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Overview
Benefits of BIST:
• As a means of dealing with the cost of TPG.
• As a means of dealing with increasingly larger volumes of test data.
• As a means of performing at-speed test.

BIST entails three tasks:
• TPG
• Test application
• Response verification

Types of BIST:
• Memory BIST
• Logic BIST
• Combinations for testing RAM-based FPGAs.

We will focus on logic BIST, used for testing random logic.
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Overview
Logic BIST uses pseudorandom (PR) tests, generated using a Linear Feedback
Shift Register (LFSR) or cellular automata.

Usually much longer than deterministic tests but much less costly to gener-
ate.

The large volume of data usually requires some sort of compactor to com-
press the responses.

There are several types but signature analyzers are the most popular.

All components are on-chip.

The controller manages the application of the test.

Test Controller

Test Generator CUT Response Verification
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PseudoRandom TPG and LFSRs
PseudoRandom (PR) implies random patterns without repetition.
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D Q
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Clk
Y2 Y3

D Q

Clk

D Q

Clk

Y0

D Q

Y1

Clk
Y2 Y3

D Q

Clk

D Q

Clk

Y0

The clock
is the only
input

Autonomous

The number of
unique patterns
is equal to the
number of states
in the circuit.

This is determined by
the number and
position of the
feedback tabs.

(a)

(b)

(c)

LFSR
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LFSRs
For (a), the parity of the feedback tabs defines the input, Y0.

Let y0y1y2 represent the present state of the registers and Y1Y2Y3 represent the

next state, then Y1 = y0, Y2 = y1 and Y3 = y2.

The leftmost (a) LFSR was arbitrarily initialized to 001.
Generating 000 is not possible (the last row is identical to the first row).

The maximal cycle of the LFSR is 7: (23 - 1).

Clk y0 Y1 Y2 Y3 Clk y0 Y1 Y2 Y3 Clk y0 Y1 Y2 Y3

1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 0 0 1 0 1 0 0 1 1 1 0 0
2 1 1 1 0 2 0 0 1 0 2 0 1 1 0
3 0 1 1 1 3 1 0 0 1 3 0 0 1 1
4 1 0 1 1 4 1 0 0 1
5 0 1 0 1
6 0 0 1 0
7 1 0 0 1

Y0 Y1 Y3⊕=
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LFSRs
Note that the relationship between the maximal cycle and the # of feedback
tabs is not linear.

Example (c) has 3 feedback tabs but can only generate 4 patterns.
Adding a NOR as shown allows the all-zero pattern.

Clk y0 zero Y1 Y2 Y3

1 1 1 0 0 0
2 1 0 1 0 0
3 1 0 1 1 0
4 0 0 1 1 1
5 1 0 0 1 1
6 0 0 1 0 1
7 0 0 0 1 0
8 0 1 0 0 1

D Q

Y1

Clk
Y2 Y3

D Q

Clk

D Q

Clk

y0

zero
Assume start
state is:
Y1Y2Y3=001.
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LFSR Configurations
Two configurations:

Note, there is only a tap and an XOR gate if Ci=1.
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+
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Clk

+
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+
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D Q

Clk

CN

D Q

Clk

+

C1

D Q

Clk

+

C2

+

CN-1

D Q

Clk

CN

Standard

Modular
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LFSR Configuration Examples
This LFSR is equivalent to the version given in (a) previously.

LFSRs that implements polynomial 1 + X3 + X4.

D Q

Y1

Clk

Y2 Y3

D Q

Clk

D Q

Clk

(a) Modular version

D Q

Clk

D Q

Clk

+
D Q

Clk

Standard

Modular

D Q

Clk

1 X X2 X3 X4

D Q

Clk

D Q

Clk

+ D Q

Clk

D Q

Clk

XX2X3X4 1
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Analytical Framework for LFSRs
The truth table for the XOR gate indicates it performs addition and subtraction,
modulo 2.

Note that carry and borrow are not implemented because of the modulo 2.

Expressing the output, Yj, as a function of time:

As a function of Y0, using Xj as a translation operator:

a b a XOR b a+b (sum) a-b (diff) a+b (carry) a-b (borrow)
0 0 0 0 0 0 0
0 1 1 1 1 0 1
1 0 1 1 1 0 0
1 1 0 0 0 1 0

Y j t( ) Y j 1– t 1–( )= for j 0≠

Y j t( ) Y0 t j–( )=

Y j t( ) Y0 t( )X
j

=
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Analytical Framework for LFSRs
In the standard form, Y0 is the sum of other states as given by:

Substituting:

Y0 t( ) C jY j t( )
j 1=

N

∑= Here, sum is XOR.

Y0 t( ) C jY0 t( )X
j

j 1=

N

∑=

Y0 t( ) Y0 t( ) C jX
j

j 1=

N

∑=

Y0 t( ) C jX
j

1+
j 1=

N

∑
 
 
 

0=

Y0 t( )PN X( ) 0=

where PN(X) is called the characteristic polynomial

Eliminate Yjs.



VLSI Design Verification and Test BIST I CMPE 646

10 (12/11/06)UMBCU  M  B  C

U
N

IV
E

R
SI

T
Y

  O
F 

 M
ARYLAND  BALTIM

O
R

E
  C

O
U

N
TY

1 9 6 6

Analytical Framework for LFSRs
Assuming

where

The characteristic polynomials for (a), (b) and (c) given earlier are:

• C1=1, C2=0, and C3=1 yields P3(X) = 1 + X + X3

• C1=0, C2=0, and C3=1 yields P3(X) =  1 + X3

• C1=1, C2=1, and C3=1 yields P3(X) =  1 +X +X2+ X3

The length of the LFSR sequence is determined by its characteristic polyno-
mial.

Only a primitive polynomial guarantees a maximal-length sequence of

2N - 1.

Y0 t( ) 0≠ then PN X( ) 0=

PN X( ) 1 C jX
j

j 1=

N

∑+=
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Operations on Polynomials
Multiplication uses modulo 2 addition, e.g., xi + xi = 0.
Division will be useful in response compaction.

Irreducible polynomial properties:
Cannot be factored, is divisible only by itself and 1, has a odd number of

terms (including 1), is primitive if smallest k even divisible into 1 + xk is

k = 2N-1 (with N the degree of the polynomial).

x
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Primitive Polynomials
All polynomials of degree 3 that include the 1 term:

(b) and (c) are primitive, e.g., they divide evenly into x7 - 1.

(a) and (d) are reducible, e.g., x3 + 1 = (x + 1)(x2 + x + 1).

The configuration of the LFSR introduces autocorrelation between consecu-
tive sequences, e.g.,column for Y2 and Y3 from left side of slide 4 gave:

(0011101)0
(1001110)1

Y3 is 1 bit shifted to the right compared to Y2.

This makes it difficult to detect some faults (Random Pattern Resistant (RPR)).

x
3

1+ 0=

x
3

x
2

1+ + 0=

x
3

x 1+ + 0=
x

3
x

2
x 1+ + + 0=

(a)
(b)
(c)
(d)
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Response Compaction
The response of the logic-under-test needs to be checked after test application
with an LFSR.

It is difficult to check the response of every pattern (storage requirements).
Instead, the responses are compressed and the compressed response is
checked.

The type of compression used here typically losses information and allows
aliasing (identical faulty and fault-free circuit responses).

The probability of aliasing decreases as the length of the test increases.

There are several compaction testing techniques:
•  Parity testing
•  One counting
•  Transition counting
•  Syndrome calculation
•  Signature analysis
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Parity and One Counting
Parity testing: simplest but most lossy.

Detects all single bit errors and multiple bit errors of odd cardinality.

One Counting: # of 1’s in the response stream is compared with fault free
value.

The counter counts up by 1 each time a response, ri, is 1.

Under exhaustive test, the # of 1’s represents the # of minterms in a fault
free circuit (syndrome testing: a special case of 1’s counting).

CUT
test

patterns + D Q

Clk

ri

Pi-1 P ri
i 1=

L

∑=

where L is the length
of the test.1 or 0P(X) = X + 1

CUT
test

patterns
responses

Counter
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One Counting
Consider the following exhaustive test:

For the fault-free circuit, the 1-count is 5.
The faults a/0 and a/1 would be detected since the counts would be 4 and
6.

An upper bound on the probability of aliasing, given a test of length L (with

2L - 1 strings) and a fault-free 1-count of m is:

C(L,m) - 1 represents the number of L bit strings with m 1’s that are aliases.

Note that C(L,m) is symmetrical but not uniform and has a peak at L/2.
Therefore, the probability is smaller for small and large values of m.

11110000
11001100
10101010

11000000
11101010

a
b
c

Palias m( ) C L m,( ) 1–[ ]

2
L

1–
---------------------------------=
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One Counting
For the circuit shown above, Palias is 55/255 ~= 0.2.

However, in this case, the test does not cause ANY aliasing.
Are all of the 255 strings of length 8 possible?
How many faults are possible?

Consider the shorter test sequence:

Fault-free circuit 1-count is 3 and L is 5, which gives Palias 10/31 ~= 0.3.

Aliasing occurs only for 1 fault, a/1, but its  not detected anyway.

11100
10110
10010

10100
10110

a
b
c
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Transition Counting and Signature Analysis
Transition Counting: Only the number of transitions (0->1 and 1->0) are
counted in this compaction scheme.

The signature is given by:

Signature Analysis (cyclic redundancy checking): Most popular technique.
The compactor is an LFSR which takes the response string, M(t) as input.

An N-bit signature is stored in the N-bit LFSR after the application of the
L test patterns (L->N compaction).

CUT
test

patterns +D Q

Clk

ri

ri-1 Counter

ri ri 1+⊕
i 1=

L 1–

∑ Palias t( ) 2C L 1– t,( ) 1–[ ]

2
L

1–
-------------------------------------------=
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Signature Analysis
The signature is just the remainder of the division of the response by the char-
acteristic polynomial of the LFSR, P(X).

For example, assume M(t) = {10110001} is applied to either in state (000):

T M(t) y0 y1 y2 y3 M(t) y0 y1 y2 y3

0 1 1 0 0 0 1 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
2 1 0 0 1 0 1 1 0 1 0
3 1 0 0 0 1 1 0 0 0 1
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 1 1 0 0 0 1 1 1 0 0
8 x X 1 0 0 x x 1 0 0

D Q

Clk

D Q

Clk

+ D Q

Clk
1

+

2 3

M(t)
D Q

Clk

D Q

Clk

+ D Q

Clk
1

+
2 3

M(t)

Std Modular P(X) = X3 + X2 + 1

y0 y1 y2 y3 y0 y2 y3y1

P(X) = 1 + X2 + X3
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Signature Analysis
The signatures, X2, are the result of the division of M(X) (a representation of
M(t)) by the characteristic polynomials of the LFSRs.

M(X) = P(X)Q(X) + R(X).

With M(t) = {10110001}, M(X) = X7 + X5 + X4 + 1.
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Fault Detection using Signature Analysis
Assume we have a CUT and a test set of length L, such that at least one pat-
tern detects each fault, f, in the CUT.

The response is applied to the N-stage signature analyzer implementing
characteristic polynomial, P(X).

The fault is detected if the fault signature Sf is different from the fault-free

signature S:

The signature, S, is the remainder
Therefore, aliasing (masking) occurs when Rf(X) = R(X).

Since the polynomial has a finite number of remainders, it is not possible to
eliminate aliasing unless the L <= N.

S f S⊕ 1=

Test
CUT

Signature

Comparator
AnalysisGenerator

Rt(X)

Rff(X)
error?
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Aliasing Probability using Signature Analysis
Assume the response of a CUT is L bits long.

The structure of the LFSR distributes the signatures of all possible response

streams (strings) of length L (2L) evenly over all possible signatures.
For an N-stage LFSR, the #, Ns, of strings/signature is:

For a particular fault-free response, there are 2L-N-1 erroneous strings that
produce the same signature.

Given there are 2L-1 possible erroneous strings, the aliasing probability is:

Ns
2

L

2
N

------- 2
L N–

= =

Palias
2

L N–
1–

2
L

1–
------------------------ 2

N–
for L N»≈=
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Aliasing Probability using Signature Analysis
This is a strange result since it is independent of the polynomial.

This suggests that the P(X) = XN, which is just a shift register whose "remain-
der" is the last N bits of the test response, works equally well!

For example, a 16-bit LFSR may detect (1 - 2-16) = 99.9984% of the error
responses.

However, since there is no direct correlation between faults and error
masking, this is not necessarily the same percentage of faults detected.

Also, this assumes that the number of faulty response streams is 2L - 1 and
that each faulty response is equally likely.

Neither of these is true in general.

Several schemes have been proposed that minimize aliasing, e.g., reversing
the test sequence, using multiple MISRs, taking multiple signatures.

All require extra hardware or increased test time.


