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Abstract—Computer-aided design (CAD) tools are now making
it possible to automate many aspects of the design process. This has
mainly been made possible by the use of effective and efficient algo-
rithms and corresponding software structures. The very large scale
integration (VLSI) design process is extremely complex, and even
after breaking the entire process into several conceptually easier
steps, it has been shown that each step is still computationally hard.
To researchers, the goal of understanding the fundamental struc-
ture of the problem is often as important as producing a solution
of immediate applicability. Despite this emphasis, it turns out that
results that might first appear to be only of theoretical value are
sometimes of profound relevance to practical problems.

VLSI CAD is a dynamic area where problem definitions are
continually changing due to complexity, technology and design
methodology. In this paper, we focus on several of the fundamental
CAD abstractions, models, concepts and algorithms that have had
a significant impact on this field. This material should be of great
value to researchers interested in entering these areas of research,
since it will allow them to quickly focus on much of the key
material in our field. We emphasize algorithms in the area of test,
physical design, logic synthesis, and formal verification. These
algorithms are responsible for the effectiveness and efficiency of a
variety of CAD tools. Furthermore, a number of these algorithms
have found applications in many other domains.

Index Terms—Algorithms, computer-aided design, computa-
tional complexity, formal verification, logic synthesis, physical
design, test.

I. INTRODUCTION

T HE TECHNOLOGICAL revolution represented by very
large scale integration (VLSI) has opened new horizons in

digital design methodology. The size and complexity of VLSI
systems demands the elimination of repetitive manual opera-
tions and computations. This motivates the development of au-
tomatic design systems. To accomplish this task, fundamental
understanding of the design problem and full knowledge of the
design process are essential. Only then could one hope to effi-
ciently and automatically fill the gap between system specifica-
tion and manufacturing. Automation of a given design process
requires its algorithmic analysis. The availability of fast and
easily implementable algorithms is essential to the discipline.

Because of the inherent complexity of the VLSI design
problem, it is partitioned into simpler subproblems, the anal-
ysis of each of which provides new insights into the original
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problem as a whole. In this framework, the objective is to view
the VLSI design problem as a collection of subproblems; each
subproblem should be efficiently solved and the solutions must
be effectively combined.

Given a problem, we are to find efficient solution methods.
A data structure is a way of organizing information; sometimes
the design of an appropriate data structure can be the foundation
for an efficient algorithm. In addition to the design of new data
structures, we are interested in the design of efficient solutions
for complex problems. Often such problems can be represented
in terms of trees, graphs, or strings.

Once a solution method has been proposed, we seek to find a
rigorous statement about its efficiency; analysis of algorithms
can go hand-in-hand with their design, or can be applied to
known algorithms. Some of this work is motivated in part by
the theory of NP-completeness, which strongly suggests that
certain problems are just too hard to always solve exactly and
efficiently. Also, it may be that the difficult cases are relatively
rare, so we attempt to investigate the behavior of problems and
algorithms under assumptions about the distribution of inputs.
Probability can provide a powerful tool even when we do not as-
sume a probability distribution of inputs. In an approach called
randomization, one can introduce randomness into an algorithm
so that even on a worst case input it works well with high prob-
ability.

Most problems that arise in VLSI CAD are NP-complete or
harder; they require fast heuristic algorithms, and benefit from
error bounds. Robustness is very important—the program must
work well even for degenerate or somewhat malformed input.
Worst case time complexity is important, but the program should
also be asymptotically good in the average case, since invariably
people will run programs on much larger inputs than the devel-
opers were anticipating. It is also important that the program
run well on small inputs. Any algorithms used must be simple
enough so that they can be implemented quickly and changed
later if necessary.

In this paper, we describe fundamental algorithms that have
been proposed in the area of test, physical design, logic syn-
thesis, and formal verification. This paper is organized as fol-
lows. In Section II, we review fundamental algorithms in the
area of test. Then, in Section III, we address physical design
problems and review various techniques. In Section IV, we study
logic synthesis and formal verification. Finally, we conclude in
Section V.

II. FUNDAMENTAL ALGORITHMS IN TEST

A. Introduction

In this section, we focus on several issues related to post-man-
ufacturing testing of digital chips. One comprehensive test oc-
curs after packaging, and often involves the use of automatic
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test equipment (ATE). Another involves testing of chips in the
field. A major part of these tests are carried out using nonfunc-
tional data, at less than functional clock rates, and where only
static (logic level) voltages are measured. This aspect of the test
problem has been highly automated and is the focus of our at-
tention. The major subareas of test that lie within the scope of
CAD include test generation for single stuck-at-faults (SSFs),
diagnosis, fault simulation, design-for-test (DFT) and built-in
self-test (BIST). The latter two topics deal primarily with test
synthesis and will not be dealt with in this paper. For a general
overview of this topic, the reader is referred to [1].

Initially, we restrict our attention to combinational logic. A
testfor a stuck-at fault in a combinational logic circuit C con-
sists of an input test pattern that 1) produces an error at the site
of the fault and 2) propagates the error to a primary output.Au-
tomatic test pattern generation(ATPG) deals with developing
an algorithm for constructing a test patternthat detects a fault

. Diagnosisdeals, in part, with 1) generating tests that differ-
entiate between a subset of faults and 2) given the results of
applying a test and observing its response, determining what
faults can or cannot exists in C.Fault simulationdeals with de-
termining which faults out of a class of faults are detected by a
test sequence. In addition, the actual output sequence of a faulty
circuit can be determined.

To automatically generate fault detection and diagnostic tests
for a sequential circuit is quite complex, and for most large cir-
cuits is computationally infeasible. Thus, designers have devel-
opeddesign-for-testtechniques, such as scan design, to simplify
test generation. Going a step further, test engineers have devel-
oped structures that can be embedded in a circuit that either to-
tally or to a large extent eliminate the need for ATPG. These
structuresgeneratetests in real or near real time within the cir-
cuit itself, andcompact(compress) responses into a finalsig-
nature. Based upon the signature one can determine whether or
not the circuit is faulty, and in some cases can actually diagnose
the fault. This area is referred to asbuilt-in self-test.

Two key concepts associated with test generation arecontrol-
lability andobservability. For example, to generate a test for a
line A that is stuck-at-1, it is necessary that the circuit be set into
a state, or controlled, so that in the fault free circuit 0. This
creates an error on line A. Next it is necessary that this error be
propagated to an observable signal line such as an output. Scan
design makes test generation much easier since flip-flops can be
easily made to be pseudoobservable and controllable.

There are five key components associated with most test al-
gorithms or related software systems; namely, 1) a fault model,
2) a fault pruning process, 3) a value system and data structure,
and 4) the test procedure itself. The test procedure may deal with
test generation, fault simulation or diagnosis.

Manufacturing tests deal with the problem of identifying de-
fective parts, e.g., a defective chip. Defects, such as extra metal
or thin gate oxide are oftenmodeledusing functional concepts,
such as a line stuck-at one or zero, two lines shorted together,
or a gate or path whose delay is unacceptably high. In gen-
eral, the number of faults associated with many models is ex-
tremely high. For example, if there aresignal lines in a cir-
cuit, the number of multiple stuck-at faults is bounded by.
In many cases, researchers have developed quite sophisticated

techniques for reducing the number of faults that need be ex-
plicitly considered by a test system. These techniques fall into
the general category offault pruning, and include the concepts
of fault dominance and equivalence.

Very often the efficiency of a test system is highly dependent
on the data structures and value system employed. In test gen-
eration, acompositelogic system is often used so one can keep
track of the logic value of a line in both a fault-free and faulty
circuit.

Finally, the test algorithm itself must deal with complex is-
sues and tradeoffs related to time complexity, accuracy and fault
coverage.

To give the reader a flavor of some of the key results in this
field, we focus on the following contributions: 1) the D-algo-
rithm test generation methodology for SSFs, 2) concurrent fault
simulation, and 3) effect-cause fault diagnosis.

B. Test Generation for Single Stuck-At Faults in Combinational
Logic

The D-Algorithm: The problem of generating a test pattern
for a SSF in a combinational logic circuit is an NP-hard

problem, and is probably the most famous problem in testing. In
1960, J. Paul Roth published his now famous D-algorithm [2],
which has remained one of the center pieces of our field. This
work employed many important contributions including the use
of the cubical complex notation, backtrack programming to ef-
ficiently handle implicit enumeration, and the unique concepts
of D-cubes, error propagation (D-drive) and line justification.

The D-algorithm employs a five-valued composite logic
system where , , , and

. Here, implies that is the value of a line in
the fault free circuit, and is its value in the faulty circuit.
represents an unspecified logic value. Initially all lines in a
circuit are set to . A represents an error in a circuit.
To create an initial error one sets a line that is– –0 to a 1,
represented by a , or if – –1 to a 0, represented by a.

A form of forward and backward simulation is carried out
by a process known asimplication , where a line at value is
changed to one of the other line values. Fig. 1(b) shows the truth
table for aNAND gate. It is easy to extend this table to include
composite line values. So if and , then forward
implication would set . Fig. 1(c) illustrates some examples
of backward implication. and are implied forward and
backward in the same manner based on the truth table shown
in Fig. 1(d). Note that for any cube, such as
all “ ” entries can be complement to form another logically
correct cube, such as .

The D-algorithm employs the concept ofJ-frontier and
D-frontier to keep track of computations to be done as well as
lead to an orderly backtrack mechanism. TheJ-frontier is a list
that contains the name of each gate whose output is assigned
a logic value that is not implied by the input values to the
gate, and for which no unique backward implications exists.
For example if and , then there are two
ways (choices) for satisfying this assignment, namely or

. These gates are candidates forline justification.
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Fig. 1. Logic system.

TheD-frontier is a list of all gates whose outputs areand
which have one or more or input values. These gates are
candidates forD-drive.

A procedureimply-and-checkis executed whenever a line is
set to a new value. This procedure carries out all forward and
backward (unique) implications based on the topology and gates
in a circuit. The version ofimply-and-checkpresented here is
an extention of the original concepts and makes the procedure
somewhat more efficient.

Example 1: As an example, consider the circuit shown in
Fig. 2(a). Since all gates have a single output we use the same
symbol to identify both a gate and its output signal. Also, we
denote line – –1(0) by .

Consider the fault . We can consider a pseudoelement
placed on this line whose input isand output is . We use the
notation to denote a line value assigned in stepof the
algorithm. We also use the symbols, to denote forward
and backward implication, respectively, andto denote justifi-
cation. Since , then . TheD-frontier

, andJ-frontier .

To drive a or to a primary output, we can select an
element from theD-frontier and carryout a process known as
D-drive. If we select gate , then by assigning we
get , and implications results in and

. Now D-frontier and theJ-frontier is still
empty. If we next drive the error through gate to the
primary output, we require . Again, carrying
out imply-and-checkwe get and which in
turn implies . But since has already been assigned
the value a conflict exists. Conflicts are dealt with by back-
tracking to the last step where a choice exists and selecting a dif-
ferent choice. Naturally, this must be done in an orderly way so
that all possible assignments are implicitly covered. In our case,
we undo all assignments associated with step 2 and select
rather than from theD-frontier. This results in and
eventually with and a test .

This example illustrates the need formultiple-path sensitiza-
tion. Note that the test also detects additional faults such as,

and . Later, we see that fault simulation is an efficient way
of determining all the SSFs detected by a test pattern.

Fig. 2. Circuit for Example 1.

Example 2: To illustrate the concept of line justification con-
sider the fault . Here, we have and as
shown in Fig. 2(c). After weD-drive through gate we have

andJ-frontier . Assume we chose
to remove from theJ-frontier to be processed first. Then one
way to justify is to set , which results in several
implications. We continue solving justification problems until
J-frontier . If a conflict occurs, backtracking is carried
out.

Fig. 3 shows the pseudocode for the D-algorithm. If no test
exist for a fault, the fault is said to beredundantand the al-
gorithm terminates in FAILURE. Backtracking is automatically
taken care of via the recursive nature of the procedure calls. The
controlling value forAND andNAND gates is zero, and forORand
NOR it is one. In addition,AND andOR have an inversion parity
of zero, whileNOT, NOR, andNAND have an inversion parity of
one.

There are numerous other test generation algorithms for SSFs
many of which deal with further refinements of the D-algorithm,
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Fig. 3. The D-algorithm.

such as PODEM [3] and FAN [4]. ATPG algorithms have also
been developed for other fault models such as multiple stuck-at
faults, bridging faults (shorts) and delay faults.

C. Fault Simulation

Fault simulation is the process of simulating a circuitwith
respect to an input sequenceand set of faults . This process
is normally done for a variety of reasons, such as 1) to determine
which faults in are detected by , i.e., produce an erroneous
output, or 2) determine the response ofto for each fault

. In more general terms, fault simulation is done to determine
fault coverage, i.e., the percent of faults detected bywith re-
spect to and a class of faults. We focus on the class of single
stuck-at faults. Techniques for determining the fault coverage
with respect to certain class of delay faults require substantially
different techniques. Other applications for fault simulation are
to guide ATPG in selecting a fault to process, and to provide
data for fault diagnostic, such as fault dictionaries. Most fault
simulators employ a zero or unit delay gate level model. We use
the term good circuit and fault-free circuit interchangeably.

Gate level good circuit logic simulation technology is quite
mature, and includes mechanisms such as compiled-driven,
table-driven and event-driven simulation. In addition, logic
simulators can handle 1) complex timing models, 2) bidirec-
tional devices, and 3) multivalued logic including unknown,
transitions and high-impedance states. Many fault simulators
are built as extensions to good circuit logic simulators.

Since a fault in a circuit produces a different circuit, it too can
be simulated using a conventional logic simulator. If its response
to a test is different from that of the fault-free circuit, we say
that detects the fault. Tests having SSF coverage above 98%
are often sought. Since a fault-free and faulty circuit differ in a
very minor way, e.g., one line may be stuck-at 0 or 1, the same
circuit description is used for both. In some cases, a “patch” in
the description or code is used so that when a signal line is being
processed, a check is made as to whether or not it is associated
with a fault. If so an appropriate action is taken.

For a circuit with signal lines, the number of SSFs is ,
and hence simulating these faults one at a time can take
times longer than a good circuit simulation. So the primary em-
phasis in fault simulation is on efficiency.

There are two major classes of circuits addressed by fault sim-
ulators, namely sequential circuits (including asynchronous cir-
cuits), and those employing full scan and/or logic BIST. For the
latter category the circuit is considered to be combinational and
delay is generally ignored. In all cases, numerous faults need to
be processed. Because the order in which faults are processed
appears to be a third order effect on efficiency, we ignore it in
this presentation. For sequential circuits, test patterns must be
processed in their natural order, i.e., in the order they occur in a
test sequence. For combinational circuits, however, test patterns
can be processed in an arbitrary order if we ignore the concept
of fault dropping.1

To appreciate and help identify the key concepts in fault sim-
ulation one must understand the attributes that researchers have
combined in the evolution of these systems. Some of these con-
cepts are listed in Table I.

In the area of accelerating simulation time, developers have
noted that computers are word oriented, and when employing
logic operators, all bits of a word are processed simultaneously
and independently. So, for example inparallel fault simulation,
a unique fault can be processed simultaneously (concurrently)
in each bit position of a word. Seshu [5] exploited this tech-
nique when simulating sequential circuits. On the other hand
Waicukauskiet al.[6] focused on simulating combinational cir-
cuits and hence simultaneously processed a unique test pattern
in each bit position of a word.

Another important observation related to fault simulation is
that the logic state of most faulty circuits very closely tracks the
state of the fault-free circuit, pattern by pattern. That is, the bi-
nary value of a flip-flop at simulation clock cycle is usually
the same in the fault-free circuit as in some arbitrary faulty cir-
cuit. Hence one could consider simulating the “difference” be-
tween each fault circuit and the fault-free circuit. We refer to this
asstrong temporal correlations. This observation is the kernel
behind Deductive [7] and Concurrent [8] fault simulation.

In the next few paragraphs, we describe the concept of con-
current fault simulation.

Concurrent Fault Simulation:Concurrent fault simulation
explicitly simulates a fault-free circuit using classical table-
driven event-direct techniques. In addition, since most faulty
circuits are strongly temporarily correlated to the fault-free

1Fault droppingrefers to the technique of not simulating a fault once it is
detected by a test pattern.
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TABLE I
A DESIGN SPACE FORFAULT SIMULATORS

Fig. 4. Example circuit.

circuit, they are simulatedimplicitly, i.e., events that occur in
the fault-free circuit also occur in most faulty circuits. Those
cases where this is not the case are simulatedexplicitly.

Let be a logic circuit and the same circuit except it
contains a fault in some signal line. We associate with each
element in , such as a gate or flip-flop, aconcurrentfault list,
denoted by . contains entries of the form ,
where is a fault and is a set of signal values. Let denote
the replica or image of in . Note that in general is not
related to . For example, referring to Fig. 4, fault defines a
circuit , and the image of gate in this circuit is .

Let denote the ensemble of input, output, and
possibly internal state values of . Note that if were a
flip-flop or register it would have a state. A faultis said to be
a local fault of if it is associated with either an input, output,
or state of . Referring to Fig. 4, the local faults of are ,

, , , , and . At a specific point in simulation time,
assume the signal values are as shown in Fig. 4. In the fault
free circuit, gate would be associated with the pair ,
where , were the fault-free
circuit is denoted by the index zero. The elementwould be
associated with several entities, including the local fault entries

, and , where the fault forces
line to a one. The path – – is a sensitized path, and
there exist one stuck-at fault on each segment of this path that
is detected by the input pattern.

During simulation contains the set of all elements
that differ from at the current simulated time. If ,
then . Also, if is a local fault of , then

even if .
A fault is said to bevisibleon a line when the valuein and
differ. Concurrent simulation employs the concept of events

and simulation is primary involved in updating the dynamic data
structures and processing the concurrent fault lists.

The initial content of each consists of entries corre-
sponding to the local faults of. Concurrent simulation nor-
mally employs fault dropping and, thus, local faults ofremain

Fig. 5. Changes in fault lists and creation of events during simulation.

in until they are detected, and subsequently are dropped.
During simulation new entries in represent elements
whose values become different from the values of. These are
said todivergefrom . Conversely, entries removed from
represent elements whose values become identical to those
of . These are said toconvergeto . Efficient dynamic memory
management is needed in order to process lists quickly and not
waste storage space.

Before presenting the algorithm for concurrent simulation,
we illustrate the major concepts with an example.

Example 3: Consider the circuit shown in Fig. 5(a). Here,
only two elements (gates) in are depicted, namely and .
The fault list are shown symbolically as gates linked together.
Hence, the first element in is , where

. Note that is a local fault, while is not. The entry
since . To process

the current event “line changes from a one to a zero in the fault
free circuit,” we turn to Fig. 5(b). Here, we see that because line

has a new value, when gateis evaluated we must schedule
the future event “line in fault free circuit changes from zero to
one at present time plus delay of gate.” Note that the event on
line occurs not only in the fault free circuit but implicitly in
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Fig. 6. Elements A and B.

all fault circuits that do not have entries in . The entries in
are processed explicitly. Note that the event on linedoes

not effect the first entry in , since it corresponds to line
– –1. Evaluating the entry corresponding to gatedoes not

result in a new event since the output of gateand will be
the same once is updated.

When the value of is eventually updated, fault is identi-
fied as being newly visible on line.

The good event on line does not produce an event on line
. As seen in Fig. 5(c), the newly visible fault produces an

entry in . The new value of also produces the following
changes to : for entry , the output changes from one
to zero that in turn produces an event tied to only. It is,
thus, seen that there are two types of events, namely good circuit
events that apply to not only the fault-free circuit but also all
faulty circuits, except for those that attempt to set a line that is
– – to a value other than, and events that are specific to a

faulty circuit.
We now describe the concurrent simulation procedure, using

the elements A and B shown in Fig. 6.
At a specific scheduled time, we can have an event on linein

the fault-free circuit and/or in several faulty circuits. The set of
scheduled simultaneous events is called acomposed eventand
is denoted by , where is a list of pairs of the ,
is the name (index) of a fault and is the scheduled value.

Fig. 7 describes how the composed event atis processed.
Here, is the current value of linein the circuit . If
an event in the fault-free circuit occurs of the form linechanges
from to , then all entries in are processed; otherwise
only the pertinent entries in are analyzed.

At the termination of this procedure NV contains the list of
all newly visible faults. Next it is necessary to schedule future
events created by the processing of with respect to .
This is done by processing every element on the fan-out list of
, such as .

If an event occurs in the fault-free circuit, thenis processed
in a normal way. The processing of an element
depends on which lists , and/or contain . For the
sake of completeness the appropriate actions are summarized in
Table II.

In some of these cases, we refer to the concept of “activate
.” Activated elementsare individually evaluated and any

events produced are merged into composed events. If an event
is produced in the fault-free circuit, then the process of deleting
entries from the fault lists will be done when the composed
event is retrieved from the events list and processed, as seen in
Fig. 7.

Fig. 7. Processing of a composed event(i; L) at the source element A.

If no event in the fault-free circuit is generated, any activated
element that does not generate an event should be compared
to the fault-free element, and if their values agree,should be
deleted from .

In summary, concurrent simulation has many important at-
tributes, such as the ability to 1) accommodate complex delay
models for the elements being simulated, 2) employ multivalued
logic; 3) except for local faults it explicitly simulate only el-
ements that differ (in logic values) from the fault-free circuit,
and implicitly simulate all other elements; 4) accommodate a
wide range of circuit structures including combinational, syn-
chronous and asynchronous logic, and 5) employ a wide range
of primitive elements such as gates, ALUs and memories. Its pri-
mary disadvantages are 1) implementations complexity, 2) large
storage requirements, and 3) need for efficient list processing
and memory management.

Critical path tracing [9] is a technique that is radically dif-
ferent from concurrent fault simulation. It is intended for com-
binational circuits, borrows on techniques from test generation,
and employs special procedures to efficiently handle fan-out
free regions of a circuit as well as cones (single output) of logic.

D. Logic-Level Fault Diagnosis

Fault diagnosis deals with the process of identifying what is
wrong with a circuit given the fact that the circuit produced the
wrong response to a test. It is often assumed that the fault is an
element of a well-defined class, such as the SSFs. Faulty circuits
contain defects and often these defects do not correspond to the
simple fault model assumed, in which case fault diagnosis can
lead to ambiguity or misdiagnosis. Also, since some faults are
equivalent to others, without probing inside a circuit, fault res-
olution is sometimes not precise.

One of the most common forms of diagnosis is carried out
using a fault dictionary [5]. Here, using a fault simulator one



BREUERet al.: FUNDAMENTAL CAD ALGORITHMS 1455

TABLE II
PROCESSINGELEMENT B 2 CL

can build an array indicating test pattern number, fault number
(index) and response. Given the response from a circuit under
test (CUT) one can search this dictionary for a match which
then indicates the fault. This diagnostic methodology leads to
very large dictionaries and is not applicable to multiple faults.
This form of diagnosis is referred to ascause–effect analysis,
where the possible causes (faults) lead to corresponding effects
(responses). The faults are explicitly enumerated prior to con-
structing the fault dictionary.

Effect–Cause Analysis:In this section, we briefly describe
the effect–cause analysismethodology [10], [11]. This diag-
nosis technique has the following attributes: 1) it implicitly em-
ploys a multiple stuck-at fault model and, thus, does not enu-
merate faults; 2) it identifies faults to within equivalence classes;
and 3) it does not require fault simulation or even the response
from the fault-free circuit.

Let be a model of a fault-free circuit, an instance of
being tested, the test sequence, and the response of

to . In effect-cause analysis, we process the actual re-
sponse (the effect) to determine the faults in (the cause).
The response is not used. Effect-cause analysis consists of
two phases. In the first phase, one executes theDeduction Algo-
rithm, where the internal signal values in are deduced. In the
second phase, one identifies the status of lines in, i.e., which
are fault-free or normal , which only take on the values 0 or
1, and which cannot be– –0 or – –1, denoted by and ,
respectively.

Note that by carrying out a test where only the primary output
lines are observable, it is not feasible to always identify a fault
to a specific line. This occurs for reasons such as fault equiva-
lence and fault masking. A few examples will help clarify the
complexity of this problem.

Example 4: Consider a single output cone of logic .

a) If the output line is – – , where , then all other
faults in are masked, i.e., cannot be identified by an
input/output (I/O) experiment and have no impact on the
output response.

b) Assume the output is driven by anAND gate. Then any
input line to this gate that is– –0 is equivalent (indis-
tinguishable) from the output– –0 as well as any other
input – –0.

Effect–cause analysis relies on many theoretical properties of
logic circuits, several of which were first identified during the
evolution of this work. We next list those results that are most
important for understanding the development and correctness of
the Deduction Algorithm.

We assume a line in is either normal, – –0 or – –1. A
normal pathis a sequence of normal lines separated by fault-free
gates.

• (Normal Path): The logic values of an internal linecan
be deduced from an I/O experiment only if there exists at
least one normal path connectingwith some PO.

We assume a natural lexicographic ordering of the lines in
and of test patterns in . Therefore, we do not distinguish

between a signal lineand the th line in a circuit, nor the test
pattern and the th test pattern.

Let be the value of signal linein when test pattern
is applied.

Let matrix . In , the signal values are denoted by
.

• (PO): If line is – – , , then .
• (P1): Let be the output of gate. If is normal then for

all , and the values of the inputs tomust cover
a primitive cube of .

• (P2): If is a fan-out branch (FOB) of, then lines and
have the same values in every test.

• (P3): If line is a normal , then .
• (P4): Consider the basic primitive gatesAND, OR, NAND,

NOR, andINVERTER. Then for every pair of primitive cubes
in which the output of a gate has complementary values,
there exists an input with complementary values.

• (Complete Normal Path): If a P0 line has comple-
mentary values in and , then there exists at least one
complete normal path in between some and ,
and every line on this path has complementary values in
and .

The process of analyzing and results in conclusions that
are referred to asforced-values( s). Determining forced
values is similar to carrying out an implication process based
on . Forced values are determined as a preprocessing step to
the Deduction Algorithm.

Definition 1: Line hasproperty in test , where
, iff either or else . A shorthand

notation for this concept is to write .

• (P5): For every , , i.e., the ex-
pected values of a are its s.

• (P6): If is a FOB of , then , i.e.,
a fan-out branch has the s of its stem.

• (P7): Let be the output of a noninverting (inverting)
gate having inputs . Then iff

for .
Here, we see that we can deduce information about the output

of a gate if all the inputs of the gate have for test .
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Fig. 8. (a) Circuit to be analyzed. (b) Expected values. (c) Forced values.

Notation: Let be the set of tests in whichhas , i.e.,
.

• (P8): If for some , , then .
This result represent vertical (between tests) implication
and will be illustrated later.

Properties P5–P7 allow one to determines at the s and
move s forward through a circuit.

As stated previously, if , then has property
in test independent of the fault situation in and, thus, in-
dependent of the status of other lines in. However, there are
situations when the status of a line may depend on the value
of other lines. This leads to the concept of conditional forced
values ( s) [10].

Example 5: Consider the circuit shown in Fig. 8(a). In
Fig. 8(b), we show the expected (fault-free) values in response
to the test . While only the values applied at

and are used in the deduction process, the other values
are of interest for comparison. Fig. 8(c) shows the forced values
resulting from using properties P5–P7. Note that the forced
value are a subset of the values obtained ifwere simulated
for each test pattern . These values are determined by a
preprocessing step. The steps in the Deduction Algorithm are
guided by the use of a decision tree (see Fig. 9).

The contents of a decision node, represented by a circle, has
the form where is a normal line whose value in test

Fig. 9. Decision tree for Example 5.

Fig. 10. Computations associated with Example 5, (a) values deduced prior to
first decision point, (b) first solution, (c) second solution.

requires justification. Branching can occur at decision nodes
when choices of an assignment, represented by a square node,
exist. A terminal node is represented by a square and contains
an integer which is an index for a solution, or anthat denotes
an inconsistency and results in backtracking.

Assume the response of to is 01 110, as shown
in Fig. 10(a). Since line has both zero and one values it is
normal and hence there exist one or more normal paths from

s to (Complete Normal Path). For anOR gate, an output
of 0 implies all inputs are zero. Thus, for and , 0
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implies 0. Since has in and a 0 value
has been deduced for (in and ), then 0 in . This
is an example of avertical implication , i.e., values in one test
implying line values in another test. This concept is unique to
the deduction algorithm. Knowing 0 and 1 in
implies 1 since is anOR gate. This is an example of
horizontal implication . Thus, is normal! Continuing,
1 in implies 1 and 1 in , which generate the
vertical implications 1 in and , and 1 in . Now

in implies 0 in , which implies 0 in . At
this point all the values of D can be assigned to its stem A (P2).
No more implications exists.

We next attempt to justify the value of in and . We first
select as shown in the decision tree in Fig. 9. We initially try
the assignment 1. Carrying out the resulting implications
results in a conflict, i.e., line is assigned both a zero and a one.
Since in this analysis, we can reverse our decision and
set 0 and 1 as our next decision (see decision tree).
Going from the terminal node labeled and the new decision
node is done via backtracking. Now 1 in implies
1 in . Again there are no more implications possible, so a new
decision node is created, labeled . The two assignments

1 lead to two solutions shown in Fig. 10(b) and (c),
respectively.

Note that lines and are identified as being
normal with respect to the first solution only. The lines

, and are normal in both solutions and, therefore,
are actually normal (fault-free) lines in . Note also that

designate a path between a and a .
The reader is referred to [10] and [12] for details of the De-

duction Algorithm.
The second phase of effect–cause analysis deals with deter-

mining the states of the lines in . A complete analysis of the
mapping of the results generated by the Deduction Algorithm to
potential failures in is again beyond the scope of this paper.
A brief overview, however, will be presented.

We represent the statusof a line by zero, one, or , where
zero(one) represents– –0(1), and represents normal. Then
a fault situationis defined by the vector . Recall that

is the fault free circuit. Let denote the circuit in the
presence of fault situation . Clearly, if
then . realizes the Boolean switching function .
If then we say that and are indistinguish-
able. Let . Thus, the fault situa-
tions can be partitioned into equivalence classes. The faults in

are undetectable and, therefore, redun-
dant. Let be the response of to . Then we say that

and areequivalent under iff . Let
. Our goal in fault analysis (phase 2)

is to identify one or more members of the set. For each so-
lution generated by the deduction algorithm we derive akernel
fault that corresponds (covers) a family of faults that may ac-
tually exist in . Let be a kernel fault, where

, and means that the state ofis unknown.
Note that and have the same meaning as
and . can be constructed as follows: 1) iff both zero
and one values have been deduced for; 2) iff only
zero(one) values have been deduced for, and 3) iff

Fig. 11. (a) Graph. (b) Hypergraph.

no values have been deduced for. Any fault situation ob-
tained from a by replacing s with zero, one, or satisfy

.
Referring to our previous example we obtain two solutions,

shown in the lower part of Fig. 10(b) and (c). To obtain finer res-
olution on the fault sites one can apply additional test patterns.
Once the subset of lines are identified where faults may exists,
specific tests that activate these faults can be constructed.

Finally, probing can be used to access internal lines and hence
increase observability [12].

III. FUNDAMENTAL ALGORITHMS IN PHYSICAL DESIGN

A. Partitioning

A chip may contain tens of millions of transistors. Layout of
the entire circuit cannot be handled in a flat mode due to the lim-
itation of memory space as well as computation power available.
Even though fabrication technologies have made great improve-
ments in packing more logic in a smaller area, the complexity
of circuits has also been increasing correspondingly. This ne-
cessitates partitioning a circuit and distributing it across several
regions in a chip or across several chips. Thus, the first step in
the physical design phase is partitioning which can significantly
influence the circuit performance and layout costs.

Partitioning is a complex problem which is NP-complete. The
nature of the partitioning problem along with the size of the cir-
cuit makes it difficult to perform an exhaustive search required
to find an optimal solution.

To study the partitioning problem clearly, graph notations are
commonly used. A graph consists of a set of
vertices, and a set of edges. Each edge corresponds to a pair
of distinct vertices [see Fig. 11(a)]. A hypergraph
consists of a set of vertices and a set of hyperedges, where
each hyperedge corresponds to a subsetof distinct vertices
with [see Fig. 11(b); e.g., the connection intercon-
necting vertices , , and is a hyperedge]. We also associate
a vertex weight function with every vertex, where

is the set of integers. Thus, a circuit can be represented by
a graph or a hypergraph, where the vertices are circuit elements
and the (hyper)edges are wires. The vertex weight may indicate
the size of the corresponding circuit element.

A multiway partition of a (hyper)graph is a set of
nonempty, disjoint subsets of , such that

and for . A partition is



1458 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

acceptableif , where is the sum of
the weight of vertices in , is the maximum size of part
and is the minimum size of part, for ; s
and s are input parameters. A special case of multiway
partitioning problem in which 2 is called thebipartition
problem. In the bipartition problem, is at least times the
sum of the weight of all vertices, for some, .
Typically, is close to 1/2. The numberis called thebalance
factor. The bipartition problem can also be used as a basis for
heuristics in multiway partitioning. Normally, the objective
is to minimize the number ofcut edge, that is, the number of
hyperedges with at least one vertex in each partition.

Classic iterative approaches known Kernighan–Lin (KL) and
Fiduccia–Mattheyses (FM) begin with some initial solution and
try to improve it by making small changes, such as swapping
modules between clusters. Iterative improvement has become
the industry standard for partitioning due to its simplicity and
flexibility. Recently, there have been many significant improve-
ments to the basic FM algorithm. Multilevel approaches are very
popular and produce superior partitioning results for very large
sized circuits. In this section, we discuss the basic FM algorithm
and hMetis, a multilevel partitioning algorithm, which is one of
the best partitioners.

The KL and FM Algorithms:To date, iterative improvement
techniques that make local changes to an initial partition are
still the most successful partitioning algorithms in practice. One
such algorithm is an iterative bipartitioning algorithm proposed
by Kernighan and Lin [13].

Given an unweighted graph , this method starts
with an arbitrary partition of into two groups and such
that and , where is the bal-
ance factor as defined in the previous subsection andde-
notes the number of vertices in set. A passof the algorithm
starts as follows. The algorithm determines the vertex pair (,

), and , whose exchange results in the largest
decrease of the cut-cost or in the smallest increase if no decrease
is possible. A cost increase is allowed now in the hope that there
will be a cost decrease in subsequent steps. Then the vertices
and are locked. This locking prohibits them from taking part
in any further exchanges. This process continues, keeping a list
of all tentatively exchanged pairs and the decreasing gain (or
cut-cost), until all the vertices are locked.

A value is selected to maximize the partial sum
Gain , where is the gain of the th ex-

changed pair. If Gain , a reduction in cut-cost can be
achieved by moving to and
to . This marks the end of one pass. The resulting partition is
treated as the initial partition, and the procedure is repeated for
the next pass. If there is nosuch that Gain the procedure
halts. A formal description of KL algorithm is as follows.

Procedure: KL heuristic( );
begin-1

bipartition into two groups and
, with ;

repeat-2
for do

begin-3
find a pair of unlocked vertices

and whose exchange
makes the largest decrease or
smallest increase in cut-cost;

mark , as locked and store
the gain ;
end-3

find , such that
is maximized;

if then
move from to and

from to ;
until-2 ;

end-1.

The for-loop is executed times. The body of the loop
requires time. Thus, the total running time of the algo-
rithm is for each pass of the repeat loop. The repeat loop
usually terminates after several passes, independent of. Thus,
the total running time is , where is the number of times
the repeat loop is executed.

Fiduccia and Mattheyses [14] improved the Kernighan-Lin
algorithm by reducing the time complexity per pass to ,
where is the number of hyper-edge ends (or,terminals) in .
FM added the following new elements to the KL algorithm:

1) only a single vertex is moved across the cut in a single
move;

2) adding weights to vertices;
3) a special data structure for selecting vertices to be moved

across the cut to improve running time (this is the main
feature of the algorithm).

We shall first discuss the data structure used for choosing the
(next) vertex to be moved. Let the two partitions beand .
The data structure consists of two pointer arrays, and

indexed by the set [ ] [see
Fig. 12]. Here, is the maximum vertex degree in the hyper-
graph, and is the maximum cost of a hyperedge. Moving
one vertex from one set to the other will change the cost by at
most . Indexes of the list correspond to possible
(positive or negative) gains. All vertices resulting in gainare
stored in the entry of the list. Each pointer in the array
points to a linear list of unlocked vertices insidewith the cor-
responding gain. An analogous statement holds for .

Since each vertex is weighted, we have to define a maximum
vertex weight such that we can maintain thebalanced par-
tition during the process. must satisfy

, where is the weight of vertex . A bal-
anced partitionis one with either side of the partition having a
total vertex weight of at most , that is, . A
balanced partition can be obtained by sorting the vertex weights
in decreasing order, and placing them inand alternately.

This algorithm starts with a balanced partition, of .
Note that a move of a vertex across the cut is allowable if such a
move does not violate the balance condition. To choose the next
vertex to be moved, we consider the maximum gain vertex
in or the maximum gain vertex in , and move
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Fig. 12. The data structure for choosing vertices in FM algorithm.

them across the cut if the balance condition is not violated. As
in the KL algorithm, the moves are tentative and are followed
by locking the moved vertex. A move may increase the cut-cost.
When no moves are possible or if there are no more unlocked
vertices, choose the sequence of moves such that the cut-cost is
minimized. Otherwise the pass is ended.

Further improvement was proposed by Krishnamurthy [15].
He introduced alook-aheadability to the algorithm. Thus, the
best candidate among such vertices can be selected with respect
to the gains they make possible in later moves.

In general, the obtained bipartition from KL or FM algorithm
is a local optimum rather than a global optimum. The perfor-
mance of KL–FM algorithm degrades severely as the size of cir-
cuits grows. However, better partitioning results can be obtained
by using clustering techniques and/or better initial partitions to-
gether with KL-FM algorithm. The KL–FM algorithm (and its
variations) are still the industry standard partitioning algorithm
due to its flexibility and the ability of handling very large cir-
cuits.

hMetis—A Multilevel Partitioning Algorithm:Two-level
partitioning approaches consist of two phases. In the first phase,
the hypergraph is coarsened to form a small hypergraph, and
then the FM algorithm is used to bisect the small hypergraph. In
the second phase, they use the bisection of this contracted hy-
pergraph to obtain a bisection of the original hypergraph. Since
FM refinement is done only on the small coarse hypergraph,
this step is usually fast. However, the overall performance
of such a scheme depends on the quality of the coarsening
method. In many schemes, the projected partition is further
improved using the FM refinement scheme.

Multilevel partitioning approaches are developed to cope with
large sized circuits [16]–[18]. In these approaches, a sequence
of successively smaller (coarser) graph is constructed. A bisec-
tion of the smallest graph is computed. This bisection is now
successively projected to the next level finer graph, and at each
level an iterative refinement algorithm such as KL–FM is used to

further improve the bisection. The various phases of multilevel
bisection are illustrated in Fig. 13. During the coarsening phase,
the size of the graph is successively decreased; during the initial
partitioning phase, a bisection of the smaller graph is computed;
and during the uncoarsening and refinement phase, the bisec-
tion is successively refined as it is projected to the larger graphs.
During the uncoarsening and refinement phase the dashed lines
indicate projected partitionings, and dark solid indicate parti-
tionings that were produced after refinement. is the given
graph, which is the finest graph. is next level coarser graph
of , vice versa, is next level finer graph of . is the
coarsest graph.

The KL–FM algorithm becomes a quite powerful iterative
refinement scheme in this multilevel context for the following
reason. First, movement of a single vertex across partition
boundary in a coarse graph can lead to movement of a large
number of related vertices in the original graph. Second, the
refined partitioning projected to the next level serves as an
excellent initial partitioning for the KL–FM refinement algo-
rithms. Karypis and Kumar extensively studied this paradigm
in [19] and [20]. They presented new graph coarsening schemes
for which even a good bisection of the coarsest graph is a pretty
good bisection of the original graph. This makes the overall
multilevel paradigm even more robust. Furthermore, it allows
the use of simplified variants of KL–FM refinement schemes
during the uncoarsening phase, which significantly speeds up
the refinement without compromising the overall quality.

Metis [20], a multilevel graph partitioning algorithm based
on this work, routinely finds substantially better bisections and
is very fast. In [21] and [22], Karypis and Kumar extended
their graph partitioning algorithm to hypergraph and developed
hMetis. When comparing different partitioning tools on large-
sized circuits, Alpert [23] found that hMetis performs the best.

The notion ofratio cutwas presented to solve the partitioning
problem more naturally. The ratio cut approach can be described
as follows: Given a graph , denotes a cut
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Fig. 13. The various phases of the multilevel graph bisection.

that separates a set of nodesfrom its complement
. Let be the cost of an edge connecting nodeand node .

Thecut-costis equal to . Theratio
of this cut is defined as , where
and denote the size of subsets and , respectively. The
objective is to find a cut that generates the minimum ratio among
all cuts in the graph. By using the ratio cut as the cost function,
most iterative partitioning heuristics including KL–FM can be
modified to handle the ratio-cut problem (e.g., see [24]).

The following extensions and variations of the partitioning
problem are of particular interest.

• By adding different constraints, the partitioning problem is
useful in various areas. However, how to effectively handle
more constrainted partitioning problems is still an open
issue.

• Bisection has been studied extensively for over three
decades. How to efficiently solve a multiway partitioning
problem is yet an open problem.

• How to handle cost functions other than cut, e.g., wire-
length and congestion.

B. Floorplanning

In the floorplanning phase, the macro cells have to be posi-
tioned on the layout surface in such a manner that no blocks
overlap and that there is enough space left to complete the inter-
connections. The input for the floorplanning is a set of modules,
a list of terminals (pins for interconnections) for each module

and a netlist, that describes the terminals which have to be con-
nected. At this stage, good estimates for the area of the single
macro cells are available, but their exact dimensions can still
vary within a wide range. Consider for example a register file
module consisting of 64 registers. These alternatives are de-
scribed by shape-functions. A shape-function is a list of fea-
sible height/width-combinations for the layout of a single macro
cell. The result of the floorplanning phase is the sized floorplan,
which describes the position of the cells in the layout and the
chosen implementations for the flexible cells.

In this stage, the relative positions of the modules to be laid
out are determined. Timing, power, and area estimations are
the factors guiding the relative placement. Floorplanning can
be used to verify the feasibility of integrating a design onto a
chip without performing the detailed layout and design of all
the blocks and functions. If control logic is implemented with
standard cells, then the number of rows used for the modules is
not necessarily fixed. Many rows will produce a block that is
long and skinny; few rows will produce a block that is short and
wide. As other examples, folding and partitioning of a PLA can
be used to modify the aspect ratio of the module, or the number
of bits used for row and column decoding in a RAM or ROM
module can also modify their aspect ratio.

Automatic floorplanning becomes more important as auto-
matic module generators become available which can accept as
constraints or parts of the cost functions, pin positions, and as-
pect ratios of the blocks. Typically, floorplanning consists of the
following two steps. First, the topology, i.e., the relative posi-
tions of the modules, is determined. At this point, the chip is
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viewed as a rectangle and the modules are the (basic) rectangles
whose relative positions are fixed. Next, we consider thearea
optimization problem, i.e., we determine a set of implementa-
tions (one for each module) such that the total area of the chip
is minimized. The topology of a floorplan is obtained by recur-
sively using circuit partitioning techniques. Apartition divides
a given circuit into parts such that: 1) the sizes of theparts
are as close as possible and 2) the number of nets connecting the

parts is minimized. If 2, a recursive bipartition generates a
slicing floorplan. A floorplan is slicing if it is either a basic rec-
tangle or there is a line segment (called slice) that partitions the
enclosing rectangle into two slicing floorplans. A slicing floor-
plan can be represented by aslicing tree. Each leaf node of the
slicing tree corresponds to a basic rectangle and each nonleaf
node of the slicing tree corresponds to a slice.

There exist many different approaches to the floorplanning
problem. Wimeret al. [25] described a branch-and-bound ap-
proach for the floorplan sizing problem, i.e., finding an optimal
combination of all possible layout-alternatives for all modules
after placement. While their algorithm is able to find the best so-
lution for this problem, it is very time consuming, especially for
real problem instances. Cohoonet al. [26] implemented a ge-
netic algorithm for the whole floorplanning problem. Their al-
gorithm makes use of estimates for the required routing space to
ensure completion of the interconnections. Another widely used
heuristic solution method is simulated annealing [27], [28].

When the area of the floorplan is considered, the problem of
choosing for each module the implementation which optimizes
a given evaluation function is referred to as thefloorplan area
optimization problem[29].

A floorplan consists of an enveloping rectangle partitioned
into nonoverlapping basic rectangles (or modules). For every
basic rectangle a set of implementations is given, which have
a rectangular shape characterized by a widthand a height .
The relative positions of the basic rectangles are specified by the
floorplan tree: the leaves are the basic rectangles,the root is the
enveloping rectangle, and the internal nodes are thecomposite
rectangles. Each of the composite rectangles is divided into
parts in ahierarchical floorplanof order : if 2(slicing
floorplan), a vertical or horizontal line is used to partition the
rectangle; if 5, a right or leftwheelis obtained. The general
case of composite blocks which cannot be partitioned in two or
five rectangles can be dealt with by allowing them to be com-
posed of -shaped blocks. Once theimplementationfor each
block has been chosen, the size of the composite rectangles can
be determined by traversing through upwards the floorplan tree;
when the root is reached, the area of the enveloping rectangle
can be computed. The goal of the floorplan area optimization
problem is to find the implementation for each basic rectangle
such that the minimum area enveloping rectangle is obtained.
The problem has been proven to be NP-complete in the general
case, although it can be reduced to a problem solvable in poly-
nomial time in the case of slicing floorplans.

Since floorplanning is done very early in the design process,
only estimates of the area requirements for each module are
given. Recently, the introduction of simulated annealing algo-
rithms has made it possible to develop algorithms where the op-
timization can be carried out with all the degrees of freedom

mentioned above. A system developed at the IBM T.J. Watson
Research Center and use the simulated annealing algorithm to
produce a floorplan that not only gives the relative positions of
the modules, but also aspect ratios and pin positions.

Simulated Annealing:Simulated annealing is a technique to
solve general optimization problems, floorplanning problems
being among them. This technique is especially useful when
the solution space of the problem is not well understood. The
idea originated from observing crystal formation of materials.
As a material is heated, the molecules move around in a random
motion. When the temperature slowly decreases, the molecules
move less and eventually form crystalline structures. When
cooling is done in a slower manner, more crystal is at a min-
imum energy state, and the material forms into a large crystal
lattice. If the crystal structure obtained is not acceptable, it may
be necessary to reheat the material and cool it at a slower rate.

Simulated annealing examines theconfigurations of the
problem in sequence. Each configuration is actually a feasible
solution of the optimization problem. The algorithm moves
from one solution to another, and a global cost function is used
to evaluate the desirability of a solution. Conceptually, we can
define aconfiguration graphwhere each vertex corresponds
to a feasible solution, and a directed edge represents a
possible movement from solution to .

The annealing process moves from one vertex (feasible solu-
tion) to another vertex following the directed edges of the con-
figuration graph. The random motion of the molecules at high
temperature is simulated by randomly accepting moves during
the initial phases of the algorithm. As the algorithm proceeds,
temperature decreases and it accepts less random movements.
Regardless of the temperature, the algorithm will accept a move

if . When a local minimum is
reached, all “small” moves lead to a higher cost solution. To
avoid being trapped in a local minimum, simulated annealing
accepts a movement to higher cost when the temperature is high.
As the algorithm cools down, such movement is less likely to
be accepted. The best cost among all solutions visited by the
process is recorded. When the algorithm terminates, hopefully
it has examined enough solutions to achieve a low cost solu-
tion. Typically, the number of feasible solutions is an exponen-
tial function of the problem size. Thus, the movement from one
solution to another is restricted to a very small fraction of the
total configurations.

A pseudocode for simulated annealing is as follows:

Algorithm Simulated annealing
Input : An optimization problem.
Output : A solution with low cost.
begin-1

random initialization.
. /* initial temperature */

while do
begin-2

0.
while do

begin-3
.
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.
if ( ) or

(
then .

end-3 .
update ( ).

end-2 .
end-1 .

is a function that selects the next solution from
the current solution following an edge of the configuration
graph. is a function that evaluates the global cost of a
solution. is a function that returns a value between zero
and one to indicate the desirability to accept the next solution,
and returns a random number between zero and one.
A possible candidate function is the well-known Boltzmann
probability function , where is the cost change
(i.e., and is the Boltzmann
constant. The combined effect of and is to have
high probability of accepting a high-cost movement at high tem-
perature. is used to decide the termination con-
dition of the random movement, and reduces the tem-
perature to cool down the algorithm. determines the
termination condition of the algorithm. The algorithm is usually
frozen after an allotted amount of computation time has been
consumed; a sufficiently good solution has been reached, or the
solutions show no improvement over many iterations.

A solution of the floorplanning problem can be represented
by a floorplan tree. The cost of the solution can be computed
via this tree representation. We can use the simulated annealing
technique to find a good floorplanning solution which corre-
sponds to a low cost.

It is quite often that certain macro cells need to be pre-placed.
Areas occupied by these cells become blockages for floorplan-
ning. This adds complexities to the original floorplanning al-
gorithm. Simulated annealing based approaches can handle this
problem with modifications.

Simulated annealing has been very successful in floorplan-
ning. As the design and module library grow in size, the perfor-
mance of simulated annealing degrades drastically. The open
question is: can we find a more effective heuristic than simu-
lated annealing to solve the floorplanning problem?

C. Placement

The placement problem can be defined as follows. Given an
electrical circuit consisting of modules with predefined input
and output terminals and interconnected in a predefined way,
construct a layout indicating the positions of the modules cells
such that some performance measures such as estimated wire
length and/or layout area are minimized. The inputs to the
problem are the module description, consisting of the shapes,
sizes, and terminal locations, and the netlist, describing the
interconnections between the terminals of the modules. The
output is a list of - and -coordinates for all modules. We need
to optimize chip area usage in order to fit more functionality
into a given chip. We need to minimize wirelength to reduce
the capacitive delays associated with longer nets, speed up the

operation of the chip, and reduce area. These goals are closely
related to each other for standard cell and gate array design
styles, since the total chip area is approximately equal to the
area of the modules plus the area occupied by the interconnect.
Hence, minimizing the wire length is approximately equivalent
to minimizing the chip area. In the macro design style, the
irregularly sized macros do not always fit together, and some
space is wasted. This plays a major role in determining the
total chip area, and we have a tradeoff between minimizing
area and minimizing the wire length. In some cases, secondary
performance measures may also be needed, such as the prefer-
ential minimization of wire length ofcritical nets, at the cost
of an increase in total wire length. Module placement is an
NP-complete problem and, therefore, cannot be solved exactly
in polynomial time [Donath 1980]. Trying to get an exact
solution by evaluating every possible placement to determine
the best one would take time proportional to the factorial of the
number of modules. This method is, therefore, impractical for
circuits with any reasonable number of modules. To efficiently
search through a large number of candidate placement configu-
rations, a heuristic algorithm must be used. The quality of the
placement obtained depends on the heuristic used. At best, we
can hope to find a good placement with wire length quite close
to the minimum, with no guarantee of achieving the absolute
minimum.

Placement algorithms are typically divided into two major
classes: constructive placement and iterative improvement.
In constructive placement, a method is used to build up a
placement from scratch; in iterative improvement, algorithms
start with an initial placement and repeatedly modify it in
search of a cost reduction. If a modification results in a
reduction in cost, the modification is accepted; otherwise it
is rejected. Constructive placement algorithms are generally
very fast, but typically result in poor layouts. Since they take a
negligible amount of computation time compared to iterative
improvement algorithms, they are usually used to generate an
initial placement for iterative improvement algorithms. More
recent constructive placement algorithms, such as numerical
optimization techniques [30], [31], integer programming
formulation [32], and simulated annealing-based methods [33]
yield better layouts but require significantly more CPU time.
One of the biggest challenge for placement tools is the rapid
growth in circuit size. A good placement algorithm has to be
more effective than ever in finding a good layout as quickly as
possible.

Quadratic Algorithm: One of the objectives of the placement
problem is to reduce the total wirelength. Assume cellsand
are connected by a net. The physical location of celland is
at and , respectively. The linear wirelength of
is , and the quadratic wirelength of

is . The total linear wirelength
of a layout is and the total quadratic wirelength
is . When a net is connecting more than two
cells (a multipin net), we can replace this net with a number
of two-pin nets. A typical method is to use a clique of two-pin
nets to replace the original multipin net. Each two-pin net in the
clique get a weight of if the original multipin net has cells
incident to it.
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Linear wirelength is widely used because it correlates well
with the final layout area after routing. Quadratic wirelength is
an alternative to use in placement. Experimental results show
that the quadratic wirelength objective over-penalizes long
wires and has a worse correlation with the final chip area [34].
However, since the quadratic wirelength objective is analytical,
numerical methods can be used to solve for an optimal solution.
The quadratic algorithm uses quadratic wirelength objective
and analytical methods to generate a layout. It is very fast and
leads to relatively good results.

Matrix representations and linear algebra are often used in
quadratic placement algorithms. Assume the given circuit is
mapped into a graph where
and . A nonnegative weight is as-
signed to each edge . All the nets can be represented
using anadjacency matrix which has an entry

if and 0, otherwise. The physical
locations of all the vertices can be represented by-dimensional
vectors and , where is the coordi-
nates of vertex .

The and directions are independent in quadratic wire-
length objective. We can optimize the objective separately in
each direction. The following discussions will be focused on op-
timizing the quadratic objective indirection. The same method
can be used symmetrically in thedirection.

The total quadratic wirelength indirection of a given layout
can be written as

(1)

is a Laplacian matrixof . has entry equal
to if , and equal to otherwise, i.e., is
the degree of vertex . The optional linear term represents
connections of cells to fixed I/O pads. The vectorcan also
capture pin offsets. The objective function (1) is minimized by
solving the linear system

(2)

The solution of this system of linear equations usually is
not a desired layout because vertices are not evenly distributed.
This results in a lot of cell overlaps which are not allowed in
placement. A balanced vertex distribution in the placement area
needs to be enforced. This can be achieved by either re-as-
signing vertex locations after solving (2) or adding more con-
straints to (1).

Existence of fixed vertices is essential for quadratic algo-
rithms. Initially, I/O pads are fixed vertices. If no I/O pads are
present, a trivial solution of (1) will be having all the vertices
located at the same place. Existence of I/O pads forces vertices
to separate to some extent. We can further spread the vertices
to achieve a balanced distribution based on the solution of (2).
This spreading procedure is based on heuristics and is not op-
timal. Iterative approaches can be used to further improve the
layout. In the next iteration, a number of vertices can be fixed.
A new layout can be obtained by solving a new equation similar

to (2). We can increase the number of fixed vertices gradually
or wait until this approach converges.

Constraints can also be added to (1) to help balance the
vertex distribution. Researchers have added spatial constraints
so that the average location of different groups of vertices will
be evenly distributed in the placement area [30], [34], [35].
They recursively reduce the number of vertices in vertex groups
by dividing them into smaller groups. Eisenmannet al. [36]
added virtual spatial nets to (2). A virtual spatial net will have
a negative weight if two cells incident to it are close to each
other. As two cells get closer, the absolute value of their spatial
net weight gets larger. The virtual spatial nets between cells
tends to push overlapped cells further away from each other
due to the negative weights. The weights on virtual spatial nets
are updated each iteration until the solution converges.

The layouts produced by quadratic algorithm are not the best
compared to layouts produced by other placement algorithms.
The reason why quadratic algorithm is still attractive and
widely used in industry is because of its fast speed. It can rep-
resent interactions between locations of cells and connections
between cells using one simple linear equation (1). However, it
needs heuristics to balance the cell distribution in the placement
area. The effectiveness of these heuristics will highly affect the
quality of the final layout.

Routing/congestion-driven placement aims to reduce the
wiring congestion in the layout to ensure that the placement
can be routed using the given routing resources. Congestion
can be viewed using a supply-demand model [37]. Congested
regions are where the routing demand exceeds the routing
resource supply. Wang and Sarrafzadeh [38] pointed out that
the congestion is globally consistent with the wirelength.
Thus, the traditional wirelength placement can still be used to
effectively reduce the congestion globally. However, in order to
eliminate local congested spots in the layout, congestion-driven
approaches are needed.

D. Routing

Routing is where interconnection paths are identified. Due to
the complexity, this step is broken into two stages: global and
detailed routing. In global routing, the “loose” routes for the
nets are determined. For the computation of the global routing,
the routing space is represented as a graph, the edges of this
graph represent the routing regions and are weighted with the
corresponding capacities. Global routing is described by a list
of routing regions for each net of the circuit, with none of the
capacities of any routing region being exceeded.

After global routing is done, for each routing region the
number of nets routed is known. In the detailed routing phase,
the exact physical routes for the wires inside routing regions
have to be determined. This is done incrementally, i.e., one
channel is routed at a time in a predefined order.

The problem of global routing is very much like a traffic
problem. The pins are the origins and destinations of traffic. The
wires connecting the pins are the traffic, and the channels are
the streets. If there are more wires than the number of tracks in
a given channel, some of the wires have to be rerouted just like
the rerouting of traffic. For the real traffic problem, every driver
wants to go to his destination in the quickest way, and he may try
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Fig. 14. An example demonstrating Lee’s algorithm from sources to sink t. (a) Minimum length path. (b) Bidirectional search. (c) Minimum bend path. (d)
Minimum weight path.

a different route every day. Finally every driver selects the best
route possible for him and the traffic pattern is stabilized. Intu-
itively, we can do the same for the routing problem. In global
routing, the usual approach was to route one net at a time se-
quentially until all nets are connected. To connect one net, we
could use the maze running algorithm, simulated annealing or
other algorithms. Maze running is the standard in industry.

Maze Running:Maze running was studied in the 1960s in
connection with the problem of finding a shortest path in a geo-
metric domain. A classical algorithm for finding a shortest path
between two terminals (or, points) was proposed in [39]. The
idea is to start from one of the terminals, called the source ter-
minal. Then,label all grid points adjacent to the source as 1.
The label of a point indicates its distance to the source. Any un-
labeled grid point that is adjacent to a grid point with labelis
assigned label . We assign all labels before assigning any
label . Note that two points are called adjacent only if they
are either horizontally or vertically adjacent; diagonally adja-
cent points are not considered adjacent, for in routing problems
we deal with rectilinear distances. The task is repeated until the
other terminal of the net is reached. See Fig. 14(a). We need to
backtrack from the target to the source to find the underlying
path. This procedure is called Maze-Running Algorithm.

Several extensions of maze running have been studied as dis-
cussed below. The reason for extending the maze running tech-
niques, as opposed to inventing new tools, is that the approach
is simple and easy to understand and predict its performance.

Optimization of Memory Usage:A major drawback of
maze running approaches is the huge amount of memory used

to label the grid points in the process. Attempts have been
made to circumvent this difficulty. One solution is to use an
encoding scheme where a grid just points to neighbors instead
of storing the actual distance. Therefore, at each grid point we
need to store bits instead of bits, where is
the number of grid points. There are other effective memory
optimization schemes that also speed up the process; indeed,
they are primarily for speeding up the process. One of the
most effective approaches is based on bidirectional search as
discussed below.

Minimum-Cost Paths:In our previous discussion, we have
tried to minimize the length of the path between the source and
the sink, that is, minimization of the distance inmetric. How-
ever, we might also be interested in other objectives.

If we want to minimize the number of bends in the path we
proceed as follows. All grid points that are reachable with zero
bends from the source are labeled with zero. Note that these grid
points are either adjacent to the source or are adjacent to a grid
point with label zero. All grid points that are reachable from a
grid point with label zero with one bend are labeled with one.
In general, in stage, all grid points that are reachable from a
grid point with label with one bend are labeled with.
Note that for each grid point with label, we also need to store
the direction of the path (if there are more than one path, all
directions—at most four—need to be stored) that connects the
source to that grid point withbends. An example is shown in
Fig. 14(c).

We may also be interested in obtaining a minimum cost path,
where the cost of a path is defined by the user. For example, with
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reference to Fig. 14(d), we may be interested in finding a path
that minimizes the use of the right boundary. To accomplish this
task, every connection that uses the right boundary is assigned a
cost of two. Then, we proceed with the traditional maze running
algorithm. Except for grid points that are on the right boundary,
we skip assigning labels every other time. That is, if the grid
point is adjacent to a grid point with label, we do not assign a
label to it until stage .

Multilayer Routing: Multilayer routing can be achieved with
the classical maze running algorithm. The main difference is
that the maze is now a three-dimensional maze (or a three-di-
mensional grid). The labeling proceeds as before. If we want to
minimize the number of layer changes, we can assign a higher
cost to traversing the grid in the third dimension.

Multiterminal Routing: This procedure involves first inter-
connecting two terminals, as before. Then, start from a third
terminal and label the points until the path between the first two
terminals is reached. This task is repeated for all unconnected
terminals.

Routing is the last stage in physical design. All the parame-
ters of the design (e.g., layout area, power consumption, timing
delay, etc.) can be accurately measured after routing. While the
general algorithm for routing remains simple and straight for-
ward, a large number of detailed issues need to be considered.

E. Clock Tree Synthesis

For a circuit to function correctly, clock pulses must arrive
nearly simultaneously at the clock pins of all clocked com-
ponents. Performance of a digital system is measured by its
cycle time. Shorter cycle time means higher performance. At
the layout model, performance of a system is affected by two
factors, namely signal propagation time and clock skew. Clock
tree synthesis is of fundamental importance. A number of
algorithms have been proposed. In particular, the hierarchical
recursive matching tree of Kahng, Cong, and Robins [40] and
the deferred-merge embedding approach (DME) of [41] are
commonly used. However, due to lack of space, we shall omit
description of these algorithms.

IV. FUNDAMENTAL ALGORITHMS IN LOGIC SYNTHESIS AND

FORMAL VERIFICATION

The last two decades have seen the transition of logic syn-
thesis from a mainly academic pursuit to an accepted design
method. On the one hand, research has closed the gap between
the quality of circuits designed by CAD tools, and by experi-
enced human designers. On the other hand, the large improve-
ment in productivity afforded by logic synthesis has made the
recourse to it almost unavoidable. Application specific intgrated
circuit (IC) [ASIC] design, by its nature, has been the first to
be deeply influenced by logic synthesis. Improvements in the
handling of timing [42] and power consumption [43] have led
to wider acceptance. In this paper, we concentrate on the algo-
rithms that have defined logic synthesis in the early eighties,
and that still inform, albeit through many extensions and trans-
formations, today’s synthesis tools.

Formal methods try to address the limitations of traditional
simulation-based verification techniques. Only in recent times

has formal verification begun gaining acceptance, in the
form of combinational equivalence checking [44], [45], and
model checking [46]. The most widely used specification
mechanisms are temporal logics and automata. By presenting
model checking for CTL* [47], we essentially cover both these
approaches. The recent success of model checking owes a great
deal to binary decision diagrams (BDDs) [48]. These graphical
representations of logic functions have had a profound impact
not only on formal verification, but also on synthesis and
test generation. Hence, we present a brief overview of their
properties and discuss in particular symbolic model checking
[49].

A. Two-Level Minimization

A logic expression is formed from a set of variables ranging
over by applying negation (), conjunction ( ), and dis-
junction ( ). A literal is either a variable or its negation. Aterm
is a conjunction of literals from distinct variables. An expression
in disjunctive normal form(DNF) (also called asum of prod-
ucts) is the disjunction of a set of terms. A two-level expression
for a logic function is either a DNF expression or aconjunc-
tive normal form(CNF) expression. The definitionconjunctive
normal formis dual to the definition of disjunctive normal form.
We can, therefore, concentrate on the minimization of DNF ex-
pressions without loss of generality. A term such that the func-
tion is true whenever the term is true is animplicantof the func-
tion. An implicant that contains one literal for each variable is
a mintermof the function. An implicant of a function that does
not imply any other implicant is aprime implicant.

Given a logic function, we are interested in finding a DNF
expression that represents it and is of minimum cost. The cost
of the DNF is a function of the number of terms, and the total
number of literals. To simplify the discussion, we shall assume
that our first priority is to minimize the number of terms. There-
fore, Quine’s theorem [50] guarantees that the exact solution to
the minimization problem is obtained by computing the set of
theprime implicantsof the function and then selecting a subset
of minimum cost that covers the function [51].

It is often the case that the function for which a minimum cost
DNF is sought is not completely specified. In its simplest form,
incomplete specification is represented by a set of minterms for
which the value of the function does not matter. The minimiza-
tion algorithm may choose whatever values help reduce the cost
of the solution. Accounting for this form of incomplete specifi-
cation does not make the minimization problem more difficult.
It is sufficient to consider the don’t care minterms as part of the
function when generating the prime implicants, and ignore them
when setting up the covering problem.

Two-level minimization is an NP-hard problem [52], and
amounts to solving a covering problem. In spite of recent
advances in the generation of the prime implicants [53], and
in the branch and bound algorithms [54], computing a DNF
of minimum cost remains prohibitive for functions with many
minterms and implicants. Heuristic algorithms are, therefore,
in common use. A heuristic minimizer likeEspresso[55], [56],
is given a DNF expression for the function of interest; it tries to
iteratively improve the DNF until some criterion is met. This
may be the exhaustion of allotted computing resources, or in
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the case we shall consider, the achievement of a solution that
is difficult to improve. We shall assume that the solution is a
prime and irredundantexpression. That is, each term is a prime
implicant, and no term can be dropped from the DNF without
altering the represented function.

The iterative improvement of the solution consists of elemen-
tary moves that change the DNF without changing the function.
These elementary movesexpand, reduce, or discardterms. Ex-
pansion of a term removes one or more literals from it, so that it
expands to cover more minterms. For instance, the second term
of the left-hand side of the following equality can be expanded
to yield the right-hand side:

Expansion is possible in this case because the minterm
that is added to is already covered by the term. Re-
duction is the inverse of expansion. In our example, reduction
would produce the left-hand side from the right-hand side. Fi-
nally, a term can be dropped if all minterms it covers are covered
by at least another term of the DNF, as in the following example:

Of the three types of move, expansion and discard of terms
decrease the cost of the DNF. Reduction, on the other hand, in-
creases the cost by adding literals. The first two types of moves
are sufficient to produce a prime and irredundant DNF, but
reduction is important to allow the minimizer to escape local
minima. Espresso, therefore, organizes the three operations
in an optimization loop that visits one new local minimum
solution at each iteration and stops when no improvement is
achieved in the course of one iteration. At the beginning of
each iteration, all terms are maximally reduced. Then all terms
are maximally expanded. In the end, as many redundant terms
as possible are discarded.

The maximal reduction of a termof a DNF can be com-
puted recursively. The algorithm is based on Boole’s expansion
theorem

(3)

where , thepositive cofactorof with respect to is obtained
by assigning 1 to in . The negative cofactorof , , is
similarly defined. Let be the DNF obtained by removing
from . The maximal reduction ofis the smallest (least number
of minterms) term that covers all the minterms innot in

. This is computed as , where is the
smallest term implied by the complement of . (Cofactoring
with respect to a term means cofactoring with respect to all
literals in .) If we let be the smallest term implied by a
DNF expression , we can write

(4)

The computation of is simple: A literal appears in iff
(if and only if) it appears in all terms of. Equation (4) is applied
until the DNF expression is simple enough that the result can be
computed directly. (E.g., if consists of a single term.)

One special case in which can be computed directly is
when the DNF for is unate. Then, literal appears in
only if is an implicant of . This can be checked easily. A
DNF expression is unate if at most one literal for each variable
appears in it. This condition can be checked inexpensively. A
unate cover contains all the prime implicants of the function it
represents. Hence, in that case, one can computeby inspec-
tion. Unateness is used throughoutEspressoto speed up various
computations.

Consider as an example the maximal reduction of
in

From it follows that , and the
maximally reduced term is .

A term may have more than one maximal expansion. The al-
gorithm tries to select the one that leads to the elimination of the
largest number of other terms. The choice among several pos-
sible expansions is formulated as a covering problem.Espresso
computes a DNF for the negation of the given function before
entering the optimization loop. An expansion of a term is valid if
the expanded term does not intersect any term in the DNF for the
complement. Two terms do not intersect iff one term contains
one literal and the other contains its negation. We can, there-
fore, form ablocking matrixwith one row for each term of the
complement, and one column for each literal in the term to be
expanded. The entry of the matrix is 1 if the negation of
the literal of Column appears in the term of Row; otherwise
it is 0. If the entry equals 1, intersection of the expanded
term and the term of the complement associated to Rowcan
be avoided by retaining the literal of Column. The optimal ex-
pansion process is, thus, translated into the problem of finding
a set of columns that has ones in all rows. If we want to find the
largest expansion, we use the number of columns as cost func-
tion. Espresso, however, tries to maximize the number of other
terms that are covered by the expansion as its primary cost cri-
terion.

The order in which the terms are reduced and expanded af-
fects the result. The order in which the terms are considered has
no effect on how much each term can be expanded. However, by
considering implicants that cover more minterms first, one max-
imizes the probability of making a “small” implicant redundant.
For a given order, the maximum reduction of a term is unique.
However, the terms that are reduced first can be reduced more
than those that follow them. The order of reduction is chosen
so as to heuristically increase the chance that the successive ex-
pansion will make some terms redundant.

Discarding cubes to make a DNF expression irredundant is
also formulated as a covering problem. This is similar to se-
lecting a subset of all prime implicants in the exact minimiza-
tion method. However, only the terms in the current DNF are
considered. This usually makes the process much faster.

B. Multilevel Logic Synthesis

Multilevel expressions allow arbitrary nesting of conjunction,
disjunctions, and negations. They are sometimes much more ef-
ficient than two-level expressions in the representation of logic
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Fig. 15. Local simplification in Boolean networks.

functions: For the parity function of variables, a multilevel
representation grows linearly in size with, whereas the op-
timum two-level expression is exponential in. Since multilevel
expressions include two-level expressions as special cases, mul-
tilevel expressions can never do worse than two-level expres-
sions.

In multilevel synthesis, we are given a multilevel expression
for a set of functions, and we seek another multilevel expression
of reduced cost. Though cost depends in general on many pa-
rameters, including the area, delay, testability, and power dissi-
pation of the resulting circuit, in our examples we shall concen-
trate on reducing the number of literals, which is a technology-
independent measure of the area required to implement a func-
tion. Even with this simplified, and in some respects simplistic
cost function, the problem of finding an optimum multilevel ex-
pression remains prohibitively difficult, so that only heuristic
algorithms are used in practice. These heuristic approaches to
multilevel optimization usually combine local optimization with
restructuring. The input to the optimization process is aBoolean
network: an acyclic graph with a logic function associated to
each node. Local optimization is concerned with the simplifica-
tion of the expressions of the node functions. Restructuring is
concerned with changes in the structure of the graph.

1) Local Optimization: Algorithms for the optimizations of
two-level expressions can be used for the local optimization of
Boolean networks. To obtain good results, it is important to ex-
tractdon’t careinformation from the surrounding nodes. Con-
sider the Boolean network of Fig. 15, in which the function of
each node is indicated by the node shape. Suppose we are in-
terested in optimizing Node . If we
consider the node in isolation, we cannot find any improvement.
However, we may observe that it is impossible forto be zero
when is one. In other words, is a don’t care condition.
Also, when is 1, is 1 regardless of . Therefore, is also
a don’t care condition for . This condition is not in terms of
the inputs to ; hence, it is not directly usable. However, it is
possible to propagate the information by observing that
implies , which in turn implies . Therefore, is a don’t
care condition for . Simplification now produces 0, be-
cause all minterms of the original function are “don’t cares.”
Constant propagation leads then to .

Don’t care conditions can be collected explicitly and passed
to the minimizer, or inferred during the minimization process,
which in this case is calledredundancy removaland is closely
reminiscent of ATPG. Returning to Fig. 15, let us check whether
the replacement of by a constant zero would alter the function
of the network. A change in is observable at the outputonly

if is 0. This in turns implies that is 1. However, if is 1, is
0 regardless of the value of. This may be inferred (orlearned)
by assigning both values to, and observing that and

jointly imply . In conclusion, when is observable
at the output, it must be0. Hence, its replacement by the constant
is valid. Referring back to Section II-B, we see that line– –0
is a redundant fault.

Algorithms that use don’t cares can be extended in several
ways. The function of a node can be temporarily made more
expensive. As in the case of two-level minimization, the
moves that increase the cost allow the algorithm to escape
local minima. Another extension of the algorithms consists of
relaxing the definition of “local” to include a group of related
nodes. This may require suitable generalizations of the notion
of “don’t cares” [57], [58].

2) Restructuring: Restructuring of a Boolean network in-
volves adding and removing nodes, and changing the arcs of
the graph, while preserving functional equivalence. We concen-
trate on the task of factoring a two-level expression, which is
at the heart of the restructuring algorithms. Once several com-
plex two-level expressions have been factored, new nodes can
be created for the subexpressions, and common factors can be
identified.

Factoring of a two-level logic expressionconsists of finding
other two-level expressions, , and , such that

(5)

and then recursively factoring, , and . Though, strictly
speaking, the absence of a multiplicative inverse precludes the
existence of division in Boolean algebras, it is customary to
call division an operation that, given and , finds and
that satisfy (5). The solution is not unique, because adding or
removing from minterms that are not in or are in has
no effect on . Similarly, one can add or subtract
from minterms that are in both and . Division can, thus,
be formulated as an optimization problem, in which one seeks
a simple DNF expression for in terms of by specifying
don’t care conditions that relateto the other inputs to . This
approach is rather expensive, hence ill-suited for the quick
factorization of large Boolean networks. Another approach,
calledalgebraic divisionis, therefore, in common use.

3) Algebraic Techniques:Algebraic division [59] owes its
name to its reliance on a restricted set of laws that are shared by
Boolean algebras and the ordinary algebra of polynomials over
the real field:associativity, commutativity, anddistributivity of
product (conjunction) over sum (disjunction). Specifically ex-
cluded are idempotency ( ) and existence of
the complement ( and ). An example of
factorization that cannot be obtained by algebraic division is

The restriction in the scope of the optimization is compensated
by the ability to apply algebraic techniques to large circuits. Al-
gebraic techniques also have properties [60] that are not shared
by the general Boolean techniques.

To define algebraic division, we first stipulate that the quo-
tient of a term by another term is 0, if contains any literal
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that is not in ; otherwise, the quotient is the term consisting
of all the literals in and not in . With this definition, either

0, or . The quotient of a DNF form and a term
is the disjunction of all the quotients of the terms individed

by . (Here, it is convenient to assume that no term ofimplies
another term of .) Finally the quotient of two DNF forms and

is the disjunction of all terms that appear in all the quotients
of and the terms of. The remainder is simply the disjunction
of all terms that are not in the conjunction ofand the quotient
. It is easily seen that and are uniquely determined by this

algorithm, and and share no variables.
Algebraic factorization proceeds by identifying good factors

and then using algebraic division. The identification of good fac-
tors is based on the notion ofkernel. A primary divisorof is
the quotient obtained on division ofby a term. A primary di-
visor is a kernel if no literal appears in all its terms. (Such a pri-
mary divisor is said to becube-free.) The importance of kernels
stems from two facts: On the one hand, they can be computed
efficiently; on the other hand, two expressions have a nontrivial
(that is, having at least two terms) common algebraic divisor
only if they have kernels with at least two terms in common.
Kernels, therefore, allow the algebraic factorization algorithm
to greatly restrict the search space without compromising the
quality of the results.

Of the approaches to the computation of kernels [61], [62],
we briefly review the simple process that yields alevel-0kernel
from a given DNF expression. (A level-0 kernel has no other
kernel than itself.) The process is based on iterating the fol-
lowing two steps:

1) the expression is made cube free by dropping all literals
that appear in all terms;

2) the expression is divided by one literal that appears in
more than one of its terms.

A level-0 kernel is obtained when the second step can no longer
be applied. (Each literal appears at most once.)

By dividing a DNF expression by one of its kernels one
obtains a factorization of . However, under certain circum-
stances, the result is not maximally factored. For instance

has among its level-0 kernel. Division yields the factored
form

which can be further factored as

To avoid this and similar inconveniences, one has to examine
the quotient produced by division. If the quotientis a single
cube, the original divisor is replaced by a literal ofthat appears
in the most terms of . Otherwise, the divisor is replaced by
the expression obtained by makingcube-free. These simple
modifications guarantee maximum factorization.

4) Technology Mapping:Local optimization and restruc-
turing produce a so-called technology-independent Boolean
network that must be adapted to the primitives available for

Fig. 16. Two decompositions of a function and their combined representation.

implementation in the chosen technology (e.g., a standard-cell
library, a field-programmable gate array architecture, or
full-custom logic). We shall consider a popular approach to
mapping a Boolean network to a fixed library of logic gates.
The nodes of the network and the cells of the library are
decomposed in terms of two-inputAND gates and inverters; in
this way, the problem of technology mapping is reduced to a
graph covering problem. This covering problem is NP-hard,
but a practically useful polynomial approximation is obtained
by partitioning the network graph into a forest of trees [63].

Tree covering can be solved by dynamic programming. Pro-
ceeding from the inputs to the outputs, the best cover of each
node is found by examining all possible matches of library cells
to the node. Suppose the target gate library containsNAND and
NOR gates with up to three inputs and inverters, and suppose the
cost of each gate is its number of transistors in fully complemen-
tary CMOS. With reference to the top circuit of Fig. 16, there
is only one way to cover the output nodes of Gates 1, 2, and 4
(namely with an inverter of cost 2). The best cover of the output
of Gate 3 is obtained by suppressing the two cascaded inverters.

The only cover of the output of Gate 10 is two-inputNORgate
that matches Gates 1, 3, and 10. The cost is computed as the
sum of the cost of theNOR gate and the costs of the covers for
the inputs to the gate. In this case, the input to Gate 1 has cost
zero because it is a primary input. The optimum cost of covering
the input to Gate 3, on the other hand, has been determined to
be two. Hence, the optimum cost of covering the output of Gate
10 is six. Proceeding toward the output, Gate 6 is considered.
There are two possible covers. One is an inverter that matches
Gate 6. The cost is in this case eight: two units for the inverter
plus the cost of the optimum cover of Gate 10. The second cover
is a two-inputNAND gate that matches Gates 6 and 10. The total
cost is four for theNAND gate plus two for the optimum cover
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of the output of Gate 1. Since the second cover is cheaper than
the first, it is kept as the optimum cover of the output of Gate 6.

This process is continued until the optimum covers and their
costs have been determined for all nodes. The circuit is then
traversed from the output to the inputs. During this traversal,
the optimum cover for the current node is added to the solu-
tion; its input nodes are then recursively visited. Continuing our
example, the best cover for the primary output is a three-input
NAND gate that covers Gates 5, 6, 7, 10, and 12. This gate is
added to the solution. Then the output nodes of Gates 1, 3, and
4 are examined. This causes the addition of two inverters to the
solution.

This basic scheme can be improved in several ways, among
which we recall the Boolean matching approach of [64], and
the algorithm of [42], which integrates the decomposition and
covering steps. The advantages that stem from simultaneously
solving decomposition and covering are illustrated in Fig. 16.
The two upper circuits shown there are two decompositions of
the same function.

We have seen that when the dynamic programming algorithm
is applied to the first of the two decompositions, it finds an op-
timum solution consisting of a three-inputNAND gate and two
inverters. However, for the second decomposition the best solu-
tion consists of a two-inputNOR gate for the subcircuit rooted at
Gate 9 and a two-inputNAND gate covering the rest of the cir-
cuit. This corresponds to a savings of two transistors over the
first solution. The dynamic programming approach only guar-
antees optimality with respect to the chosen decomposition into
AND gates and inverters.

The bottom circuit of Fig. 16 illustrates in simplified form
the main idea of [42]. The circuit contains both decompositions
shown at the top of the figure, and a fictitiouschoice gate(the
OR gate marked by an X) connecting them. Dynamic program-
ming can now proceed on this augmented graph from inputs to
outputs as before. When the choice gate is reached, the algo-
rithm selects the best cover between its two inputs. A match
may span a choice gate, but can use only one of its inputs. The
combined representation of multiple decompositions based on
choice gates is calledmapping graph. Its strength lies in the fact
that the parts common to two decompositions need not be du-
plicated. This is illustrated by Gates 1–5 in Fig. 16.

Even though we have shown the construction of the mapping
graph by combination of two given decompositions, the algo-
rithm of [42] derives it from a single initial decomposition of
the technology-independent Boolean network by application of
local transformations. These transformations embed in the map-
ping graph all the decompositions that can be obtained by appli-
cation of the associative and distributive properties, and by inser-
tion of pairs of inverters. The graph may contain cycles. On the
one hand, these cycles add flexibility to the algorithm, which can,
for example, add an arbitrary even number of inverters between
two gates. On the other hand, the determination of the optimum
covers cannot be accomplished in a single pass from input to out-
puts, but requires a greatest fixpoint computation.

C. Model Checking

In model checking, we are given a sequential circuit and a
property. We are asked to verify whether the model satisfies the

Fig. 17. A simple Kripke structure.

property. Specifically, the circuit is supposed to perform a non-
terminating computation, and the property specifies which (in-
finite) runs of the circuit are correct. The circuit is usually mod-
eled as aKripke structure

where is the finite set of states, and is thetran-
sition relation, specifying what pairs of states are connected by
transitions. is the set ofinitial states, is the set of
atomic propositions, and is the labeling function,
which says what atomic propositions hold at each state.

A Kripke structure is depicted in Fig. 17, for which

The conditions under which transitions are enabled are not
captured by . We are only told that the transition is possible.
Alternatively, we can regard the Kripke structure as the model of
aclosedsystem—that is, a system and its environment. We shall
assume acompletetransition relation; that is, we shall assume
that every state has at least one successor.

1) The Logic CTL*: The properties are expressed in various
formalisms. We consider thetemporal logicCTL* [47], whose
two subsetscomputational tree logic(CTL) [65] andlinear time
logic (LTL) [66] and [67] are commonly used in practice. CTL*
is abranching time logicthat augments propositional logic with
path quantifiers ( and ) and temporal operators (, , , , and
). From every state, a system may evolve in several possible

ways; that is, several computation paths may exist. A branching
time logic allows one to express properties that may hold for
at least one computation path, or for all computation paths. The
temporal operators describe the evolution in time of the proposi-
tions. For instance, if is a propositional formula (e.g., ),
then means that is always true in all computations, and

means that there exists a computation in whichis either
true now or is going to be true in the future. Operators, proposi-
tions, and quantifiers can be combined to form more complex
formulae like , which states that along all computation
paths is true infinitely often.

The formal definition of CTL* requires the definition of both
state formulae(asserting something of a state) andpath for-
mulae(asserting something of a path). Any atomic proposition
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is a state formula, and any state formula is also a path formula;
furthermore

if and are state formulae, so are and

if is a path formula, is a state formula

if and are path formulae, so are and

if and are path formulae, so are and

The logic CTL* is the set of state formulae defined by the above
rules. (A path formula can only be a proper subformula of a
CTL* formula.) The remaining connectives used in CTL* are
defined as abbreviations in terms of, , , , and : ab-
breviates ; abbreviates , abbreviates

; and abbreviates . Additional Boolean con-
nectives ( ) are defined in terms of and in the
usual way.

For a given structure , if a state formula is true of state
, we write . Likewise, if a path formula is true of

path , we write . The suffix of path
starting at state is denoted by . is omitted if there is no

ambiguity. With these definitions, the truth of a CTL* formula
can be defined recursively. If , iff ; if is
a state formula, iff ; otherwise,

iff and

iff

iff starting at such that

iff and

iff

iff

iff and

means that holds in all initial states of . If is the
Kripke structure of Fig. 17, we have and .
We also have and . Indeed,

because there is no path starting atsuch that always
holds, and because the path that stays inforever
satisfies .

With slight abuse of notation, we shall denote the set of states
in which holds by itself. In model checking, the CTL* for-
mula , we usually proceed by finding the set of states, and
then verify that . The recursive definition of the seman-
tics suggests that, to find the states that satisfy a given formula,
we recursively analyze its subformulae, and then apply the ap-
propriate case from the above definition. The immediate diffi-
culty that we face in this approach is that in the case of ,
the subformula is true of a set of paths, not a set of states.
We shall address this difficulty gradually, starting from simple
cases.

2) Model Checking CTL Formulae:Suppose we want to
find the states that satisfy , where is a state formula. The
key observation is that

(6)

Equation (6) says that there is a path from a stateto another
state where holds if holds at , or if has a successor with

a path to a state whereholds. Equivalently, is a fixpoint
of the function ; it can be proved to be the least
fixpoint. In the notation of -calculus, this is written

(7)

where prescribes a least fixpoint computation andis the
iteration variable. The set of states satisfying is the set of
predecessors of states in. Tarski’s theorem [68] ensures the
existence of the fixpoint, which can be computed by repeated
application of the function starting with

The finiteness of the state set guarantees convergence. Re-
turning to the Kripke structure of Fig. 17, suppose we want to
check whether . We proceed by computing

since

The iterates of the fixpoint computation are as follows:

(In this case, the last iteration could be avoided by observing
that .) As a last step, we verify that . Hence,
the formula holds.

With reasoning analogous to that used for , one can show
that

(8)

(9)

where indicates the greatest fixpoint. In summary, if every
temporal operator is immediately preceded by a path quantifier,
model checking can be reduced to a series of fixpoint computa-
tions for functions that map sets of states to other sets of states.
The restriction on the syntax of the formula results in the logic
CTL. CTL is not as expressive as CTL*. For instance, the CTL*
formula has no equivalent in CTL. On the other hand,

-calculus, in which we have cast the problem of CTL model
checking, can express all CTL* (and more). In particular, we
can write a -calculus formula that computes the set of states
along paths that satisfy a condition infinitely often. (Such a con-
dition is called afairness constraint.) Let designate the set of
states that satisfy the desired condition. Then the set of states
along paths satisfying is given by

(10)

The extension of (10) to more than one fairness condition is
straightforward. Suppose we want to compute the states that
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satisfy for the Kripke structure of Fig. 17. The iterates
of the fixpoint computation are

The computation, therefore, converges toin one iteration.
The addition of fairness constraints to CTL is useful in itself,

because these constraints can help in modeling the environment
of the system being verified, or can eliminate spurious behav-
iors introduced in a model by the abstraction of some details. In
addition, a model checking procedure for CTL augmented with
fairness constraints is an important building step toward a gen-
eral solution for CTL* model checking.

3) Model Checking LTL Formulae:Let us consider now an-
other special case: formulae whose only path quantifier is the
first operator of the formula. As an example, consider . If
we strip the leading quantifiers from such formulae, we obtain
path formulae that contain no quantifiers. Specifically, we ob-
tain the formulae of the logic LTL. We now show how we can
model check LTL formulae. That is, we show how to decide
if there is a path in the Kripke structure that satisfies the LTL
formula. To this effect, we shall convert the formula into an au-
tomation that will be composed with the system to be verified.
The composition constrains the system to satisfy the LTL prop-
erty along all its computation paths. If at least one path is still
viable in the composed system, the property holds. The conver-
sion from LTL to automata is based on rewriting rules known as
the tableau rules[cf. (7) and (9)]:

(Similar rules can be written for and .) When applied to
, these rules produce

which can be rewritten as

This formula says that there are two ways to satisfy: by satis-
fying in the current state and in the next; or by satisfying

and in the next state (with no obligation in the current
state). We can, therefore, create two states in the automation cor-
responding to these two possibilities. (See Fig. 18. The double
circle identifies the accepting state. Both states are initial.) The
first state is labeled. Its successors are the states that satisfy

: both states. The second state has label ; its successors
are the states that satisfy . We, therefore, apply
the tableau rules to and we find the same formula produced
by the expansion of . No new states need to be generated, be-
cause the successors of the second state are, once again, the two
existing states.

To complete the construction, we have to observe that a run of
the automation that from some point onward does not leave the
second state, does not guarantee the satisfaction ofbecause

Fig. 18. Automation for the LTL formula' = GFp.

is not guaranteed to be true infinitely often. This problem is
signaled by the presence of in the state. Following the loop
simply means satisfying an eventuality by postponement. This
postponement cannot be indefinite. To obviate, we add a fairness
constraint to the automation, specifying that a valid run must be
in a state other than the second state (i.e., in the first state, which
is, therefore, anacceptingstate) infinitely often. The resulting
automation is called a Büchi automation.

4) Model Checking Full CTL*:Although our simple
example does not illustrate all the details of the translation
from LTL formula to automation, it does point out the salient
facts: That the translation produces a transition structure and
one or more fairness constraints. A state satisfies the formula
iff, in the composition of the model and the automation for the
property, there is a computation path originating at that state
that satisfies all fairness constraints. We have seen that this can
be determined by evaluating (10). Hence, we have reduced LTL
model checking to -calculus.

The last step is to show how to model check a generic CTL*
formula with the techniques developed so far. Notice that the
formula, once the abbreviations are expanded, must either be a
purely propositional formula (e.g., ), or contain at least
one existential quantifier. The former case is easy. Ifcontains
a quantifier, then it has a subformula , where is an LTL
formula. We can apply the (existential) LTL model checking
algorithm to find the states that satisfy , and replace in
with a new atomic proposition that holds exactly in those states.
The process is repeated until the entire formulais replaced
by one atomic proposition that is true of all the states where
is true. If a subformula is a CTL formula, the translation
to automation is not necessary, and the CTL model checking
algorithm can be applied directly to it.

5) Explicit and Symbolic Model Checking:Equations
(7)–(10) form the heart of the model checking procedure. They
involve the computation of sets of states. Inexplicit model
checking algorithms, states are usually represented as bit
strings and stored in hash tables. The transition structures are
represented in various ways; to fix ideas, we shall assume that
they are stored as adjacency lists. Under these assumptions,
computation of least fixpoints amounts to reachability analysis
of the transition structure, and can be performed in time
linear in the number of transitions by depth-first search. The
computation of (10) translates into the computation of the
strongly connected components of the transition structure. This
can also be done in linear time by depth-first search. It should
be noted, however, that the translation from LTL to automata
may incur an exponential blow-up in size. Therefore, the CTL*
model checking problem is overall PSPACE-complete [69]. By
contrast, CTL model checking is linear in both the size of the
system and the length of the formula.

In symbolic model checking, sets are represented by their
characteristic functions. Assuming, without loss of generality,
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that a state is an element of for some , and a tran-
sition is, therefore, an element of , then
the characteristic function of a set of states is a function

that maps the elements of to 1
and the other states to 0. The most popular representation of
characteristic functions is BDDs. (See Section IV-D.) The main
advantage of characteristic functions is that very large sets can
have very small representations. For instance, the characteristic
function represents a subset of containing

elements. Intersection, union, and complementation of
sets correspond to conjunction, disjunction, and negation of
their characteristic functions.

Symbolic computation of least fixpoints also amounts to
reachability analysis, and is most naturally performed in
breadth-first manner. Let describe the characteristic
function of the transition relation of a Kripke structure, and
let describe the characteristic function of a set of states.
The variables range over the origin states
of the transitions (the present states), while the variables

range over the destination states of the
transitions (the next states). The states that are connected to at
least one state in by a transition in are given by

(11)

The conjunction of and yields the transitions
ending in a state in . The quantification of the variables
discards the destination states, thus producing the desired set
of predecessors. This so-calledpreimagecomputation allows
one to compute the states satisfying the subformulae in
(7)–(10) without explicitly manipulating the individual states
or transitions. For the Kripke structure of Fig. 17, suppose that
the following encoding of the states is chosen:

Then the characteristic function of the transition relation is

The characteristic function of the set of states in terms of
variables is . The characteristic function
of the predecessors ofis, therefore, computed as

which is seen to correspond to the set .
The ability to deal with symbolic representations of sets of

states is highly effective for verification problems in which
the quantities of interest have simple characteristic functions.
However, it should be noted that this is not always the case.
Moreover, computation of strongly connected components by
depth-first search is not well suited to symbolic computation.
Direct use of (10), on the other hand, leads to an algorithm
that requires a quadratic number of preimage computations.
In summary, in spite of the great success of symbolic model
checking, there remain cases in which the explicit techniques
are superior.

Fig. 19. BDD forF = x ^ z _ y ^ z.

D. BDDs

Many algorithms in logic synthesis and formal verification
manipulate complex logic functions. An efficient data structure
to support this task is, therefore, of great practical usefulness.
BDDs [48] have become very popular because of their effi-
ciency and versatility.

A BDD is an acyclic graph with two leaves representing the
constant functions 0 and 1. Each internal nodeis labeled with a
variable and has two children(then) and (else). Its function
is inductively defined as

(12)

Thhree restrictions are customarily imposed on BDDs.

1) There may not be isomorphic subgraphs.
2) For all internal nodes, .
3) The variables are totally ordered: The variables labeling

the nonconstant children of a node must follow in the
order the variable labeling the node itself.

Under these restrictions, BDDs provide a canonical represen-
tation of functions, in the sense that for a fixed variable order
there is a bijection between logic functions and BDDs. Unless
otherwise stated, BDDs will be assumed to be reduced and or-
dered. The BDD for with variable order

is shown in Fig. 19.
Canonicity is important in two main respects: It makes equiv-

alence tests easy, and it increases the efficiency ofmemoization
(the recording of results to avoid their recomputation). On the
other hand, canonicity makes BDDs less concise than general
circuits. The best-known case is that of multipliers, for which
circuits are polynomial, and BDDs exponential [70]. Several
variants of BDDs have been devised to address this limitation.
Some of them have been quite successful for limited classes
of problems. (For instance, Binary Moment Diagrams [71] for
multipliers.) Other variants of BDDs have been motivated by the
desire to represent functions that map to some arbitrary
set (e.g., the real numbers) [72].

For ordered BDDs, and do not depend on; hence,
comparison of (3) and (12) shows that and

. This is the basis of most algorithms that manipulate
BDDs, because for a generic Boolean connective,

(13)
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Equation (13) is applied with chosen as the first variable in
the order that appears in eitheror . This guarantees that the
cofactors can be computed easily: Ifdoes not appear in, then

; otherwise, is thethenchild of , and is
theelsechild. Likewise, for . The terminal cases of the recur-
sion depend on the specific operator. For instance, when com-
puting the conjunction of two BDDs, the result is immediately
known if either operand is constant, or if the two operands are
identical or complementary. All these conditions can be checked
in constant time if the right provisions are made in the data struc-
tures [73].

Two tables are used by most BDD algorithms: Theunique
table allows the algorithm to access all nodes using the triple

as key. The unique table is consulted before creating a
new node. If a node with the desired key is already in existence,
it is re-utilized. This approach guarantees that equivalent func-
tions will share the same BDD, rather than having isomorphic
BDDs; therefore, equivalence checks are performed in constant
time.

Thecomputed tablestores recent operations and their results.
Without the computed table, most operations on BDDs would
take time exponential in the number of variables. With a lossless
computed table (one that records the results of all previous com-
putations) the time for most common operations is polynomial
in the size of the operands. The details of the implementation
of the unique and computed tables dramatically affect the per-
formance of BDD manipulation algorithms, and have been the
subject of careful study [74].

The order of variables may have a large impact on the size
of the BDD for a given function. For adders, for instance, the
optimal orders give BDDs of linear size, while bad orders lead to
exponential BDDs. The optimal ordering problem for BDDs is
hard [75]. Hence, various methods have been proposed to either
derive a variable order from inspection of the circuit for which
BDDs must be built, or by dynamically computing a good order
while the BDDs are built [76].

An exhaustive list of applications of BDDs to problems in
CAD is too long to be attempted here. Besides symbolic model
checking, which was examined in Section IV-C-5, BDD-based
algorithms have been proposed for most synthesis tasks,
including two-level minimization, local optimization, factor-
ization, and technology mapping. In spite of their undeniable
success, BDDs are not a panacea; their use is most profitable
when the algorithms capitalize on their strengths [77], and
avoid their weaknesses by combining BDDs with other rep-
resentations [44], [45], [78]; for instance with satisfiability
solvers for CNF expressions.

V. CONCLUSION

Even within generous space limits we could only afford to ad-
dress very few of the algorithms currently in use for test, phys-
ical design, synthesis, and verification. The following trends can
be identified:

• Although tremendous progress has been made, effective
and efficient new algorithms are still needed in all aspects
of VLSI CAD.

• Full scan is becoming a de facto standard for testing and
diagnosis for sequential circuits.

• BIST is commonly used for array structures and its use
will continue to expand at a rapid rate.

• New fault modes will be addressed that deal with cross-
coupling electrical phenomena, such as crosstalk, signal
integrity, and process variation.

• Manufacturing test techniques will be employed to a
greater extent to design validation as the use of functional
tests become less useful.

• Congestion minimization and interaction of conges-
tion and timing in placement is a fundamental and
under-studied problem.

• Integration of logic and physical design will be a dom-
inant theme in logic synthesis research. The current ap-
proaches were not designed to deal with the challenges of
deep submicron processes. This often leads to decrease in
productivity when designers have to go through several it-
erations to solve timing, or signal immunity problems. The
solutions that will be proposed will include a tighter inte-
gration of layout and logic optimization, and the adoption
of more controlled design styles (both logic and physical).

• Reconfigurable computers are likely to fill the gap be-
tween general-purpose programmable components and
ASICs. New logic design problems will emerge that will
demand new algorithms for their efficient solutions.

• Formal verification will increasingly rely on abstrac-
tion techniques and compositional approaches like
assume/guarantee reasoning. Semi-formal approaches,
that is, approaches that help increase the confidence in the
correctness of a design by augmenting simulation-based
verification with formal techniques, will become impor-
tant.

• From the point of view of the CAD developer, the integra-
tion of various engines into powerful tools will become
more prevalent.
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