locations, and the netlist, describing tleW L? = >~ Q.. When a net is connecting more than two
interconnections between the terminals of the modules. Tbells (a multipin net), we can replace this net with a number
output is a list ofc- andy-coordinates for all modules. We needf two-pin nets. A typical method is to use a clique of two-pin
to optimize chip area usage in order to fit more functionalityets to replace the original multipin net. Each two-pin net in the
into a given chip. We need to minimize wirelength to reducglique get a weight o2/p if the original multipin net hag cells
the capacitive delays associated with longer nets, speed upitiwdent to it.

C. Placement
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Linear wirelength is widely used because it correlates weth (2). We can increase the number of fixed vertices gradually
with the final layout area after routing. Quadratic wirelength isr wait until this approach converges.
an alternative to use in placement. Experimental results showConstraints can also be added to (1) to help balance the
that the quadratic wirelength objective over-penalizes longrtex distribution. Researchers have added spatial constraints
wires and has a worse correlation with the final chip area [34o that the average location of different groups of vertices will
However, since the quadratic wirelength objective is analyticdle evenly distributed in the placement area [30], [34], [35].
numerical methods can be used to solve for an optimal solutidrhey recursively reduce the number of vertices in vertex groups
The quadratic algorithm uses quadratic wirelength objectiby dividing them into smaller groups. Eisenmaenal. [36]
and analytical methods to generate a layout. It is very fast aadded virtual spatial nets to (2). A virtual spatial net will have
leads to relatively good results. a negative weight if two cells incident to it are close to each
Matrix representations and linear algebra are often useddther. As two cells get closer, the absolute value of their spatial
quadratic placement algorithms. Assume the given circuit et weight gets larger. The virtual spatial nets between cells

mapped into agrapfd = (V, E) whereV = {vy, v2, ..., v,} tends to push overlapped cells further away from each other
andE = {ey, €9, ..., em . A nonnegative weightv(e) is as- due to the negative weights. The weights on virtual spatial nets
signed to each edge € FE. All the nets can be representedare updated each iteration until the solution converges.

using amadjacency matrix4 = (a;,) which has an entry,;; = The layouts produced by quadratic algorithm are not the best

w(v;, vy) if (v, vj) € E anda;; = 0, otherwise. The physical compared to layouts produced by other placement algorithms.
locations of all the vertices can be represented{gsymensional The reason why quadratic algorithm is still attractive and
vectorsX = (z;) andY = (y;), where(z;, y;) is the coordi- widely used in industry is because of its fast speed. It can rep-
nates of vertex;. resent interactions between locations of cells and connections

The z andy directions are independent in quadratic wirebetween cells using one simple linear equation (1). However, it
length objective. We can optimize the objective separately imeeds heuristics to balance the cell distribution in the placement
each direction. The following discussions will be focused on oprea. The effectiveness of these heuristics will highly affect the
timizing the quadratic objective indirection. The same methodquality of the final layout.

can be used symmetrically in thedirection. Routing/congestion-driven placement aims to reduce the
The total quadratic wirelength indirection of a given layout wiring congestion in the layout to ensure that the placement
can be written as can be routed using the given routing resources. Congestion

” can be viewed using a supply-demand model [37]. Congested
Do(X) = %XTQX+dTX _ Z aij (z; —a:,»)Q +dTX. regions are where the routing demand exceed_s the routing
resource supply. Wang and Sarrafzadeh [38] pointed out that

1) the congestion is globally consistent with the wirelength.
Thus, the traditional wirelength placement can still be used to

Q = (g;;) isanxn Laplacian matribof A. Q has entry;; equal effectively reduce the congestion globally. However, in order to
to —aj; if i # j, andg;; equal toy""_, a;; otherwise, i.e.q;; is eliminate local congested spots in the layout, congestion-driven

the degree of vertex.. The optional linear termi” X represents aPProaches are needed.

connections of cells to fixed 1/0 pads. The vectbcan also

i, j=1

capture pin offsets. The objective function (1) is minimized b)l?' Routing
solving the linear system Routing is where interconnection paths are identified. Due to
the complexity, this step is broken into two stages: global and
QX +d=0. (2) detailed routing. In global routing, the “loose” routes for the

nets are determined. For the computation of the global routing,

The solution of this system of linear equations usually he routing space is represented as a graph, the edges of this
not a desired layout because vertices are not evenly distributghph represent the routing regions and are weighted with the
This results in a lot of cell overlaps which are not allowed isorresponding capacities. Global routing is described by a list
placement. A balanced vertex distribution in the placement arefarouting regions for each net of the circuit, with none of the
needs to be enforced. This can be achieved by either re-eapacities of any routing region being exceeded.
signing vertex locations after solving (2) or adding more con- After global routing is done, for each routing region the
straints to (1). number of nets routed is known. In the detailed routing phase,

Existence of fixed vertices is essential for quadratic algthe exact physical routes for the wires inside routing regions
rithms. Initially, I/O pads are fixed vertices. If no /O pads ardave to be determined. This is done incrementally, i.e., one
present, a trivial solution of (1) will be having all the verticeghannel is routed at a time in a predefined order.
located at the same place. Existence of I/O pads forces vertice$he problem of global routing is very much like a traffic
to separate to some extent. We can further spread the vertipaszblem. The pins are the origins and destinations of traffic. The
to achieve a balanced distribution based on the solution of (8)ires connecting the pins are the traffic, and the channels are
This spreading procedure is based on heuristics and is not te streets. If there are more wires than the number of tracks in
timal. Iterative approaches can be used to further improve tagiven channel, some of the wires have to be rerouted just like
layout. In the next iteration, a number of vertices can be fixethe rerouting of traffic. For the real traffic problem, every driver
A new layout can be obtained by solving a new equation similamants to go to his destination in the quickest way, and he may try
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(b} bi-directional search

(2] 22|21,

(¢) minimum bend path (d) minimun weight path

Fig. 14. An example demonstrating Lee’s algorithm from sourte sink¢. (a) Minimum length path. (b) Bidirectional search. (c) Minimum bend path. (d)
Minimum weight path.

a different route every day. Finally every driver selects the bdst label the grid points in the process. Attempts have been
route possible for him and the traffic pattern is stabilized. Intumade to circumvent this difficulty. One solution is to use an
itively, we can do the same for the routing problem. In globancoding scheme where a grid just points to neighbors instead
routing, the usual approach was to route one net at a time eéstoring the actual distance. Therefore, at each grid point we
quentially until all nets are connected. To connect one net, weed to store)(1) bits instead ofO(log ) bits, wheren is
could use the maze running algorithm, simulated annealingtbe number of grid points. There are other effective memory
other algorithms. Maze running is the standard in industry. optimization schemes that also speed up the process; indeed,
Maze Running:Maze running was studied in the 1960s irthey are primarily for speeding up the process. One of the
connection with the problem of finding a shortest path in a gemiost effective approaches is based on bidirectional search as
metric domain. A classical algorithm for finding a shortest pattliscussed below.
between two terminals (or, points) was proposed in [39]. The Minimum-Cost Paths:In our previous discussion, we have
idea is to start from one of the terminals, called the source téried to minimize the length of the path between the source and
minal. Then,label all grid points adjacent to the source as lthe sink, thatis, minimization of the distancelin metric. How-
The label of a point indicates its distance to the source. Any uever, we might also be interested in other objectives.
labeled grid poinp that is adjacent to a grid point with labelk If we want to minimize the number of bends in the path we
assigned label+ 1. We assign all labels before assigning any proceed as follows. All grid points that are reachable with zero
labeli + 1. Note that two points are called adjacent only if thepends from the source are labeled with zero. Note that these grid
are either horizontally or vertically adjacent; diagonally adjgoints are either adjacent to the source or are adjacent to a grid
cent points are not considered adjacent, for in routing problemasint with label zero. All grid points that are reachable from a
we deal with rectilinear distances. The task is repeated until thed point with label zero with one bend are labeled with one.
other terminal of the net is reached. See Fig. 14(a). We needricgeneral, in stage, all grid points that are reachable from a
backtrack from the target to the source to find the underlyirgrid point with label: — 1 with one bend are labeled with
path. This procedure is called Maze-Running Algorithm. Note that for each grid point with labél we also need to store
Several extensions of maze running have been studied as this- direction of the path (if there are more than one path, all
cussed below. The reason for extending the maze running tedhiections—at most four—need to be stored) that connects the
nigues, as opposed to inventing new tools, is that the approadurce to that grid point with bends. An example is shown in
is simple and easy to understand and predict its performancéig. 14(c).
Optimization of Memory UsageA major drawback of  We may also be interested in obtaining a minimum cost path,
maze running approaches is the huge amount of memory usétere the cost of a path is defined by the user. For example, with
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reference to Fig. 14(d), we may be interested in finding a patlas formal verification begun gaining acceptance, in the
that minimizes the use of the right boundary. To accomplish thisrm of combinational equivalence checking [44], [45], and
task, every connection that uses the right boundary is assignedadel checking [46]. The most widely used specification
cost of two. Then, we proceed with the traditional maze runnimgechanisms are temporal logics and automata. By presenting
algorithm. Except for grid points that are on the right boundargodel checking for CTL* [47], we essentially cover both these
we skip assigning labels every other time. That is, if the grigpproaches. The recent success of model checking owes a great
point is adjacent to a grid point with labglwe do not assign a deal to binary decision diagrams (BDDs) [48]. These graphical
label to it until stage + 2. representations of logic functions have had a profound impact
Multilayer Routing: Multilayer routing can be achieved withnot only on formal verification, but also on synthesis and
the classical maze running algorithm. The main difference tisst generation. Hence, we present a brief overview of their
that the maze is now a three-dimensional maze (or a threeglieperties and discuss in particular symbolic model checking
mensional grid). The labeling proceeds as before. If we want[#9].
minimize the number of layer changes, we can assign a higher
cost to traversing the grid in the third dimension. A. Two-Level Minimization

Multiterminal Routing: This procedure involves first inter- A |ogic expression is formed from a set of variables ranging
connecting two terminals, as before. Then, start from a thia;j,er{m 1} by applying negation-(), conjunction ), and dis-
terminal and label the points until the path between the first tyygnction (v). A literal is either a variable or its negation.t&rm
terminals is reached. This task is repeated for all unconnectg@ conjunction of literals from distinct variables. An expression
terminals. in disjunctive normal forn{DNF) (also called aum of prod-

Routing is the last stage in physical design. All the paramgets is the disjunction of a set of terms. A two-level expression
ters of the design (e.g., layout area, power consumption, timiftg a logic function is either a DNF expression ocanjunc-
delay, etc.) can be accurately measured after routing. While $ige normal form(CNF) expression. The definitiarpnjunctive
general algorithm for routing remains simple and straight fofrormal formis dual to the definition of disjunctive normal form.
ward, a large number of detailed issues need to be consideregle can, therefore, concentrate on the minimization of DNF ex-

pressions without loss of generality. A term such that the func-
E. Clock Tree Synthesis tion is true whenever the term is true isiamplicantof the func-

For a circuit to function correctly, clock pulses must arrivéion. An implicant that contains one literal for each variable is

nearly simultaneously at the clock pins of all clocked COm’;lmi_ntermof the func_:tion_. An implipant_of a_function that does
ponents. Performance of a digital system is measured by & imply any other implicant is prime implicant

cycle time. Shorter cycle time means higher performance. AtGiven a logic function, we are interested in finding a DNF
the layout model, performance of a system is affected by tf¥Pression Fhat reprgsents it and is of minimum cost. The cost
factors, namely signal propagation time and clock skew. Clo8 the DNF is a function of the number of terms, and the total
tree synthesis is of fundamental importance. A number Bfmber of literals. To simplify the discussion, we shall assume
algorithms have been proposed. In particular, the hierarchi€ft OUI’fII’SF priority is to minimize the number of terms. There-
recursive matching tree of Kahng, Cong, and Robins [40] aff¢f. Quine’s theorem [50] guarantees that the exact solution to
the deferred-merge embedding approach (DME) of [41] affge minimization problem is obtained by computing the set of

commonly used. However, due to lack of space, we shall ortixe prime implicantsof the function and then selecting a subset
description of these algorithms. of minimum cost that covers the function [51].

Itis often the case that the function for which a minimum cost
DNF is sought is not completely specified. In its simplest form,
incomplete specification is represented by a set of minterms for
which the value of the function does not matter. The minimiza-

The last two decades have seen the transition of logic syion algorithm may choose whatever values help reduce the cost
thesis from a mainly academic pursuit to an accepted desigfithe solution. Accounting for this form of incomplete specifi-
method. On the one hand, research has closed the gap betwion does not make the minimization problem more difficult.
the quality of circuits designed by CAD tools, and by experit is sufficient to consider the don’t care minterms as part of the
enced human designers. On the other hand, the large imprdugction when generating the prime implicants, and ignore them
ment in productivity afforded by logic synthesis has made thehen setting up the covering problem.
recourse to it almost unavoidable. Application specific intgrated Two-level minimization is an NP-hard problem [52], and
circuit (IC) [ASIC] design, by its nature, has been the first tamounts to solving a covering problem. In spite of recent
be deeply influenced by logic synthesis. Improvements in tl&vances in the generation of the prime implicants [53], and
handling of timing [42] and power consumption [43] have leth the branch and bound algorithms [54], computing a DNF
to wider acceptance. In this paper, we concentrate on the algbminimum cost remains prohibitive for functions with many
rithms that have defined logic synthesis in the early eightiesjnterms and implicants. Heuristic algorithms are, therefore,
and that still inform, albeit through many extensions and trans-common use. A heuristic minimizer likespressg55], [56],
formations, today’s synthesis tools. is given a DNF expression for the function of interest; it tries to

Formal methods try to address the limitations of traditionéeratively improve the DNF until some criterion is met. This
simulation-based verification techniques. Only in recent timesay be the exhaustion of allotted computing resources, or in

IV. FUNDAMENTAL ALGORITHMS IN LOGIC SYNTHESIS AND
FORMAL VERIFICATION
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the case we shall consider, the achievement of a solution thaOne special case in whigh(g) can be computed directly is
is difficult to improve. We shall assume that the solution is when the DNF foty is unate Then, literal-« appears irp(g)
prime and irredundangéxpression. That is, each term is a primenly if z is an implicant ofg. This can be checked easily. A
implicant, and no term can be dropped from the DNF withol@NF expression is unate if at most one literal for each variable
altering the represented function. appears in it. This condition can be checked inexpensively. A
The iterative improvement of the solution consists of elemennate cover contains all the prime implicants of the function it
tary moves that change the DNF without changing the functiorepresents. Hence, in that case, one can comgy}ey inspec-
These elementary movegpand reduce or discardterms. Ex- tion. Unateness is used through@&spressdo speed up various
pansion of a term removes one or more literals from it, so thatibmputations.
expands to cover more minterms. For instance, the second terr@onsider as an example the maximal reductioh ef —w A
of the left-hand side of the following equality can be expandegy in
to yield the right-hand side:
f=FwA-y)V(iwA-z)V (-2 Az).
x1V ("371 AN 372) =x1V Z2.
From f; = —x Vv -z it follows thatp(f,”) = = A 2, and the
Expansion is possible in this case because the mintermz: maximally reduced termig = —w Az A =y A 2.
that is added te.z; A z- is already covered by the term. Re- A term may have more than one maximal expansion. The al-
duction is the inverse of expansion. In our example, reductigorithm tries to select the one that leads to the elimination of the
would produce the left-hand side from the right-hand side. Hargest number of other terms. The choice among several pos-
nally, a term can be dropped if all minterms it covers are coversible expansions is formulated as a covering probEspresso
by at least another term of the DNF, as in the following exampleomputes a DNF for the negation of the given function before
entering the optimization loop. An expansion of atermis valid if
(1 Am2)V(mw2 Az3)V (21 Aw3) = (21 Ax2)V(—22 Ax3) . the expanded term does not intersect any term in the DNF for the
complement. Two terms do not intersect iff one term contains
Of the three types of move, expansion and discard of tergge Jiteral and the other contains its negation. We can, there-

decrease the cost of the DNF. Reduction, on the other hand.fifye, form ablocking matrixwith one row for each term of the
creases the cost by adding literals. The first two types of movgsmplement, and one column for each literal in the term to be
are sufficient to produce a prime and irredundant DNF, bd\panded. Théi, 5) entry of the matrix is 1 if the negation of
reduction is important to allow the minimizer to escape locghe |iteral of Columnj appears in the term of Roiy otherwise
minima. Espressp therefore, organizes the three operationgis o. If the (i, 5) entry equals 1, intersection of the expanded
in an optimization loop that visits one new local miNiMuMerm and the term of the complement associated to Roan
solution at each iteration and stops when no improvementyjg avoided by retaining the literal of ColuninThe optimal ex-
achieved in the course of one iteration. At the beginning ghnsion process is, thus, translated into the problem of finding
each iteration, all terms are maximally reduced. Then all tergsset of columns that has ones in all rows. If we want to find the
are maximally expanded. In the end, as many redundant tefg@est expansion, we use the number of columns as cost func-
as possible are discarded. tion. Espressphowever, tries to maximize the number of other

The maximal reduction of a termof a DNF f can be com-  terms that are covered by the expansion as its primary cost cri-
puted recursively. The algorithm is based on Boole’s expansi@iion.
theorem The order in which the terms are reduced and expanded af-

fects the result. The order in which the terms are considered has

f=@Af)V (x A fe) @) no effect on how much each term can be expanded. However, by
considering implicants that cover more minterms first, one max-
imizes the probability of making a “small” implicant redundant.
For a given order, the maximum reduction of a term is unique.
However, the terms that are reduced first can be reduced more
than those that follow them. The order of reduction is chosen
S0 as to heuristically increase the chance that the successive ex-
pansion will make some terms redundant.

Discarding cubes to make a DNF expression irredundant is
also formulated as a covering problem. This is similar to se-
lecting a subset of all prime implicants in the exact minimiza-
tion method. However, only the terms in the current DNF are
4) considered. This usually makes the process much faster.

wheref,., thepositive cofactoof f with respect te is obtained
by assigning 1 tac in f. The negative cofactoof f, f_., is
similarly defined. Letf~ be the DNF obtained by removirg
from f. The maximal reduction dfis the smallest (least number
of minterms) termu that covers all the minterms itinot in
f~. This is computed a8 = ¢ A p(f,; ), wherep(f;") is the
smallest term implied by the complement £f. (Cofactoring
with respect to a termh means cofactoring with respect to all
literals int.) If we let o(h) be the smallest term implied by a
DNF expressiork, we can write

plg) =0 (@Ap(ge)V-2Ap(g-a))-

The computation of (%) is simple: A literal appears in(#) iff  B- Multilevel Logic Synthesis

(if and only if) it appears in all terms @éf. Equation (4) is applied  Multilevel expressions allow arbitrary nesting of conjunction,
until the DNF expression is simple enough that the result can disjunctions, and negations. They are sometimes much more ef-
computed directly. (E.g., if consists of a single term.) ficient than two-level expressions in the representation of logic
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if ¢is 0. This in turns implies thdtis 1. However, ifb is 1,d is

0 regardless of the value af This may be inferred (dearned

by assigning both values tq and observing that — —d and

—a — —d jointly imply —d. In conclusion, whed is observable

at the output, it must be0. Hence, its replacement by the constant
is valid. Referring back to Section 11-B, we see that lihe-a—0

is a redundant fault.

Algorithms that use don't cares can be extended in several
ways. The function of a node can be temporarily made more
expensive. As in the case of two-level minimization, the
moves that increase the cost allow the algorithm to escape
functions: For the parity function af variables, a multilevel local minima. Another extension of the algorithms consists of
representation grows linearly in size with whereas the op- relaxing the definition of “local” to include a group of related
timum two-level expression is exponentiakinSince multilevel nodes. This may require suitable generalizations of the notion
expressions include two-level expressions as special cases, rfildon’t cares” [57], [58].
tilevel expressions can never do worse than two-level expres2) Restructuring: Restructuring of a Boolean network in-
sions. volves adding and removing nodes, and changing the arcs of

In multilevel synthesis, we are given a multilevel expressidhe graph, while preserving functional equivalence. We concen-
for a set of functions, and we seek another multilevel expressigate on the task of factoring a two-level expression, which is
of reduced cost. Though cost depends in general on many pathe heart of the restructuring algorithms. Once several com-
rameters, including the area, delay, testability, and power disiex two-level expressions have been factored, new nodes can
pation of the resulting circuit, in our examples we shall concehe created for the subexpressions, and common factors can be
trate on reducing the number of literals, which is a technologigentified.
independent measure of the area required to implement a funcFactoring of a two-level logic expressigreconsists of finding
tion. Even with this simplified, and in some respects simplistiether two-level expressions ¢, andr, such that
cost function, the problem of finding an optimum multilevel ex-
pression remains prohibitively difficult, so that only heuristic f=@nrgvr (®)
algorithms are used in practice. These heuristic approaches to

. o . Coor .—and then recursively factoring, ¢, and ». Though, strictl
multilevel optimization usually combine local optimization with y 8, ¢ ! 9 y

restructuring. The input to the optimization processBoalean speaking, the absence of a multiplicative inverse precludes the

. ) : : . existence of division in Boolean algebras, it is customary to
network an acyclic graph with a logic function associated tg L . . '
call division an operation that, giverf andp, finds ¢ and r

e_ach node. Local optimization is concerngd with the S'mpl!flc?ﬁat satisfy (5). The solution is not unique, because adding or
tion of the expressions of the node functions. Restructuring IS

) . removing fromgq minterms that are not ip or are inr has
concerned with changes in the structure of the graph. .
L2 : 2 no effect on(p A ¢) vV r. Similarly, one can add or subtract
1) Local Optimization: Algorithms for the optimizations of . : L
. -~ .~ from r minterms that are in both and q. Division can, thus,
two-level expressions can be used for the local optimization CoL . .
. o e formulated as an optimization problem, in which one seeks
Boolean networks. To obtain good results, it is important to ex- _. : : o
, . . ) a simple DNF expression fof in terms ofp by specifying
tractdon’t careinformation from the surrounding nodes. Con- on't care conditions that relageto the other inputs tgf. This
sider the Boolean network of Fig. 15, in which the function o(fj P

L approach is rather expensive, hence ill-suited for the quick
each node is indicated by the node shape. Suppose we are In- "~ .
: L actorization of large Boolean networks. Another approach,
terested in optimizing Nod€ = (a A —¢) V (—a A ¢). If we

: o X ) . calledalgebraic divisionis, therefore, in common use.
consider the node in isolation, we cannot find any improvement. . . L .
o . 3) Algebraic TechniquesAlgebraic division [59] owes its
However, we may observe that it is impossible 4ao be zero . . )
: . , » name to its reliance on a restricted set of laws that are shared by
whenc is one. In other words;a A ¢ is a don’t care condition. . .
: ; : Boolean algebras and the ordinary algebra of polynomials over
Also, whene is 1, f is 1 regardless ofl. Thereforee is also o o o AN
the real field:associativity commutativity anddistributivity of

a don't care condition fod. This condition is not in terms of ) : - . e
. ! L . ... product (conjunction) over sum (disjunction). Specifically ex-
the inputs tod; hence, it is not directly usable. However, it i . ;
cluded are idempotency (A a = a vV a = a) and existence of

possible to propagate the information by observing that-c the complementa( A —a = 0 anda V —a = 1). An example of

|mpl|esﬁb,_v_vh|ch N turn '”?F’"es?- Thereforea A ~cis a don't factorization that cannot be obtained by algebraic division is
care condition ford. Simplification now produced = 0, be-

cause all minterms of the original function are “don’t cares.” (@ane)V(maAb)V (bAc)=(aVD)A(-aV o).
Constant propagation leads thenfte= —b.

Don't care conditions can be collected explicitly and passédhe restriction in the scope of the optimization is compensated
to the minimizer, or inferred during the minimization procesdyy the ability to apply algebraic techniques to large circuits. Al-
which in this case is callededundancy removaind is closely gebraic techniques also have properties [60] that are not shared
reminiscent of ATPG. Returning to Fig. 15, let us check whethby the general Boolean techniques.
the replacement af by a constant zero would alter the function To define algebraic division, we first stipulate that the quo-
of the network. A change id is observable at the outpgitonly tient of a term¢; by another ternts is 0, if ¢; contains any literal

Fig. 15. Local simplification in Boolean networks.
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that is not in¢;; otherwise, the quotientis the term consisting
of all the literals int; and not int,. With this definition, either
q =0, ort; = t2 A q. The quotient of a DNF fornf and a term

t is the disjunction of all the quotients of the termsfinlivided
by t. (Here, itis convenient to assume that no ternf ahplies
another term of .) Finally the quotient of two DNF formg and

p is the disjunction of all terms that appear in all the quotient
of f and the terms gf. The remainder is simply the disjunction
of all terms that are not in the conjunctionénd the quotient
q. It is easily seen that andr are uniquely determined by this
algorithm, andp andq share no variables.

Algebraic factorization proceeds by identifying good factor
and then using algebraic division. The identification of good fac
tors is based on the notion kérnel A primary divisorof f is
the quotient obtained on division ¢gfby a term. A primary di-
visor is a kernel if no literal appears in all its terms. (Such a pr
mary divisor is said to beube-fre€) The importance of kernels
stems from two facts: On the one hand, they can be computi
efficiently; on the other hand, two expressions have a nontrivi
(that is, having at least two terms) common algebraic divist
only if they have kernels with at least two terms in commor [:
Kernels, therefore, allow the algebraic factorization algorithtr..
to greatly restrict the search space without compromising the -~ ] ] ) )
quality of the results. Fig. 16. Two decompositions of a function and their combined representation.

Of the approaches to the computation of kernels [61], [62],
we briefly review the simple process that yieldewel-Okernel implementation in the chosen technology (e.g., a standard-cell
from a given DNF expression. (A level-0 kernel has no othédibrary, a field-programmable gate array architecture, or
kernel than itself.) The process is based on iterating the fdldl-custom logic). We shall consider a popular approach to

lowing two steps: mapping a Boolean network to a fixed library of logic gates.

1) the expression is made cube free by dropping all literal®e nodes of the network and the cells of the library are
that appear in all terms; decomposed in terms of two-inpakD gates and inverters; in

2) the expression is divided by one literal that appears this way, the problem of technology mapping is reduced to a

more than one of its terms. graph covering problem. This covering problem is NP-hard,

A level-0 kernel is obtained when the second step can no Ion%é\x a practically useful polynomial approximation is obtained
be applied. (Each literal appears at most once.) y partitioning the network graph into a forest of trees [63].

By dividing a DNF expressiorf by one of its kernelg one ~ Tree covering can be solved by dynamic programming. Pro-
obtains a factorization of. However, under certain circum-ceeding from the inputs to the outputs, the best cover of each

stances, the result is not maximally factored. For instance node is found by examining all possible matches of library cells
to the node. Suppose the target gate library conteins and

(aANbAS)V(aADAD)V(ane)V(aAnf)Vyg NOR gates with up to three inputs and inverters, and suppose the
cost of each gate is its number of transistors in fully complemen-
hase v d among its level-0 kernel. Division yields the factoreqary CMOS. With reference to the top circuit of Fig. 16, there
form is only one way to cover the output nodes of Gates 1, 2, and 4
(namely with an inverter of cost 2). The best cover of the output
of Gate 3 is obtained by suppressing the two cascaded inverters.
The only cover of the output of Gate 10 is two-inputr gate
that matches Gates 1, 3, and 10. The cost is computed as the
aN(BA(EVd) VeV )V sum of the cost of th&loR gate and the costs of the covers for
the inputs to the gate. In this case, the input to Gate 1 has cost
To avoid this and similar inconveniences, one has to examinero because it is a primary input. The optimum cost of covering
the quotient produced by division. If the quotients a single the input to Gate 3, on the other hand, has been determined to
cube, the original divisor is replaced by a literakdhat appears be two. Hence, the optimum cost of covering the output of Gate
in the most terms off. Otherwise, the divisor is replaced byl0 is six. Proceeding toward the output, Gate 6 is considered.
the expression obtained by makipgcube-free. These simple There are two possible covers. One is an inverter that matches
modifications guarantee maximum factorization. Gate 6. The cost is in this case eight: two units for the inverter
4) Technology MappingLocal optimization and restruc- plus the cost of the optimum cover of Gate 10. The second cover
turing produce a so-called technology-independent Boole&sra two-inputNAND gate that matches Gates 6 and 10. The total
network that must be adapted to the primitives available fapst is four for theNAND gate plus two for the optimum cover

anNbA(evd)VaAn(eV f)Vyg

which can be further factored as
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of the output of Gate 1. Since the second cover is cheaper than P P, q
the first, it is kept as the optimum cover of the output of Gate 6. 6 a G
This process is continued until the optimum covers and their -

costs have been determined for all nodes. The circuit is then
traversed from the output to the inputs. During this traversal,
the optimum cover for the current node is added to the soltig- 17- A simple Kripke structure.
tion; its input nodes are then recursively visited. Continuing our

example, the best cover for the primary output is a three-inpyy ety Specifically, the circuit is supposed to perform a non-

NAND gate that covers Gates 5, 6, 7, 10, and 12. This gateii§minating computation, and the property specifies which (in-
added to the solution. Then the output nodes of Gates 1, 3, age) runs of the circuit are correct. The circuit is usually mod-

4 are examined. This causes the addition of two inverters to the 4 as a&ripke structure
solution.

This basic scheme can be improved in several ways, among
which we recall the Boolean matching approach of [64], and
the algorithm of [42], which integrates the decomposition and

; : wheres is the finite set of states, arld C S x S is thetran-
covering steps. The advantages that stem from simultaneous

X o : . A itlon relation specifying what pairs of states are connected b
solving decomposition and covering are illustrated in Fig. 1 n specifying P y

o . ransitions.Sy C S is the set ofinitial states A is the set of
The two upper circuits shown there are two decompositions of . oy 4 . .
. atomic propositionsandL: S — 24 is thelabeling function
the same function.

We have seen that when the dynamic programming algorithv|\”'rr11|Ch says what atomic propositions hold at each state.

is applied to the first of the two decompositions, it finds an op- A Kripke structure is depicted in Fig. 17, for which
timum solution consisting of a three-inpMAND gate and two

K= <Sv T7 SO? A7 L>

inverters. However, for the second decomposition the best solu- S ={a, b, ¢}
tion consists of a two-inpwoR gate for the subcircuit rooted at T ={(a, a), (a, b), (b, ¢), (¢, b)}
Gate 9 and a two-inpwNAND gate covering the rest of the cir- So ={a, b}
cuit. This corresponds to a savings of two transistors over the A=1{p, ¢}
first solution. The dynamic programming approach only guar- ’
antees optimality with respect to the chosen decomposition into L(a) ={p}
AND gates and inverters. Lb) ={}
The bottom circuit of Fig. 16 illustrates in simplified form L(¢) ={p, q}.

the main idea of [42]. The circuit contains both decompositions

shown at the top of the figure, and a fictitiodsoice gatethe  The conditions under which transitions are enabled are not
OR gate marked by an X) connecting them. Dynamic programaptured byZ’. We are only told that the transition is possible.
ming can now proceed on this augmented graph from inputsAfernatively, we can regard the Kripke structure as the model of
outputs as before. When the choice gate is reached, the alggtosedsystem—thatis, a system and its environment. We shall
rithm selects the best cover between its two inputs. A matgBsume @ompletetransition relation; that is, we shall assume
may span a choice gate, but can use only one of its inputs. R@t every state has at least one successor.
combined representation of multiple decompositions based on) The Logic CTL*: The properties are expressed in various
choice gates is calleniapping graphlts strength lies in the fact formalisms. We consider themporal logicCTL* [47], whose
that the parts common to two decompositions need not be @io subsetsomputational tree logi¢CTL) [65] andlinear time
plicated. This is illustrated by Gates 1-5 in Fig. 16. logic (LTL) [66] and [67] are commonly used in practice. CTL*

Even though we have shown the construction of the mappirgabranching time logi¢hat augments propositional logic with
graph by combination of two given decompositions, the alggath quantifiersg anda) and temporal operators,®, X, G, and
rithm of [42] derives it from a single initial decomposition off). From every state, a system may evolve in several possible
the technology-independent Boolean network by application @hys: that is, several computation paths may exist. A branching
local transformations. These transformations embed in the m@gne logic allows one to express properties that may hold for
ping graph all the decompositions that can be obtained by appii{east one computation path, or for all computation paths. The
cation of the associative and distributive properties, and by insgfmporal operators describe the evolution in time of the proposi-
tion of pairs of inverters. The graph may contain cycles. On thigns. For instance, if is a propositional formula (e.qnyV —q),
one hand, these cycles add flexibility to the algorithm, which CafhenAGy means thaip is always true in all computations, and
for example, add an arbitrary even number of inverters betweg, means that there exists a computation in whicis either
two gates. On the other hand, the determination of the optimyfe now or is going to be true in the future. Operators, proposi-
covers cannot be accomplished in a single pass frominput to aiiins, and quantifiers can be combined to form more complex
puts, but requires a greatest fixpoint computation. formulae like AGFy, which states that along all computation

. pathsy is true infinitely often.

C. Model Checking The formal definition of CTL* requires the definition of both

In model checking, we are given a sequential circuit andstate formulagasserting something of a state) apalth for-
property. We are asked to verify whether the model satisfies tirellae(asserting something of a path). Any atomic proposition
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is a state formula, and any state formula is also a path formuéapath to a state whetgholds. EquivalentlyEF is a fixpoint
furthermore of the functionAZ.¢ U EXZ; it can be proved to be the least
fixpoint. In the notation of.-calculus, this is written
if ¢ ande are state formulae, so are andy A

if » is a path formulaEy is a state formula EFp = nZ.9p UEXZ ()
if ¢ andy are path formulae, so arep andy A where, prescribes a least fixpoint computation ads the
if ¢ ande are path formulae, so ake andyUi). iteration variable. The set of states satisfyiXy is the set of

) _ ) predecessors of states i Tarski’s theorem [68] ensures the

rules. (A path formula can only be a proper subformula of gyplication of the function starting witd = ¢
CTL* formula.) The remaining connectives used in CTL* are

defined as abbreviations in terms-ef A, E, X, andU: 1Ry ab- pZ.r(Z) = U 74(0).
breviates~(—U—y); Fy abbreviatesrue Uy, Gy abbreviates i>0
false Ry; and Ay abbreviates-E—y. Additional Boolean con-
nectives ¢, —, <, ...) are defined in terms of andA in the
usual way.

For a given structurdy, if a state formulay is true of stat
s, we write K, s |= ¢. Likewise, if a path formula is true of
pathm = (sg, s1, ...), we write K, = = ¢. The suffix of path
7 starting at state; is denoted byr?. K is omitted if there is no since
ambiguity. With these definitions, the truth of a CTL* formula
can be defined recursively. ffe A, s = piff p € L(s);if ¢is {a,c} ={s€S:pec L(s)}.
a state formulag = ¢ iff so | ¢; otherwise,

sEpAYIff sEpands E
st s g Z=0)

The finiteness of the state set guarantees convergence. Re-
turning to the Kripke structure of Fig. 17, suppose we want to
e Check whethe#( = EFp. We proceed by computing

EFp = uZ{a, ¢} UEXZ

The iterates of the fixpoint computation are as follows:

s = Eg iff 37 starting ats such thatr |= ¢ Z1 ={a, ¢}

TEeAYiff r Epandr = Zy ={a, b, ¢}

mE-piff T lE e Z3 ={a, b, c}.

T EXpiff 7t =@ (In this case, the last iteration could be avoided by observing

T E=Uiff 3 >0, 7' |= ¢, and0 < j < i — 7 = 1. thatZ, = S.) As a last step, we verify thafy C Z3. Hence,
the formula holds.
K = ¢ means thap holds in all initial states of(. If K'isthe  With reasoning analogous to that usedEB, one can show
Kripke structure of Fig. 17, we hav§ |~ AGp andK = AGFp. that
We also haveX [~ EGp and K [~ —EGp. Indeed, K, b }~

EGp because there is no path startinghauch thatp always EYUp =puZ.o U (3 NEXZ) (8)
holds, andX, « [~ —EGp because the path that staysiforever EGp =vZ.oNEXZ 9
satisfiesGp.

With slight abuse of notation, we shall denote the set of statekerer indicates the greatest fixpoint. In summary, if every
in which ¢ holds by itself. In model checking, the CTL* for- temporal operator is immediately preceded by a path quantifier,
mulay, we usually proceed by finding the set of statgsand model checking can be reduced to a series of fixpoint computa-
then verify thatSy C ¢. The recursive definition of the seman-ions for functions that map sets of states to other sets of states.
tics suggests that, to find the states that satisfy a given formuldne restriction on the syntax of the formula results in the logic
we recursively analyze its subformulae, and then apply the apTL. CTL is not as expressive as CTL*. For instance, the CTL*
propriate case from the above definition. The immediate difffermula AFGp has no equivalent in CTL. On the other hand,
culty that we face in this approach is that in the casg ef E¢y,  u-calculus, in which we have cast the problem of CTL model
the subformulay is true of a set of paths, not a set of stateghecking, can express all CTL* (and more). In particular, we
We shall address this difficulty gradually, starting from simplean write au-calculus formula that computes the set of states
cases. along paths that satisfy a condition infinitely often. (Such a con-

2) Model Checking CTL FormulaeSuppose we want to dition is called &airness constrainj Let ¢ designate the set of
find the states that satisfFy, wherey is a state formula. The states that satisfy the desired condition. Then the set of states
key observation is that along paths satisfyingFc is given by

EFp = ¢ U EXEFp. (6) I =vZEX(EZU(Z N c)). (10)

Equation (6) says that there is a path from a stati@ another The extension of (10) to more than one fairness condition is
state where holds if ¢ holds ats, or if s has a successor with straightforward. Suppose we want to compute the states that



BREUERet al. FUNDAMENTAL CAD ALGORITHMS 1471

satisfy GF{b} for the Kripke structure of Fig. 17. The iterates
of the fixpoint computation are ‘- ,

ZO = {CL, b7 C}
Z :EX(E{a, b, c}U({a, b, c} N {b})) Fig. 18. Automation for the LTL formulg = GFp.
=EX{a, b, ¢} ={a, b, c}.
p is not guaranteed to be true infinitely often. This problem is

The computation, therefore, convergesstm one iteration. signaled by the presence Bf in the state. Following the loop

The addition of fairness constraints to CTL is useful in itselgimply means satisfying an eventuality by postponement. This
because these constraints can help in modeling the environmgodgtponement cannot be indefinite. To obviate, we add a fairness
of the system being verified, or can eliminate spurious behasenstraint to the automation, specifying that a valid run must be
iors introduced in a model by the abstraction of some details.iima state other than the second state (i.e., in the first state, which
addition, a model checking procedure for CTL augmented wii, therefore, amcceptingstate) infinitely often. The resulting
fairness constraints is an important building step toward a gemitomation is called a Biichi automation.
eral solution for CTL* model checking. 4) Model Checking Full CTL*:Although our simple

3) Model Checking LTL FormulaeLet us consider now an- example does not illustrate all the details of the translation
other special case: formulae whose only path quantifier is tfrem LTL formula to automation, it does point out the salient
first operator of the formula. As an example, consiBeFp. If  facts: That the translation produces a transition structure and
we strip the leading quantifiers from such formulae, we obtagne or more fairness constraints. A state satisfies the formula
path formulae that contain no quantifiers. Specifically, we oliff, in the composition of the model and the automation for the
tain the formulae of the logic LTL. We now show how we caproperty, there is a computation path originating at that state
model check LTL formulae. That is, we show how to decidthat satisfies all fairness constraints. We have seen that this can
if there is a path in the Kripke structure that satisfies the LThe determined by evaluating (10). Hence, we have reduced LTL
formula. To this effect, we shall convert the formula into an aumodel checking tq:-calculus.
tomation that will be composed with the system to be verified. The last step is to show how to model check a generic CTL*
The composition constrains the system to satisfy the LTL profarmula¢ with the techniques developed so far. Notice that the
erty along all its computation paths. If at least one path is stitbrmula, once the abbreviations are expanded, must either be a
viable in the composed system, the property holds. The convpurely propositional formula (e.gw, A —¢), or contain at least
sion from LTL to automata is based on rewriting rules known ame existential quantifier. The former case is easy.¢bntains

thetableau ruleqcf. (7) and (9)]: a quantifier, then it has a subformuia, wheret is an LTL
formula. We can apply the (existential) LTL model checking
Fo=¢ VXFyp algorithm to find the states that satigfy, and replac& in ¢
Gy =@ A XGep. with a new atomic proposition that holds exactly in those states.
The process is repeated until the entire formplg replaced
(Similar rules can be written far andr.) When applied to = by one atomic proposition that is true of all the states where
GFp, these rules produce is true. If a subformul&s is a CTL formula, the translation

to automation is not necessary, and the CTL model checking
algorithm can be applied directly to it.
5) Explicit and Symbolic Model Checkindgzquations
(7)—(10) form the heart of the model checking procedure. They
(p AXg) V (XFp A Xp). involve the computation of sets of states. drplicit model
checking algorithms, states are usually represented as bit
This formula says that there are two ways to satisfpy satis- strings and stored in hash tables. The transition structures are
fying p in the current state and in the next; or by satisfying represented in various ways; to fix ideas, we shall assume that
Fp and ¢ in the next state (with no obligation in the currenthey are stored as adjacency lists. Under these assumptions,
state). We can, therefore, create two states in the automation c@mputation of least fixpoints amounts to reachability analysis
responding to these two possibilities. (See Fig. 18. The douldle the transition structure, and can be performed in time
circle identifies the accepting state. Both states are initial.) Theear in the number of transitions by depth-first search. The
first state is labelegh. Its successors are the states that satisfpmputation of (10) translates into the computation of the
@: both states. The second state has labak; its successors strongly connected components of the transition structure. This
are the states that satisfy = Fp A GFp. We, therefore, apply can also be done in linear time by depth-first search. It should
the tableau rules t¢ and we find the same formula producede noted, however, that the translation from LTL to automata
by the expansion of. No new states need to be generated, beiay incur an exponential blow-up in size. Therefore, the CTL*
cause the successors of the second state are, once again, thenoael checking problem is overall PSPACE-complete [69]. By
existing states. contrast, CTL model checking is linear in both the size of the
To complete the construction, we have to observe that a runsystem and the length of the formula.
the automation that from some point onward does not leave thdn symbolic model checking, sets are represented by their
second state, does not guarantee the satisfactignb&fcause characteristic functions. Assuming, without loss of generality,

(p A XGFp) V (XFp A XGFp)

which can be rewritten as
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that a state is an element ¢8, 1}™ for somen, and a tran-
sition is, therefore, an element d¢b, 1} x {0, 1}™, then
the characteristic function of a set of statésis a function
xw: {0,1}* — {0, 1} that maps the elements & to 1
and the other states to 0. The most popular representation of
characteristic functions is BDDs. (See Section IV-D.) The main
advantage of characteristic functions is that very large sets can
have very small representations. For instance, the characteristic
functionz; V 190 represents a subset {, 1}°° containing
3 - 2% elements. Intersection, union, and complementation of
sets correspond to conjunction, disjunction, and negation of
their characteristic functions.
Symbg_lic compu'Fation oflleast fixpoints also amounts tﬂg. 19, BDDforF = # A=V yA =
reachability analysis, and is most naturally performed in
breadth-first manner. LeT'(x, y) describe the characteristic
function of the transition relation of a Kripke structure, an&- BDDS
let P(y) describe the characteristic function of a set of states.Many algorithms in logic synthesis and formal verification
The variabless = (z1, ..., x,) range over the origin statesmanipulate complex logic functions. An efficient data structure
of the transitions (the present states), while the variablgssupport this task is, therefore, of great practical usefulness.
y = (y1,..., yn) range over the destination states of thBDDs [48] have become very popular because of their effi-
transitions (the next states). The states that are connected tei@tcy and versatility.
least one state iF?(y) by a transition irll’(x, y) are given by A BDD is an acyclic graph with two leaves representing the
constant functions 0 and 1. Each internal nadelabeled with a
Pre(T, P) = Jy[T'(z, y) A P(y)]. (11)  variablev and has two children(ther) ande (els8. Its function
is inductively defined as

The conjunction ofI(z, y) and P(y) yields the transitions

ending in a state inP. The quantification of they variables fn) = (A fO)V (=v A fe). (12)
discards the destination states, thus producing the desired set

of predecessors. This so-calleteimagecomputation allows Thhree restrictions are customarily imposed on BDDs.

one to compute the states satisfying te subformulae in 1) There may not be isomorphic subgraphs.

(7)—(10) without explicitly manipulating the individual states 2) For all internal nodeg, # c.

or transitions. For the Kripke structure of Fig. 17, suppose that 3) The variables are totally ordered: The variables labeling

the following encoding of the states is chosen: the nonconstant children of a node must follow in the
order the variable labeling the node itself.

Under these restrictions, BDDs provide a canonical represen-
Then the characteristic function of the transition relation is tation of functions, in the sense that for a fixed variable order
there is a bijection between logic functions and BDDs. Unless
T (x1, o, Y1, Yo) otherwise stated, BDDs will be assumed to be reduced and or-
dered. The BDD folF" = (z A z) V (y A z) with variable order
z < y < zis shown in Fig. 19.
The characteristic function of the set of stafé} in terms ofy ~ Canonicity is importantin two main respects: It makes equiv-
variables isP(y1, y0) = =1 A yo. The characteristic function alence tests easy, and it increases the efficienayeshoization

{a} =z A -, {b} =z A L0,y {C} =x1 A Q-

=-wo Ay A(mx1 Vo)V 2 AZo Ay Ao -

of the predecessors bfis, therefore, computed as (the recording of results to avoid their recomputation). On the
other hand, canonicity makes BDDs less concise than general

Fy1yo [z A —y1 A o] = o circuits. The best-known case is that of multipliers, for which

circuits are polynomial, and BDDs exponential [70]. Several

which is seen to correspond to the et c}. variants of BDDs have been devised to address this limitation.

The ability to deal with symbolic representations of sets Gome of them have been quite successful for limited classes
states is highly effective for verification problems in whictof problems. (For instance, Binary Moment Diagrams [71] for
the quantities of interest have simple characteristic functionaultipliers.) Other variants of BDDs have been motivated by the
However, it should be noted that this is not always the casssire to represent functions that mi@p 1}" to some arbitrary
Moreover, computation of strongly connected components bgt (e.g., the real numbers) [72].
depth-first search is not well suited to symbolic computation. For ordered BDDsf(¢) andf(e) do not depend on; hence,
Direct use of (10), on the other hand, leads to an algoritheemparison of (3) and (12) shows thfdt) = f(n), andf(e) =
that requires a quadratic number of preimage computatiof$n)_,,. This is the basis of most algorithms that manipulate
In summary, in spite of the great success of symbolic mod8DDs, because for a generic Boolean conneciye,
checking, there remain cases in which the explicit techniques

are superior. flop)g = (x A (fz{op)gz)) V (=2 A (f=c{op)g-z)) . (13)



BREUERet al. FUNDAMENTAL CAD ALGORITHMS

Equation (13) is applied witl: chosen as the first variable in
the order that appears in eithgror g. This guarantees that the
cofactors can be computed easilyzifloes not appear ify, then .
f» = [ = [; otherwise,f, is thethenchild of f, and f_,. is
theelsechild. Likewise, forg. The terminal cases of the recur- ¢
sion depend on the specific operator. For instance, when com-
puting the conjunction of two BDDs, the result is immediately
known if either operand is constant, or if the two operands are *
identical or complementary. All these conditions can be checked
in constanttime if the right provisions are made in the data struc-
tures [73]. .

Two tables are used by most BDD algorithms: Turéque
table allows the algorithm to access all nodes using the triple
(v, t, ) as key. The unique table is consulted before creating a *
new node. If a node with the desired key is already in existence,
it is re-utilized. This approach guarantees that equivalent func-
tions will share the same BDD, rather than having isomorphic
BDDs; therefore, equivalence checks are performed in constant
time.

Thecomputed tablstores recent operations and their results.
Without the computed table, most operations on BDDs would
take time exponential in the number of variables. With a lossless
computed table (one that records the results of all previous com-*
putations) the time for most common operations is polynomial
in the size of the operands. The details of the implementation
of the unique and computed tables dramatically affect the per-
formance of BDD manipulation algorithms, and have been the *
subject of careful study [74].

The order of variables may have a large impact on the size
of the BDD for a given function. For adders, for instance, the
optimal orders give BDDs of linear size, while bad orders lead to
exponential BDDs. The optimal ordering problem for BDDs is
hard [75]. Hence, various methods have been proposed to either
derive a variable order from inspection of the circuit for which ¢
BDDs must be built, or by dynamically computing a good order
while the BDDs are built [76].

An exhaustive list of applications of BDDs to problems in
CAD is too long to be attempted here. Besides symbolic model
checking, which was examined in Section 1V-C-5, BDD-based
algorithms have been proposed for most synthesis tasks,
including two-level minimization, local optimization, factor- (1
ization, and technology mapping. In spite of their undeniable[2]
success, BDDs are not a panacea; their use is most profitable
when the algorithms capitalize on their strengths [77], and
avoid their weaknesses by combining BDDs with other rep-
resentations [44], [45], [78]; for instance with satisfiability [4]
solvers for CNF expressions.

[5

(6]

V. CONCLUSION

Even within generous space limits we could only afford to ad- 7]
dress very few of the algorithms currently in use for test, phys-g;
ical design, synthesis, and verification. The following trends can
be identified: [

 Although tremendous progress has been made, effectiV(la
and efficient new algorithms are still needed in all aspecté o
of VLSI CAD.
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Full scan is becoming a de facto standard for testing and
diagnosis for sequential circuits.

BIST is commonly used for array structures and its use
will continue to expand at a rapid rate.

New fault modes will be addressed that deal with cross-
coupling electrical phenomena, such as crosstalk, signal
integrity, and process variation.

Manufacturing test techniques will be employed to a
greater extent to design validation as the use of functional
tests become less useful.

Congestion minimization and interaction of conges-
tion and timing in placement is a fundamental and
under-studied problem.

Integration of logic and physical design will be a dom-
inant theme in logic synthesis research. The current ap-
proaches were not designed to deal with the challenges of
deep submicron processes. This often leads to decrease in
productivity when designers have to go through several it-
erations to solve timing, or signal immunity problems. The
solutions that will be proposed will include a tighter inte-
gration of layout and logic optimization, and the adoption
of more controlled design styles (both logic and physical).
Reconfigurable computers are likely to fill the gap be-
tween general-purpose programmable components and
ASICs. New logic design problems will emerge that will
demand new algorithms for their efficient solutions.
Formal verification will increasingly rely on abstrac-
tion techniques and compositional approaches like
assume/guarantee reasoning. Semi-formal approaches,
that is, approaches that help increase the confidence in the
correctness of a design by augmenting simulation-based
verification with formal techniques, will become impor-
tant.

From the point of view of the CAD developer, the integra-
tion of various engines into powerful tools will become
more prevalent.
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