Space Compaction Multiple Outputs

We need to treat the general case of a *k*-output circuit.

There are several possibilities:

• Multiplex the *k* outputs of the CUT.

The multiplexer compacts the responses of each PO one at a time.

k times slower but the 2^{-N} aliasing probability is reduced when multiple POs are tested independently.

1

Space Compaction Multiple Outputs

• Bellmac uses both *parity* and *signature analysis* compaction.

For example, given the error responses:

Patterns	E1	E2	E3	E4	Parity
T1	1	0	0	0	1
T2	0	1	1	0	0
T3	0	1	0	1	0
T4	0	1	1	0	0
T5	1	1	1	0	1

The "parity" polynomial, $X^4 + 1$, is then feed to the LFSR, which is divided by $P(X) = X^4 + X + 1$.

This yields a remainder of R(X) = X.

Space Compaction Multiple Outputs

• Parallel Signature Analysis (Multiple Input Signature Register or MISR).

This scheme is equivalent *k* single input SAs but with the input stream **shifted in time**, $M(X) = M_0(X) + XM_1(X) + ... + X^kM_k(X)$.

The *error polynomial* of the four outputs is $E(X) = E_1(X) + XE_2(X) + X^2E_3(X) +$

 $X^{3}E_{4}(X)$, which is divided by the P(X) yeilding a remainder of $X^{3} + X + 1$.

Note that the aliasing probability of the MISR is still 2^{-N} for an *N*-stage SA. When the number of outputs, *k*, of the CUT is > *N*, parity/MUX can be used.

Random Pattern Resistant Faults

The effectiveness of any test can be measured by:

- It's fault coverage
- It's length
- It's hardware requirements
- It's data storage requirements

PR tests generated according to previous methods are usually long and result in unacceptable fault coverage:

Random Pattern Resistant Faults

 ΔFC represents the *hard-to-detect* faults by random patterns (**RPR**).

The fault coverage can be improved by reducing the aliasing probability. However, the main source of difficulty is that some faults are detected by **only a couple**, possibly one, patterns.

The root of the problem: Under PR pattern generation, all FFs have *equal probability* of generating a 1 or 0.

However, detection probabilities for faults in gates do not follow this distribution, e.g., only 1 pattern detects an *SA0* on an input to a *6-input* NOR.

Random Pattern Resistant Faults

Weighted PR TPG assigns weights to the PIs, the probability that 1 should be assigned to a PI.

Weight assignment can be based on **circuit structure analysis** or **fault detection probabilities**.

Although coverage is improved, there are still *hard-to-detect* faults. This results from fan-out, e.g., an input **common** to the AND and OR gate is assigned a weight that favors one over the other.

Multiple weights is a solution but adds hardware.

Other solutions: test point insertion, reseeding the LFSR and multiple polynomial LFSRs add hardware, impact performance and/or require long tests.

Mixed-mode approach uses **deterministic patterns** stored in ROM or via *bitfixing/flipping* from LFSR patterns for RPR faults.

No good solutions, deterministic patterns are typically applied via scan path.

BIST Architectures

The LFSR and SA can be on-chip or off-chip, and as indicated, logic BIST typically combines PR testing with scan and boundry-scan.

(12/11/06)

Three phases to the test: **Initialization**: all STSR and FFs. **Test mode**: all STSR act as LFSR and MISR. **Response Eval**: STSRs are compared with fault-free value.

(12/11/06)

BIST Architectures

BILBO (Built-In Logic Blocks Observer): BIST + Scan Path.

Combines TPG and response compression in a single unit (designed for busoriented systems).

It uses existing FFs on-chip for PR TPG and SA.

C₁ and C₂ configure as a **shift register** for scan (00), an **LFSR** (00), **MISR** (10) a **Normal** (11).

Each combo block is tested one at a time. For testing Combo-1, Reg 1 configured as PRTPG (LFSR) and Reg 2 configured as MISR. So testing Combo-1 involves configuring BILBO as a **MISR**.

Afterwards, testing Combo-2 involves configuring BILBO as an LFSR.

BIST Architectures

Random Test Socket: Combines scan and BIST.

All PIs are connected to the taps of LFSR #1 and all POs to the MISR.

FFs are scannable and form a Shift Register (SR).

SI is driven by LFSR #2 while SO is connected to the SSA.

1) Load SR with pattern from LFSR #2

2) Apply pattern using LFSR #1 to PIs.

3) Clock to latch response in SRs.

4) Capture results in MISR (SE = 0).

5) Scan out SR into SSA.

(Steps 1 and 5 can be overlapped).

Called "*test per scan*" instead of "*test per clk*" since shifting is necessary. Note, LFSR 1 and 2 can be combined as well as the MISR and SSA.

Adv: low-cost ATPG, Disadv: overhead and long test times.

(12/11/06)

12