
VLSI Design Verification and TestTestability Measures CMSC 691x

1 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Testability Measures
An attempt to quantify testability by Goldstein ’79 and Grason ’79 resulted in
two testability measures, controllability and observability.

Controllability is defined as the difficulty of setting a particular logic signal
to a 0 or a 1.

PIs are free (usually assigned a value of 1).
Output 1 values for AND gates are more expensive than OR gates.

Observability defined as the difficulty of observing the state of a logic signal.

Purpose:
• Analysis of difficulty of testing internal circuit nodes.

May need to modify circuit, add observation points or test hardware.
• Can be used to guide ATPG algorithms, i.e., to help them make decisions

by providing information about the difficulty of setting lines.
• Can be used to estimate fault coverage.
• Can be used to estimate test vector length.

VLSI Design Verification and TestTestability Measures CMSC 691x

2 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Testability Measures
Testability analysis attributes:
• Requires topological analysis (but no test vectors).
• It is linear in complexity.

Otherwise it’s pointless, i.e., might as well use ATPG to compute exact
fault coverage.

Goldstein developed SCOAP testability measures and describes a linear com-
plexity algorithm to compute them.

The algorithm has significant inaccuracies because it assumes that sig-
nals at reconvergent fanout stems are independent.

B fans out to 3 gates, the outputs of these gates reconverge at the OR gate.

B
C

Out

A

VLSI Design Verification and TestTestability Measures CMSC 691x

3 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Testability Measures
The assumption of signal independence is the key behind SCOAP’s linear
time algorithm.

However, this reduces its accuracy in predicting which individual faults
will remain undetected and which will be detected.

SCOAP testability measures:
• Controllability: From 1 (easiest) to infinity (hardest).
• Observability: From 0 (easiest) to infinity (hardest).

Combinational measures are related to the number of signals that may be
manipulated to control or observe l.

Sequential measures are related to the number of times a FF must be clocked
to control or observe a line.

VLSI Design Verification and TestTestability Measures CMSC 691x

4 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Testability Measures
Another approach is to make them probability based, i.e., they range between
0 and 1.

Here, the 1-controllability, C1, is the probability of a signal value on line l
being set to 1 by a random vector.

W.r.t. fault detection probability, we can cast the problem as the C1 of a sig-
nal line that is the XOR of the good and faulty circuit outputs.

Problem: Almost doubles the size of the circuit to be analyzed.

Alternatively, it can be cast (incorrectly) as the probability of detecting a SA0
fault on line l by a random input, e.g., C1(l) * OB(l).

Problem: control and observability of a line are NOT independent.

Jain and Agrawal address this problem in PREDICT using conditional proba-
bilities for observability.

PREDICT computes exact probabilities but has exponential complexity
for some circuits.

VLSI Design Verification and TestTestability Measures CMSC 691x

5 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures
Goldstein’s algorithm: SCOAP

Consists of 6 numerical measures for each signal (l) in the circuit:
• Combin. 0-controllability, CC0(l); Sequential 0-controllability, SC0(l)
• Combin. 1-controllability, CC1(l); Sequential 1-controllability, SC1(l)
• Combin. observability, CO(l); Sequential observability, SO(l)

Controllabilities:The basic process: Set PIs to 1, progress from PIs to POs,
add 1 to account for logic depth.

a z CC0(z) = CC1(a) + 1

z

z

z

a

a
b

b

a
b

CC1(z) = CC0(a) + 1

CC0(z) = min{CC0(a) + CC0(b)} + 1
CC1(z) = CC1(a) + CC1(b) + 1

CC0(z) = CC0(a) + CC0(b) + 1
CC1(z) = min{CC1(a) + CC1(b)} + 1

CC1(z) = min{CC1(a) + CC0(b), CC0(a) + CC1(b)} + 1
CC0(z) = min{CC0(a) + CC0(b), CC1(a) + CC1(b)} + 1

VLSI Design Verification and TestTestability Measures CMSC 691x

6 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures
In general, if only one input sets gate’s output:

output controllability = min(input controllabilites) + 1
If all inputs set gate output:

output controllability = sum(input controllabilities) + 1
If gate output is determined by multiple input sets, e.g., XOR:

output controllability = min(controllabilities of input sets) + 1

Remember that reconverging signals may correlate and therefore this proce-
dure becomes inaccurate at the reconvergence point.

Observabilities: The basic process: After controllabilities computed, set P0s
to 0, progress from PO to PIs, add 1 to account for logic depth.

For example, the difficulty of observing a designated input to a gate is
the sum of (1) the output observability (2) the difficulty of setting all
other inputs to non-dominant values (3) plus 1 for logic depth.

VLSI Design Verification and TestTestability Measures CMSC 691x

7 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures

The accuracy problem occurs for the computation of the observability of a
fanout stem with n branches.

One attempt is to bound the stem probability by:
• min(all fanout branch observabilities)

The events of observing a signal through each branch are independent.
• max(all fanout branch observabilities)

They are all dependent, therefore branch that’s hardest to observe is cor-
rect choice.

a z CO(a) = CO(z) + 1

z

z

z

a

a
b

b

a
b

CO(a) = CO(z) + CC1(b) + 1

CO(a) = CO(a) + CC0(b) + 1

CO(a) = CO(z) + min{CC0(b) + CC1(b)} + 1

VLSI Design Verification and TestTestability Measures CMSC 691x

8 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures
Problem: These ignore the possibility that observing a signal may require its
propagation through some or all fanout branches.

Goldstein uses: CO(stem) = min(CO(branches))
Therefore, observability calculation errors occur and ATPG algorithms
which use them may be misled.

Goldstein’s algorithm has only O(2*n) or O(n) complexity.

Note that the red numbers are given by the SCOAP algorithm and the
green number are the exact values.

B
C

Out

A 1,1 (6)
1,1 (5,inf) CC0, CC1 (CO)

Format:

SCOAP in red
Correct in green

1,1 (6)

(1,1,4,6)
1,1 (5)

2,3 (4)
2,3 (4,inf)

2,3 (4)
2,3 (4,inf)

6,2 (0)
4,2 (0)

1,1 (6)
1,1 (5,inf)

CC0, CC1 (CO, CO)
0 1

Observability

1,1 (4,6)
1,1 (5) 1,1 (6)

VLSI Design Verification and TestTestability Measures CMSC 691x

9 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures
An example with multiple outputs:

Let’s refer to the branches using the gate index, e.g., A1, A2 and H4, H5, etc.

For nodes F, H and G:
CC0(F) = min{CC0(A), CC0(B), CC0(C)} + 1 = 2
CC1(F) = CC1(A) + CC1(B) + CC1(C) + 1 = 4
CC0(H) = CC1(A) + CC1(B) + 1 = 3
CC1(H) = min{CC0(A),CC0(B)} + 1 = 2
CC0(G) = CC1(C) + 1 = 2
CC1(G) = CC0(C) + 1 = 2

1,1
1,1

A
B

C

F

G

H

Y

Z

G1

G2

G3

G4

G5

1,1
1,1

2,4

3,2

2,2

3,2

3,2

1,1
1,1
1,1
1,1

1,1
1,1

1,1

VLSI Design Verification and TestTestability Measures CMSC 691x

10 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures

CC0(Y) = CC0(F) + CC0(H) + 1 = 6
CC1(Y) = min{CC1(F), CC1(H)} + 1 = 3
CC0(Z) = CC1(H) + CC1(G) + 1 = 5
CC1(Z) = min{CC0(H), CC0(G)} + 1 =3

In order to observe node F on PO Y, it is necessary to control H to 0.
COY(F) = CO(Y) + CC0(H) + 1 = 4

COZ(G) = CO(Z) + CC1(H) + 1 = 3

COY(H) = CO(Y) + CC0(F) + 1 = 3

COZ(H) = CO(Z) + CC1(G) + 1 = 3

1,1
1,1

A
B

C

F

G

H

Y

Z

G1

G2

G3

G4

G5

1,1
1,1

2,4 (4)

3,2 (3)

2,2 (3)

3,2 (3)

3,2 (3)

6,3 (0)

5,3 (0)

1,1
1,1
1,1
1,1

1,1
1,1

1,1

VLSI Design Verification and TestTestability Measures CMSC 691x

11 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures

Inputs are observable on Y or Z.
Consider observability of C via Y:

COY(C) = COY(F) + CC1(A) + CC1(B) + 1 = 7

Consider observability of C via Z:
COZ(C) = COZ(G) + 1 = 4

Note that C1 is not observable, (inf), on Z and C3 is not observable on Y.

Also, SA1 faults on A1 and B1 are not observable because of the redundancy

but they are still assigned finite values (left as an exercise).

1,1 (4)Z

1,1 (7)Y

A
B

C

F

G

H

Y

Z

G1

G2

G3

G4

G5

1,1 (5)
1,1 (5)

2,4 (4)

3,2 (3)

2,2 (3)

3,2 (3)

3,2 (3)

6,3 (0)

5,3 (0)

1,1
1,1
1,1
1,1

1,1 (inf)Z

1,1 (inf)Y
1,1 (4)Z

1,1 (7)Y

VLSI Design Verification and TestTestability Measures CMSC 691x

12 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures
Sequential circuit with scannable FFs (treat as combinational):

Eliminate FFs and assign pseudo-primary inputs/outputs, PPIx and PPOx.
Levelize the circuit, as shown by the circled numbers in the circuit, for the
forward pass.

See text for observabilities and more details.

Z

Q1

4
R

D Q
7

D Q
8 Q2

Clk

1

532

6

PPI7

PPI8

PPO8

PPO7

pseudo-primary
input (PPI)

pseudo-primary
output (PPO)

1

1

2

3

3

4

(CC0, CC1)
Format:

(1,1) (1,1)

(1,1)

(1,1)

(1,1)(1,1)

(1,1)
(2,2)

(2,2) (3,5)

(3,5)

(3,5)

(2,6)

(2,7)

(2,7)

(2,7)
(5,7)

VLSI Design Verification and TestTestability Measures CMSC 691x

13 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

SCOAP Testability Measures
Sequential SCOAP measures differences:
• Increment the sequential measure by 1 only when:

Signals propagate from FF inputs to Q or Q, or
Signals propagate from FF outputs backwards to D, Clk, SET or RESET
inputs.

• One must iterate on feedback loops until controllabilities stabilize.

SC0, SC1 and SO formulas differ from CC0, CC1 and C0 only in that you do
NOT add one when moving from one level to another.

SC0 and SC1 roughly measure the number of times various FFs must be
clocked to control a signal.

If line l can only be set to 1 but clocking FF a twice and FF b three times,
SC1(l) should be 5.

SO correspondingly measure the number of times a FF must be clocked to
observe a combinational signal.

(Read sections in text).

VLSI Design Verification and TestTestability Measures CMSC 691x

14 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Testability Measures
SCOAP can be used to predict the length of a test set.

Testabilities of SA faults at node x given by:
T(x SA0) = CC1(x) + CO(x)
T(x SA1) = CC0(x) + CO(x)

These indicate in order to detect a fault at x, one must set x to the opposite
value from the fault and observe x at a PO.

A testability index can be computed as:
Testability index = log (sum over all faults fi of T(fi)).

How are Testability Measures useful?
• In ATPG during backtracing (controllabilities) and propagating the fault

effect (observabilites) since they give the path of least resistance.
Some caution is necessary since reconvergent fanout introduce error in
controllabilites and fanout stems introduce error in observabilities.

VLSI Design Verification and TestTestability Measures CMSC 691x

15 (Nov 20, 2001)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Testability Measures
How are Testability Measures useful?
• Tell designer which parts of the design are extremely hard-to-test.

Either redesign or special-purpose test hardware is needed to achieve
high fault coverage.

• Extremely useful for estimating fault coverage and test vector length.
Fault coverage estimation via testability can reduce CPU time by orders
of magnitude over fault simulation (and has only a 3-5% error).

